Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Carbon Nano-onions: A Valuable Class of Carbon Nanomaterials in Biomedicine

Author(s): Silvia Giordani*, Adalberto Camisasca and Viviana Maffeis

Volume 26, Issue 38, 2019

Page: [6915 - 6929] Pages: 15

DOI: 10.2174/0929867326666181126113957

Price: $65

conference banner
Abstract

The development of nanoscale materials is an important area of research as it provides access to materials with unique properties that can be applied to improve quality of life. Multi-layer fullerenes, also known as carbon nano-onions (CNOs) are an exciting class of nanostructures which show great versatility and applicability. They find applications in several fields of technology and biomedicine. This review highlights the potential advantages of CNOs for biomedical applications, which include but are not limited to bioimaging and sensing. Their good biocompatibility renders them promising platforms for the development of novel healthcare devices.

Keywords: Carbon nano-onion, imaging, nanomaterial, sensing, toxicology, nanomedicine.

[1]
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol., 2004, 22(1), 47-52.
[http://dx.doi.org/10.1038/nbt927] [PMID: 14704706]
[2]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107, 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[3]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[4]
Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev., 2015, 44(13), 4433-4453.
[http://dx.doi.org/10.1039/C4CS00379A] [PMID: 25980819]
[5]
Bartelmess, J.; Quinn, S.J.; Giordani, S. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev., 2015, 44(14), 4672-4698.
[http://dx.doi.org/10.1039/C4CS00306C] [PMID: 25406743]
[6]
Baldrighi, M.; Trusel, M.; Tonini, R.; Giordani, S. Carbon nanomaterials interfacing with neurons: an in vivo perspective. Front. Neurosci., 2016, 10, 250.
[http://dx.doi.org/10.3389/fnins.2016.00250] [PMID: 27375413]
[7]
Ruggiero, A.; Villa, C.H.; Bander, E.; Rey, D.A.; Bergkvist, M.; Batt, C.A.; Manova-Todorova, K.; Deen, W.M.; Scheinberg, D.A.; McDevitt, M.R. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. USA, 2010, 107(27), 12369-12374.
[http://dx.doi.org/10.1073/pnas.0913667107] [PMID: 20566862]
[8]
Kobayashi, H.; Brechbiel, M.W. Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev., 2005, 57(15), 2271-2286.
[http://dx.doi.org/10.1016/j.addr.2005.09.016] [PMID: 16290152]
[9]
Florek, J.; Caillard, R.; Kleitz, F. Evaluation of mesoporous silica nanoparticles for oral drug delivery - current status and perspective of MSNs drug carriers. Nanoscale, 2017, 9(40), 15252-15277.
[http://dx.doi.org/10.1039/C7NR05762H] [PMID: 28984885]
[10]
Bhatia, S.N.; Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol., 2014, 32(8), 760-772.
[http://dx.doi.org/10.1038/nbt.2989] [PMID: 25093883]
[11]
Sivasankar, M. Brief Review on nano robots in bio medical applications. Adv. Robot. Automat., 2012, 1, 1.
[http://dx.doi.org/10.4172/2168-9695.1000101]
[12]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[13]
Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1394-1416.
[http://dx.doi.org/10.1016/j.addr.2012.06.006] [PMID: 22728642]
[14]
Zamboni, W.C.; Torchilin, V.; Patri, A.K.; Hrkach, J.; Stern, S.; Lee, R.; Nel, A.; Panaro, N.J.; Grodzinski, P. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin. Cancer Res., 2012, 18(12), 3229-3241.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2938] [PMID: 22669131]
[15]
Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater., 2013, 12(11), 958-962.
[http://dx.doi.org/10.1038/nmat3792] [PMID: 24150413]
[16]
van der Meel, R.; Vehmeijer, L.J.; Kok, R.J.; Storm, G.; van Gaal, E.V. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv. Drug Deliv. Rev., 2013, 65(10), 1284-1298.
[http://dx.doi.org/10.1016/j.addr.2013.08.012] [PMID: 24018362]
[17]
Iijima, S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth, 1980, 50(3), 675-683.
[http://dx.doi.org/10.1016/0022-0248(80)90013-5]
[18]
Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature, 1992, 359(6397), 707-709.
[http://dx.doi.org/10.1038/359707a0] [PMID: 11536508]
[19]
Camisasca, A.; Giordani, S. Carbon nano-onions in biomedical applications: promising theranostic agents. Inorg. Chim. Acta, 2017, 468, 67-76.
[http://dx.doi.org/10.1016/j.ica.2017.06.009]
[20]
Palkar, A.; Melin, F.; Cardona, C.M.; Elliott, B.; Naskar, A.K.; Edie, D.D.; Kumbhar, A.; Echegoyen, L. Reactivity differences between carbon nano onions (CNOs) prepared by different methods. Chem. Asian J., 2007, 2(5), 625-633.
[http://dx.doi.org/10.1002/asia.200600426] [PMID: 17465408]
[21]
Ugarte, D. Onion-Like graphitic particles. Carbon, 1995, 33(7), 989-993.
[http://dx.doi.org/10.1016/0008-6223(95)00027-B]
[22]
Xu, B.S.; Tanaka, S-I. Formation of giant onion-like fullerenes under Al nanoparticles by electron irradiation. Acta Mater., 1998, 46(15), 5249-5257.
[http://dx.doi.org/10.1016/S1359-6454(98)00221-3]
[23]
Alekseyev, N.I.; Dyuzhev, G.A. Fullerene formation in an arc discharge. Carbon, 2003, 41(7), 1343-1348.
[http://dx.doi.org/10.1016/S0008-6223(03)00058-7]
[24]
Sano, N.; Wang, H.; Alexandrou, I.; Chhowalla, M.; Teo, K.B.K.; Amaratunga, G.A.J.; Iimura, K. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys., 2002, 92(5), 2783-2788.
[http://dx.doi.org/10.1063/1.1498884]
[25]
Sano, N.; Wang, H.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G.A.J. Synthesis of carbon ‘onions’ in water. Nature, 2001, 414(6863), 506-507.
[http://dx.doi.org/10.1038/35107141] [PMID: 11734841]
[26]
Borgohain, R.; Yang, J.; Selegue, J.P.; Kim, D.Y. Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions. Carbon, 2014, 66, 272-284.
[http://dx.doi.org/10.1016/j.carbon.2013.09.001]
[27]
Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V.; Mal’kov, I.Y.; Titov, V.M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett., 1994, 222(4), 343-348.
[http://dx.doi.org/10.1016/0009-2614(94)87072-1]
[28]
Kuznetsov, V.L.; Zilberberg, I.L.; Butenko, Y.V.; Chuvilin, A.L.; Segall, B. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. J. Appl. Phys., 1999, 86(2), 863-870.
[http://dx.doi.org/10.1063/1.370816]
[29]
Zou, Q.; Wang, M.; Li, Y.; Zhao, Y.; Zou, L. Fabrication of onion-like carbon from nanodiamond by annealing. Sci. China Ser. E-Tech. Sci., 2009, 52(12), 3683-3689.
[30]
Chen, J.; Deng, S.Z.; Chen, J.; Yu, Z.X.; Xu, N.S. Graphitization of nanodiamond powder annealed in argon ambient. Appl. Phys. Lett., 1999, 74(24), 3651-3653.
[http://dx.doi.org/10.1063/1.123211]
[31]
Xie, F.Y.; Xie, W.G.; Gong, L.; Zhang, W.H.; Chen, S.H.; Zhang, Q.Z.; Chen, J. Surface characterization on graphitization of nanodiamond powder annealed in nitrogen ambient. Surf. Interface Anal., 2010, 42(9), 1514-1518.
[http://dx.doi.org/10.1002/sia.3350]
[32]
Aleksenski, A.E. BaÏdakova, M.V.; Vul’, A.Y.; DideÏkin, A.T.; SiklitskiÏ, V.I.; Vul’, S.P. Effect of hydrogen on the structure of ultradisperse diamond. Phys. Solid State, 2000, 42(8), 1575-1578.
[http://dx.doi.org/10.1134/1.1307073]
[33]
Mykhailiv, O.; Lapinski, A.; Molina-Ontoria, A.; Regulska, E.; Echegoyen, L.; Dubis, A.T.; Plonska-Brzezinska, M.E. Influence of the synthetic conditions on the structural and electrochemical properties of carbon nano-onions. ChemPhysChem, 2015, 16(10), 2182-2191.
[http://dx.doi.org/10.1002/cphc.201500061] [PMID: 26017555]
[34]
Tomita, S.; Sakurai, T.; Ohta, H.; Fujii, M.; Hayashi, S. Structure and electronic properties of carbon onions. J. Chem. Phys., 2001, 114(17), 7477-7482.
[http://dx.doi.org/10.1063/1.1360197]
[35]
Tomita, S.; Fujii, M.; Hayashi, S.; Yamamoto, K. Electron energy-loss spectroscopy of carbon onions. Chem. Phys. Lett., 1999, 305(3-4), 225-229.
[http://dx.doi.org/10.1016/S0009-2614(99)00374-7]
[36]
Bogdanov, K.; Fedorov, A.; Osipov, V.; Enoki, T.; Takai, K.; Hayashi, T.; Ermakov, V.; Moshkalev, S.; Baranov, A. Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies. Carbon, 2014, 73, 78-86.
[http://dx.doi.org/10.1016/j.carbon.2014.02.041]
[37]
Zeiger, M.; Jäckel, N.; Weingarth, D.; Presser, V. Vacuum or flowing argon: What is the best synthesis atmosphere for nanodiamond-derived carbon onions for supercapacitor electrodes? Carbon, 2015, 94, 507-517.
[http://dx.doi.org/10.1016/j.carbon.2015.07.028]
[38]
Choi, E.Y.; Kim, C.K. Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep., 2017, 7(1), 4178.
[http://dx.doi.org/10.1038/s41598-017-04597-6] [PMID: 28646193]
[39]
Lin, Y.; Zhu, Y.; Zhang, B.; Kim, Y.A.; Endo, M.; Su, D.S. Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 21805-21841.
[http://dx.doi.org/10.1039/C5TA03141A]
[40]
Camisasca, A.; Sacco, A.; Brescia, R.; Giordani, S. Boron/nitrogen-codoped carbon nano-onion electrocatalysts for the oxygen reduction reaction. ACS Applied Nano Materials, 2018, 1(10), 5763-5773.
[http://dx.doi.org/10.1021/acsanm.8b01430]
[41]
Zhao, N.; Cui, Q.; He, C.; Shi, C.; Li, J.; Li, H.; Du, X. Synthesis of carbon nanostructures with different morphologies by CVD of methane. Mater. Sci. Eng. A, 2007, 460-461, 255-260.
[http://dx.doi.org/10.1016/j.msea.2007.01.051]
[42]
He, C.N.; Tian, F.; Liu, S.J.; Du, Z.J.; Liu, C.J.; Li, F.; Chen, S.Q. Characterization and magnetic property of carbon coated metal nanoparticles and hollow carbon onions fabricated by CVD of methane. Mater. Lett., 2008, 62(21-22), 3697-3699.
[http://dx.doi.org/10.1016/j.matlet.2008.04.031]
[43]
Yang, Y.; Liu, X.; Guo, X.; Wen, H.; Xu, B. Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride. J. Nanopart. Res., 2010, 13(5), 1979-1986.
[http://dx.doi.org/10.1007/s11051-010-9951-0]
[44]
He, C.N.; Zhao, N.; Du, X.; Shi, C.; Ding, J.; Li, J.; Li, Y. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum. Scr. Mater., 2006, 54(4), 689-693.
[http://dx.doi.org/10.1016/j.scriptamat.2005.09.058]
[45]
He, C.N.; Zhao, N.; Shi, C.; Du, X.; Li, J. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts. Mater. Chem. Phys., 2006, 97(1), 109-115.
[http://dx.doi.org/10.1016/j.matchemphys.2005.07.059]
[46]
Du, A.B.; Liu, X.G.; Fu, D.J.; Han, P.D.; Xu, B.S. Onion-like fullerenes synthesis from coal. Fuel, 2007, 86(1-2), 294-298.
[http://dx.doi.org/10.1016/j.fuel.2006.05.031]
[47]
Chen, X.H.; Deng, F.M.; Wang, J.X.; Yang, H.S.; Wu, G.T.; Zhang, X.B.; Peng, J.C.; Li, W.Z. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem. Phys. Lett., 2001, 336(3), 201-204.
[http://dx.doi.org/10.1016/S0009-2614(01)00085-9]
[48]
Huang, J.Y.; Yasuda, H.; Mori, H. Highly curved carbon nanostructures produced by ball-milling. Chem. Phys. Lett., 1999, 303(1), 130-134.
[http://dx.doi.org/10.1016/S0009-2614(99)00131-1]
[49]
Chen, X.H.; Yang, H.S.; Wu, G.T.; Wang, M.; Deng, F.M.; Zhang, X.B.; Peng, J.C.; Li, W.Z. Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite. J. Cryst. Growth, 2000, 218(1), 57-61.
[http://dx.doi.org/10.1016/S0022-0248(00)00486-3]
[50]
Cabioc’h, T.; Jaouen, M.; Thune, E.; Gu’erin, P.; Fayoux, C.; Denanot, M.F. Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surf. Coat. Tech., 2000, 128-129, 43-50.
[http://dx.doi.org/10.1016/S0257-8972(00)00655-1]
[51]
Dorobantu, D.; Bota, P.M.; Boerasu, I.; Bojin, D.; Enachescu, M. Pulse laser ablation system for carbon nano-onions fabrication. Surg. Eng. Appl. Electrochem., 2014, 50(5), 390-394.
[http://dx.doi.org/10.3103/S1068375514050044]
[52]
Hou, S-S.; Chung, D-H.; Lin, T-H. High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon, 2009, 47(4), 938-947.
[http://dx.doi.org/10.1016/j.carbon.2008.11.054]
[53]
Bystrzejewski, M.; Rummeli, M.H.; Gemming, T.; Lange, H.; Huczko, A. Catalyst-free synthesis of onion-like carbon nanoparticles. N. Carbon Mater., 2010, 25(1), 1-8.
[http://dx.doi.org/10.1016/S1872-5805(09)60011-1]
[54]
Choucair, M.; Stride, J.A. The gram-scale synthesis of carbon onions. Carbon, 2012, 50(3), 1109-1115.
[http://dx.doi.org/10.1016/j.carbon.2011.10.023]
[55]
Du, J.; Liu, Z.; Li, Z.; Han, B.; Sun, Z.; Huang, Y. Carbon onions synthesized via thermal reduction of glycerin with magnesium. Mater. Chem. Phys., 2005, 93(1), 178-180.
[http://dx.doi.org/10.1016/j.matchemphys.2005.03.012]
[56]
Kobayashi, T.; Sekine, T.; He, H. Formation of carbon onion from heavily shocked SiC. Chem. Mater., 2003, 15(14), 2681-2683.
[http://dx.doi.org/10.1021/cm030238x]
[57]
Yan, Y.; Yang, H.; Zhang, F.; Tu, B.; Zhao, D. Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules. Carbon, 2007, 45(11), 2209-2216.
[http://dx.doi.org/10.1016/j.carbon.2007.06.049]
[58]
Sonkar, S.K.; Roy, M.; Babar, D.G.; Sarkar, S. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale, 2012, 4(24), 7670-7675.
[http://dx.doi.org/10.1039/c2nr32408c] [PMID: 23099536]
[59]
Ghosh, M.; Sonkar, S.K.; Saxena, M.; Sarkar, S. Carbon nano-onions for imaging the life cycle of Drosophila melanogaster. Small, 2011, 7(22), 3170-3177.
[http://dx.doi.org/10.1002/smll.201101158] [PMID: 22012886]
[60]
Sonkar, S.K.; Ghosh, M.; Roy, M.; Begum, A.; Sarkar, S. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain-an in vivo study from unicellular E. coli to multicellular C. elegans. Mater. Express, 2012, 2(2), 105-114.
[http://dx.doi.org/10.1166/mex.2012.1064]
[61]
Dubey, P.; Tripathi, K.M.; Sonkar, S.K. Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Advances, 2014, 4(12), 5838.
[http://dx.doi.org/10.1039/c3ra45261a]
[62]
Bartelmess, J.; Giordani, S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol., 2014, 5, 1980-1998.
[http://dx.doi.org/10.3762/bjnano.5.207] [PMID: 25383308]
[63]
Chen, R.J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 2001, 123(16), 3838-3839.
[http://dx.doi.org/10.1021/ja010172b] [PMID: 11457124]
[64]
Lou, X.; Daussin, R.; Cueno, S.; Duwez, A-S.; Pagnoulle, C.; Detrembleur, C.; Bailly, C.; Jerome, R. Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes. Chem. Mater., 2004, 16(21), 4005-4011.
[http://dx.doi.org/10.1021/cm0492585]
[65]
Zheng, M.; Jagota, A.; Semke, E.D.; Diner, B.A.; McLean, R.S.; Lustig, S.R.; Richardson, R.E.; Tassi, N.G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater., 2003, 2(5), 338-342.
[http://dx.doi.org/10.1038/nmat877] [PMID: 12692536]
[66]
Bartelmess, J.; Frasconi, M.; Balakrishnan, P.B.; Signorelli, A.; Echegoyen, L.; Pellegrino, T.; Giordani, S. Non-covalent functionalization of carbon nano-onions with pyrene-BODIPY dyads for biological imaging. RSC Advances, 2015, 5(62), 50253-50258.
[http://dx.doi.org/10.1039/C5RA07683H]
[67]
Liu, K.; Zhang, J-J.; Cheng, F-F.; Zheng, T-T.; Wang, C.; Zhu, J-J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem., 2011, 21(32), 12034.
[http://dx.doi.org/10.1039/c1jm10749f]
[68]
Flavin, K.; Chaur, M.N.; Echegoyen, L.; Giordani, S. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and “click” chemistry. Org. Lett., 2010, 12(4), 840-843.
[http://dx.doi.org/10.1021/ol902939f] [PMID: 20092266]
[69]
Yang, M.; Flavin, K.; Kopf, I.; Radics, G.; Hearnden, C.H.; McManus, G.J.; Moran, B.; Villalta-Cerdas, A.; Echegoyen, L.A.; Giordani, S.; Lavelle, E.C. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small, 2013, 9(24), 4194-4206.
[http://dx.doi.org/10.1002/smll.201300481] [PMID: 23839951]
[70]
Kim, H.N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev., 2011, 40(1), 79-93.
[http://dx.doi.org/10.1039/C0CS00058B] [PMID: 21107482]
[71]
de Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97(5), 1515-1566.
[http://dx.doi.org/10.1021/cr960386p] [PMID: 11851458]
[72]
Xu, Z.; Kim, S.K.; Yoon, J. Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006-2009. Chem. Soc. Rev., 2010, 39(5), 1457-1466.
[http://dx.doi.org/10.1039/b918937h] [PMID: 20419201]
[73]
Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev., 2010, 39(10), 3936-3953.
[http://dx.doi.org/10.1039/b910560n] [PMID: 20818454]
[74]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[75]
Gunaseelan, S.; Gunaseelan, K.; Deshmukh, M.; Zhang, X.; Sinko, P.J. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 518-531.
[http://dx.doi.org/10.1016/j.addr.2009.11.021] [PMID: 19941919]
[76]
Bartelmess, J.; De Luca, E.; Signorelli, A.; Baldrighi, M.; Becce, M.; Brescia, R.; Nardone, V.; Parisini, E.; Echegoyen, L.; Pompa, P.P.; Giordani, S. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale, 2014, 6(22), 13761-13769.
[http://dx.doi.org/10.1039/C4NR04533E] [PMID: 25286147]
[77]
Giordani, S.; Bartelmess, J.; Frasconi, M.; Biondi, I.; Cheung, S.; Grossi, M.; Wu, D.; Echegoyen, L.; O’Shea, D.F. NIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(42), 7459-7463.
[http://dx.doi.org/10.1039/C4TB01087F]
[78]
Lettieri, S.; Camisasca, A.; d’Amora, M.; Diaspro, A.; Uchida, T.; Nakajima, Y.; Yanagisawa, K.; Maekawa, T.; Giordani, S. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging. RSC Advances, 2017, 7(72), 45676-45681.
[http://dx.doi.org/10.1039/C7RA09442F]
[79]
Frasconi, M.; Maffeis, V.; Bartelmess, J.; Echegoyen, L.; Giordani, S. Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods Appl. Fluoresc., 2015, 3(4)044005
[http://dx.doi.org/10.1088/2050-6120/3/4/044005] [PMID: 29148503]
[80]
Pakhira, B.; Ghosh, M.; Allam, A.; Sarkar, S. Carbon nano onions cross the blood brain barrier. RSC Advances, 2016, 6(35), 29779-29782.
[http://dx.doi.org/10.1039/C5RA23534K]
[81]
Fang, B.; Wang, D.; Huang, M.; Yu, G.; Li, H. Hypothesis on the relationship between the change in intracellular pH and incidence of sporadic Alzheimer’s disease or vascular dementia. Int. J. Neurosci., 2010, 120(9), 591-595.
[http://dx.doi.org/10.3109/00207454.2010.505353] [PMID: 20707633]
[82]
Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev., 2008, 108(9), 3443-3480.
[http://dx.doi.org/10.1021/cr068000q] [PMID: 18652512]
[83]
Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol., 2005, 20(2), 351-360.
[http://dx.doi.org/10.1016/j.etap.2005.03.007] [PMID: 21783611]
[84]
Breczko, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite. Electrochim. Acta, 2012, 72, 61-67.
[http://dx.doi.org/10.1016/j.electacta.2012.03.177]
[85]
Luszczyn, J.; Plonska-Brzezinska, M.E.; Palkar, A.; Dubis, A.T.; Simionescu, A.; Simionescu, D.T.; Kalska-Szostko, B.; Winkler, K.; Echegoyen, L. Small noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules. Chemistry, 2010, 16(16), 4870-4880.
[http://dx.doi.org/10.1002/chem.200903277] [PMID: 20340115]
[86]
Bartolome, J.P.; Echegoyen, L.; Fragoso, A. Reactive carbon nano-onion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Anal. Chem., 2015, 87(13), 6744-6751.
[http://dx.doi.org/10.1021/acs.analchem.5b00924] [PMID: 26067834]
[87]
Lettieri, S.; d’Amora, M.; Camisasca, A.; Diaspro, A.; Giordani, S. Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics. Beilstein J. Nanotechnol., 2017, 8, 1878-1888.
[http://dx.doi.org/10.3762/bjnano.8.188] [PMID: 29046835]
[88]
Bartolome, J.P.; Fragoso, A. Electrochemical detection of nitrite and ascorbic acid at glassy carbon electrodes modified with carbon nano-onions bearing electroactive moieties. Inorg. Chim. Acta, 2017, 468, 223-231.
[http://dx.doi.org/10.1016/j.ica.2017.06.024]
[89]
Frasconi, M.; Marotta, R.; Markey, L.; Flavin, K.; Spampinato, V.; Ceccone, G.; Echegoyen, L.; Scanlan, E.M.; Giordani, S. Multi-Functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry, 2015, 21(52), 19071-19080.
[http://dx.doi.org/10.1002/chem.201503166] [PMID: 26577582]
[90]
Brown, E.; Verkade, P. The use of markers for correlative light electron microscopy. Protoplasma, 2010, 244(1-4), 91-97.
[http://dx.doi.org/10.1007/s00709-010-0165-1] [PMID: 20524017]
[91]
Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N.V.; Aslam, M. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl. Surf. Sci., 2018, 442, 332-341.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.124]
[92]
Sok, V.; Fragoso, A. Preparation and characterization of alkaline phosphatase, horseradish peroxidase, and glucose oxidase conjugates with carboxylated carbon nano-onions. Prep. Biochem. Biotechnol., 2018, 48(2), 136-143.
[http://dx.doi.org/10.1080/10826068.2017.1405025] [PMID: 29215950]
[93]
Tripathi, K.M.; Bhati, A.; Singh, A.; Gupta, N.R.; Verma, S.; Sarkar, S.; Sonkar, S.K. From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016, 6(44), 37319-37329.
[http://dx.doi.org/10.1039/C6RA04030F]
[94]
Zuaznabar-Gardona, J.C.; Fragoso, A. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes. Sens. Actuators B Chem., 2018, 273, 664-671.
[http://dx.doi.org/10.1016/j.snb.2018.06.103]
[95]
Singh, V. Natural source derived carbon nano-onions as electrode material for sensing applications. Diamond Related Materials, 2018, 87, 202-207.
[http://dx.doi.org/10.1016/j.diamond.2018.06.007]
[96]
Maffeis, V.; McCourt, R.O.; Petracca, R.; Laethem, O.; Camisasca, A.; Colavita, P.E.; Giordani, S.; Scanlan, E.M. Photocatalytic initiation of radical thiol-ene reactions using carbon-Bi2O3 nanocomposites. ACS Applied Nano Materials, 2018, 1(8), 4120-4126.
[http://dx.doi.org/10.1021/acsanm.8b00870]
[97]
Marchesano, V.; Ambrosone, A.; Bartelmess, J.; Strisciante, F.; Tino, A.; Echegoyen, L.; Tortiglione, C.; Giordani, S. Impact of carbon nano-onions on Hydra vulgaris as a model organism for nanoecotoxicology. Nanomaterials (Basel), 2015, 5(3), 1331-1350.
[http://dx.doi.org/10.3390/nano5031331] [PMID: 28347067]
[98]
D’ Amora, M.; Rodio, M.; Bartelmess, J.; Sancataldo, G.; Brescia, R.; Cella Zanacchi, F.; Diaspro, A.; Giordani, S. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Sci. Rep., 2016, 6, 33923.
[http://dx.doi.org/10.1038/srep33923] [PMID: 27671377]
[99]
Usenko, C.Y.; Harper, S.L.; Tanguay, R.L. Fullerene C60 exposure elicits an oxidative stress response in embryonic Zebrafish. Toxicol. Appl. Pharmacol., 2008, 229(1), 44-55.
[http://dx.doi.org/10.1016/j.taap.2007.12.030] [PMID: 18299140]
[100]
Wang, Z.G.; Zhou, R.; Jiang, D.; Song, J.E.; Xu, Q.; Si, J.; Chen, Y.P.; Zhou, X.; Gan, L.; Li, J.Z.; Zhang, H.; Liu, B. Toxicity of graphene quantum dots in zebrafish embryo. Biomed. Environ. Sci., 2015, 28(5), 341-351.
[http://dx.doi.org/10.3967/bes2015.048] [PMID: 26055561]
[101]
d’Amora, M.; Camisasca, A.; Lettieri, S.; Giordani, S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials (Basel), 2017, 7(12), 414.
[http://dx.doi.org/10.3390/nano7120414] [PMID: 29186817]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy