Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Drugs for Targeted Therapies of Alzheimer’s Disease

Author(s): Chit Tam*, Jack Ho Wong*, Tzi Bun Ng*, Stephen Kwok Wing Tsui and Tao Zuo

Volume 26, Issue 2, 2019

Page: [335 - 359] Pages: 25

DOI: 10.2174/0929867325666180430150940

Price: $65

conference banner
Abstract

Alzheimer’s disease (AD) is one type of neurodegenerative diseases, which is prevalent in the elderly. Beta-amyloid (Aβ) plaques and phosphorylated tau-induced neurofibrillary tangles are two pathological hallmarks of this disease and the corresponding pathological pathways of these hallmarks are considered as the therapeutic targets. There are many drugs scheduled for pre-clinical and clinical trial that target to inhibit the initiators of pathological Aβ and tau aggregates as well as critical Aβ secretases and kinases in tau hyperphosphorylation. In addition, studies in disease gene variations, and detection of key prognostic effectors in early development are also important for AD control. The discovery of potential drug targets contributed to targeted therapy in a stage-dependent manner, However, there are still some issues that cause concern such as the low bioavailability and low efficacy of candidate drugs from clinical trial reports. Therefore, modification of drug candidates and development of delivery agents are essential and critical. With other medical advancements like cell replacement therapy, there is hope for the cure of Alzheimer’s disease in the foreseeable future.

Keywords: Aβ aggregation, Aβ plaque, tau phosphorylation, neurofibrillary tangles, tau kinases, drug delivery, targeted therapy.

« Previous
[1]
National Institute on Aging, NIH. 2014-2015 Alzheimer's Disease Progress Report: Advancing Research Toward a Cure; National Institute on Aging: , 2015; pp. 1-59.
[2]
Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8), a006239.
[3]
Zhang, C. Natural compounds that modulate BACE1-processing of amyloid-beta precursor protein in Alzheimer’s disease. Discov. Med., 2012, 14(76), 189-197.
[4]
Sisodia, S.S.; Tanzi, R.E., Eds.; Alzheimer’s disease: Advances in Genetics, Molecular and Cellular Biology; Springer: Boston, 2007.
[5]
Citron, M. Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov., 2010, 9(5), 387-398.
[6]
Aguzzi, A.; O’Connor, T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov., 2010, 9(3), 237-248.
[7]
Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[8]
Ehrnhoefer, D.E.; Wong, B.K.; Hayden, M.R. Convergent pathogenic pathways in Alzheimer’s and Huntington’s diseases: shared targets for drug development. Nat. Rev. Drug Discov., 2011, 10(11), 853-867.
[9]
Noble, W.; Hanger, D.P.; Miller, C.C.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4, 83.
[10]
Ittner, L.M.; Götz, J. Amyloid-β and tau--a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci., 2011, 12(2), 65-72.
[11]
Rojo, L.E.; Fernández, J.A.; Maccioni, A.A.; Jimenez, J.M.; Maccioni, R.B. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch. Med. Res., 2008, 39(1), 1-16.
[12]
Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.L.; Yardin, C.; Terro, F. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res. Rev., 2013, 12(1), 289-309.
[13]
Kontaxi, C.; Piccardo, P.; Gill, A.C. Lysine-directed post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Front. Mol. Biosci., 2017, 4, 56.
[14]
Asai, H.; Ikezu, S.; Woodbury, M.E.; Yonemoto, G.M.; Cui, L.; Ikezu, T. Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1. Am. J. Pathol., 2014, 184(3), 808-818.
[15]
Ikezu, S.; Ikezu, T. Tau-tubulin kinase. Front. Mol. Neurosci., 2014, 7, 33.
[16]
Liao, J.C.; Yang, T.T.; Weng, R.R.; Kuo, C.T.; Chang, C.W. TTBK2: a tau protein kinase beyond tau phosphorylation. BioMed Res. Int., 2015, 2015, 575170.
[17]
Sato, S.; Cerny, R.L.; Buescher, J.L.; Ikezu, T. Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J. Neurochem., 2006, 98(5), 1573-1584.
[18]
Chen, C.; Gu, J.; Basurto-Islas, G.; Jin, N.; Wu, F.; Gong, C.X.; Iqbal, K.; Liu, F. Up-regulation of casein kinase 1ε is involved in tau pathogenesis in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13478.
[19]
Ando, K.; Maruko-Otake, A.; Ohtake, Y.; Hayashishita, M.; Sekiya, M.; Iijima, K.M. Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLoS Genet., 2016, 12(3), e1005917.
[20]
Fernius, J.; Starkenberg, A.; Pokrzywa, M.; Thor, S. Human TTBK1, TTBK2 and MARK1 kinase toxicity in Drosophila melanogaster is exacerbated by co-expression of human Tau. Biol. Open, 2017, 6(7), 1013-1023.
[21]
Wang, Y.; Yang, R.; Gu, J.; Yin, X.; Jin, N.; Xie, S.; Wang, Y.; Chang, H.; Qian, W.; Shi, J.; Iqbal, K.; Gong, C.X.; Cheng, C.; Liu, F. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol. Aging, 2015, 36(1), 188-200.
[22]
Bemiller, S.M.; McCray, T.J.; Allan, K.; Formica, S.V.; Xu, G.; Wilson, G.; Kokiko-Cochran, O.N.; Crish, S.D.; Lasagna-Reeves, C.A.; Ransohoff, R.M.; Landreth, G.E.; Lamb, B.T. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener., 2017, 12(1), 74.
[23]
Planel, E.; Richter, K.E.; Nolan, C.E.; Finley, J.E.; Liu, L.; Wen, Y.; Krishnamurthy, P.; Herman, M.; Wang, L.; Schachter, J.B.; Nelson, R.B.; Lau, L.F.; Duff, K.E. Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J. Neurosci., 2007, 27(12), 3090-3097.
[24]
Tan, W.; Cao, X.; Wang, J.; Lv, H.; Wu, B.; Ma, H. Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5% isoflurane without temperature maintenance in rats. Eur. J. Anaesthesiol., 2010, 27(9), 835-841.
[25]
Planel, E.; Tatebayashi, Y.; Miyasaka, T.; Liu, L.; Wang, L.; Herman, M.; Yu, W.H.; Luchsinger, J.A.; Wadzinski, B.; Duff, K.E.; Takashima, A. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J. Neurosci., 2007, 27(50), 13635-13648.
[26]
Chen, Y.; Dai, C.L.; Wu, Z.; Iqbal, K.; Liu, F.; Zhang, B.; Gong, C.X. Intranasal insulin prevents anesthesia-induced cognitive Impairment and chronic neurobehavioral changes. Front. Aging Neurosci., 2017, 9, 136.
[27]
Wang, Z.H.; Liu, P.; Liu, X.; Manfredsson, F.P.; Sandoval, I.M.; Yu, S.P.; Wang, J.Z.; Ye, K. Delta-secretase phosphorylation by SRPK2 enhances its enzymatic activity, provoking pathogenesis in Alzheimer’s disease. Mol. Cell, 2017, 67(5), 812-825.e5.
[28]
Hugon, J.; Mouton-Liger, F.; Dumurgier, J.; Paquet, C. PKR involvement in Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 83.
[29]
Deas, E.; Wood, N.W.; Plun-Favreau, H. Mitophagy and Parkinson’s disease: the PINK1-parkin link. Biochim. Biophys. Acta, 2011, 1813(4), 623-633.
[30]
Ding, W.X.; Yin, X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem., 2012, 393(7), 547-564.
[31]
Fivenson, E.M.; Lautrup, S.; Sun, N.; Scheibye-Knudsen, M.; Stevnsner, T.; Nilsen, H.; Bohr, V.A.; Fang, E.F. Mitophagy in neurodegeneration and aging. Neurochem. Int., 2017, 109, 202-209.
[32]
Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci., 2017, 40(3), 151-166.
[33]
Gallardo, G.; Holtzman, D.M. Antibody therapeutics targeting Aβ and tau. Cold Spring Harb. Perspect. Med., 2017, 7(10), a024331.
[34]
Misiak, M.; Vergara Greeno, R.; Baptiste, B.A.; Sykora, P.; Liu, D.; Cordonnier, S.; Fang, E.F.; Croteau, D.L.; Mattson, M.P.; Bohr, V.A. DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer’s disease. Aging Cell, 2017, 16(1), 162-172.
[35]
Wisniewski, T.; Drummond, E. Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev. Vaccines, 2016, 15(3), 401-415.
[36]
Hou, Y.; Song, H.; Croteau, D.L.; Akbari, M.; Bohr, V.A. Genome instability in Alzheimer disease. Mech. Ageing Dev, 2017. 161(Pt A), 83-94.
[37]
Wolfe, M.S. Therapeutic strategies for Alzheimer’s disease. Nat. Rev. Drug Discov., 2002, 1(11), 859-866.
[38]
Bedford, L.; Lowe, J.; Dick, L.R.; Mayer, R.J.; Brownell, J.E. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat. Rev. Drug Discov., 2011, 10(1), 29-46.
[39]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[40]
Ofengeim, D.; Shi, P.; Miao, B.; Fan, J.; Xia, X.; Fan, Y.; Lipinski, M.M.; Hashimoto, T.; Polydoro, M.; Yuan, J.; Wong, S.T.; Degterev, A. Identification of small molecule inhibitors of neurite loss induced by Aβ peptide using high content screening. J. Biol. Chem., 2012, 287(12), 8714-8723.
[41]
Ma, T.; Trinh, M.A.; Wexler, A.J.; Bourbon, C.; Gatti, E.; Pierre, P.; Cavener, D.R.; Klann, E. Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat. Neurosci., 2013, 16(9), 1299-1305.
[42]
Kornelius, E.; Lin, C.L.; Chang, H.H.; Li, H.H.; Huang, W.N.; Yang, Y.S.; Lu, Y.L.; Peng, C.H.; Huang, C.N. DPP-4 inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci. Ther., 2015, 21(7), 549-557.
[43]
Ding, Y.; Dellisanti, C.D.; Ko, M.H.; Czajkowski, C.; Puglielli, L. The endoplasmic reticulum-based acetyltransferases, ATase1 and ATase2, associate with the oligosaccharyltransferase to acetylate correctly folded polypeptides. J. Biol. Chem., 2014, 289(46), 32044-32055.
[44]
Ding, Y.; Ko, M.H.; Pehar, M.; Kotch, F.; Peters, N.R.; Luo, Y.; Salamat, S.M.; Puglielli, L. Biochemical inhibition of the acetyltransferases ATase1 and ATase2 reduces β-secretase (BACE1) levels and Aβ generation. J. Biol. Chem., 2012, 287(11), 8424-8433.
[45]
May, P.C.; Dean, R.A.; Lowe, S.L.; Martenyi, F.; Sheehan, S.M.; Boggs, L.N.; Monk, S.A.; Mathes, B.M.; Mergott, D.J.; Watson, B.M.; Stout, S.L.; Timm, D.E.; Smith Labell, E.; Gonzales, C.R.; Nakano, M.; Jhee, S.S.; Yen, M.; Ereshefsky, L.; Lindstrom, T.D.; Calligaro, D.O.; Cocke, P.J.; Greg Hall, D.; Friedrich, S.; Citron, M.; Audia, J.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci., 2011, 31(46), 16507-16516.
[46]
Di Paolo, G.; Kim, T.W. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci., 2011, 12(5), 284-296.
[47]
Liu, L.; Martin, R.; Kohler, G.; Chan, C. Palmitate induces transcriptional regulation of BACE1 and presenilin by STAT3 in neurons mediated by astrocytes. Exp. Neurol., 2013, 248, 482-490.
[48]
Chang, W.H.; Chen, M.C.; Cheng, I.H. Antroquinonol lowers brain amyloid-β levels and improves spatial learning and memory in a transgenic mouse model of Alzheimer’s disease. Sci. Rep., 2015, 5, 15067.
[49]
Svedružić, Ž.M.; Popović, K.; Šendula-Jengić, V. Modulators of γ-secretase activity can facilitate the toxic side-effects and pathogenesis of Alzheimer’s disease. PLoS One, 2013, 8(1), e50759.
[50]
Benilova, I.; Karran, E.; De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci., 2012, 15(3), 349-357.
[51]
Wang, H.Y.; Bakshi, K.; Frankfurt, M.; Stucky, A.; Goberdhan, M.; Shah, S.M.; Burns, L.H. Reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J. Neurosci., 2012, 32(29), 9773-9784.
[52]
De Jager, P.L.; Srivastava, G.; Lunnon, K.; Burgess, J.; Schalkwyk, L.C.; Yu, L.; Eaton, M.L.; Keenan, B.T.; Ernst, J.; McCabe, C.; Tang, A.; Raj, T.; Replogle, J.; Brodeur, W.; Gabriel, S.; Chai, H.S.; Younkin, C.; Younkin, S.G.; Zou, F.; Szyf, M.; Epstein, C.B.; Schneider, J.A.; Bernstein, B.E.; Meissner, A.; Ertekin-Taner, N.; Chibnik, L.B.; Kellis, M.; Mill, J.; Bennett, D.A. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci., 2014, 17(9), 1156-1163.
[53]
Matousek, S.B.; Ghosh, S.; Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; O’Banion, M.K. Chronic IL-1β-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J. Neuroimmune Pharmacol., 2012, 7(1), 156-164.
[54]
Vom Berg, J.; Prokop, S.; Miller, K.R.; Obst, J.; Kälin, R.E.; Lopategui-Cabezas, I.; Wegner, A.; Mair, F.; Schipke, C.G.; Peters, O.; Winter, Y.; Becher, B.; Heppner, F.L. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med., 2012, 18(12), 1812-1819.
[55]
Liu, L.; Chan, C. IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer’s Disease. Neurobiol. Aging, 2014, 35(2), 309-321.
[56]
Bradshaw, E.M.; Chibnik, L.B.; Keenan, B.T.; Ottoboni, L.; Raj, T.; Tang, A.; Rosenkrantz, L.L.; Imboywa, S.; Lee, M.; Von Korff, A.; Morris, M.C.; Evans, D.A.; Johnson, K.; Sperling, R.A.; Schneider, J.A.; Bennett, D.A.; De Jager, P.L.; De-Jager, P.L. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat. Neurosci., 2013, 16(7), 848-850.
[57]
Yanamandra, K.; Kfoury, N.; Jiang, H.; Mahan, T.E.; Ma, S.; Maloney, S.E.; Wozniak, D.F.; Diamond, M.I.; Holtzman, D.M. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron, 2013, 80(2), 402-414.
[58]
Lim, S.; Haque, M.M.; Nam, G.; Ryoo, N.; Rhim, H.; Kim, Y.K. Monitoring of intracellular tau aggregation regulated by OGA/OGT inhibitors. Int. J. Mol. Sci., 2015, 16(9), 20212-20224.
[59]
Yang, Y.; Song, W. Molecular links between Alzheimer’s disease and diabetes mellitus. Neuroscience, 2013, 250, 140-150.
[60]
Correia, S.C.; Santos, R.X.; Carvalho, C.; Cardoso, S.; Candeias, E.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I. Insulin signaling, glucose metabolism and mitochondria: Major players in Alzheimer’s disease and diabetes interrelation. Brain Res., 2012, 1441, 64-78.
[61]
Zhang, Z.; Zhao, R.; Qi, J.; Wen, S.; Tang, Y.; Wang, D. Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons. J. Neurosci. Res., 2011, 89(3), 437-447.
[62]
Zhang, Y.; Yin, F.; Liu, J.; Liu, Z. Geniposide attenuates the phosphorylation of tau protein in cellular and insulin-deficient APP/PS1 transgenic mouse model of Alzheimer’s disease. Chem. Biol. Drug Des., 2016, 87(3), 409-418.
[63]
Knudsen, L.B. Liraglutide: the therapeutic promise from animal models. Int. J. Clin. Pract. Suppl., 2010, 167(167), 4-11.
[64]
Chen, S.; An, F.M.; Yin, L.; Liu, A.R.; Yin, D.K.; Yao, W.B.; Gao, X.D. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation. Neuroscience, 2014, 256, 137-146.
[65]
Ma, D.L.; Chen, F.Q.; Xu, W.J.; Yue, W.Z.; Yuan, G.; Yang, Y. Early intervention with glucagon-like peptide 1 analog liraglutide prevents tau hyperphosphorylation in diabetic db/db mice. J. Neurochem., 2015, 135(2), 301-308.
[66]
Wei, Y.; Han, C.; Wang, Y.; Wu, B.; Su, T.; Liu, Y.; He, R. Ribosylation triggering Alzheimer’s disease-like Tau hyperphosphorylation via activation of CaMKII. Aging Cell, 2015, 14(5), 754-763.
[67]
Li, X.H.; Xie, J.Z.; Jiang, X.; Lv, B.L.; Cheng, X.S.; Du, L.L.; Zhang, J.Y.; Wang, J.Z.; Zhou, X.W. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromolecular Med., 2012, 14(4), 338-348.
[68]
Xie, M.; Han, Y.; Yu, Q.; Wang, X.; Wang, S.; Liao, X. UCH-L1 inhibition decreases the microtubule-binding function of tau protein. J. Alzheimers Dis., 2016, 49(2), 353-363.
[69]
Kim, B.M.; You, M.H.; Chen, C.H.; Lee, S.; Hong, Y.; Hong, Y.; Kimchi, A.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis., 2014, 5, e1237.
[70]
Li, W.; Jiang, M.; Xiao, Y.; Zhang, X.; Cui, S.; Huang, G. Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J. Nutr. Health Aging, 2015, 19(2), 123-129.
[71]
Frost, B.; Hemberg, M.; Lewis, J.; Feany, M.B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci., 2014, 17(3), 357-366.
[72]
Tai, H.C.; Schuman, E.M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci., 2008, 9(11), 826-838.
[73]
Deardorff, W.J.; Grossberg, G.T. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des. Devel. Ther., 2016, 10, 3267-3279.
[74]
Amemori, T.; Jendelova, P.; Ruzicka, J.; Urdzikova, L.M.; Sykova, E. Alzheimer’s disease: Mechanism and approach to cell therapy. Int. J. Mol. Sci., 2015, 16(11), 26417-26451.
[75]
Kang, J.M.; Yeon, B.K.; Cho, S.J.; Suh, Y.H. Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J. Alzheimers Dis., 2016, 54(3), 879-889.
[76]
Romanyuk, N.; Amemori, T.; Turnovcova, K.; Prochazka, P.; Onteniente, B.; Sykova, E.; Jendelova, P. Beneficial Effect of Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair. Cell Transplant., 2015, 24(9), 1781-1797.
[77]
Cha, M.Y.; Kwon, Y.W.; Ahn, H.S.; Jeong, H.; Lee, Y.Y.; Moon, M.; Baik, S.H.; Kim, D.K.; Song, H.; Yi, E.C.; Hwang, D.; Kim, H.S.; Mook-Jung, I. Protein-induced pluripotent stem cells ameliorate cognitive dysfunction and reduce Aβ deposition in a mouse model of Alzheimer’s disease. Stem Cells Transl. Med., 2017, 6(1), 293-305.
[78]
Amemori, T.; Ruzicka, J.; Romanyuk, N.; Jhanwar-Uniyal, M.; Sykova, E.; Jendelova, P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res. Ther., 2015, 6, 257.
[79]
Pires, C.; Schmid, B.; Petræus, C.; Poon, A.; Nimsanor, N.; Nielsen, T.T.; Waldemar, G.; Hjermind, L.E.; Nielsen, J.E.; Hyttel, P.; Freude, K.K. Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1. Stem Cell Res. (Amst.), 2016, 17(2), 285-288.
[80]
Poon, A.; Schmid, B.; Pires, C.; Nielsen, T.T.; Hjermind, L.E.; Nielsen, J.E.; Holst, B.; Hyttel, P.; Freude, K.K. Generation of a gene-corrected isogenic control hiPSC line derived from a familial Alzheimer’s disease patient carrying a L150P mutation in presenilin 1. Stem Cell Res. (Amst.), 2016, 17(3), 466-469.
[81]
Yang, J.; Li, S.; He, X.B.; Cheng, C.; Le, W. Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy. Mol. Neurodegener., 2016, 11(1), 39.
[82]
Liu, J.; Yang, B.; Ke, J.; Li, W.; Suen, W.C. Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy. Drugs Aging, 2016, 33(10), 685-697.
[83]
Wisniewski, T.; Goñi, F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron, 2015, 85(6), 1162-1176.
[84]
Xing, H.Y.; Li, B.; Peng, D.; Wang, C.Y.; Wang, G.Y.; Li, P.; Le, Y.Y.; Wang, J.M.; Ye, G.; Chen, J.H. A novel monoclonal antibody against the N-terminus of Aβ1-42 reduces plaques and improves cognition in a mouse model of Alzheimer’s disease. PLoS One, 2017, 12(6), e0180076.
[85]
Cuddy, L.K.; Seah, C.; Pasternak, S.H.; Rylett, R.J. Amino-terminal β-amyloid antibody blocks β-amyloid-mediated inhibition of the high-affinity choline transporter CHT. Front. Mol. Neurosci., 2017, 10, 361.
[86]
Schneider, A.R.; Sari, Y. Therapeutic perspectives of drugs targeting Toll-like receptors based on immune physiopathology theory of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2014, 13(5), 909-920.
[87]
Scholtzova, H.; Do, E.; Dhakal, S.; Sun, Y.; Liu, S.; Mehta, P.D.; Wisniewski, T. Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J. Neurosci., 2017, 37(4), 936-959.
[88]
Munke, A.; Persson, J.; Weiffert, T.; De Genst, E.; Meisl, G.; Arosio, P.; Carnerup, A.; Dobson, C.M.; Vendruscolo, M.; Knowles, T.P.J.; Linse, S. Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proc. Natl. Acad. Sci. USA, 2017, 114(25), 6444-6449.
[89]
Liu, W.; Zhao, L.; Blackman, B.; Parmar, M.; Wong, M.Y.; Woo, T.; Yu, F.; Chiuchiolo, M.J.; Sondhi, D.; Kaminsky, S.M.; Crystal, R.G.; Paul, S.M. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J. Neurosci., 2016, 36(49), 12425-12435.
[90]
Novak, P.; Schmidt, R.; Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Vince-Kazmerova, Z.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; Brunner, M.; Staffen, W.; Rainer, M.; Ondrus, M.; Ropele, S.; Smisek, M.; Sivak, R.; Winblad, B.; Novak, M. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol., 2017, 16(2), 123-134.
[91]
West, T.; Hu, Y.; Verghese, P.B.; Bateman, R.J.; Braunstein, J.B.; Fogelman, I.; Budur, K.; Florian, H.; Mendonca, N.; Holtzman, D.M. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J. Prev. Alzheimers Dis., 2017, 4(4), 236-241.
[92]
Dai, C.L.; Tung, Y.C.; Liu, F.; Gong, C.X.; Iqbal, K. Tau passive immunization inhibits not only tau but also Aβ pathology. Alzheimers Res. Ther., 2017, 9(1), 1.
[93]
Amirrad, F.; Bousoik, E.; Shamloo, K.; Al-Shiyab, H.; Nguyen, V.V.; Montazeri Aliabadi, H. Alzheimer’s disease: Dawn of a new era? J. Pharm. Pharm. Sci., 2017, 20(0), 184-225.
[94]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[95]
Ruthirakuhan, M.; Herrmann, N.; Suridjan, I.; Abraham, E.H.; Farber, I.; Lanctôt, K.L. Beyond immunotherapy: new approaches for disease modifying treatments for early Alzheimer’s disease. Expert Opin. Pharmacother., 2016, 17(18), 2417-2429.
[96]
Deng, J.; Habib, A.; Obregon, D.F.; Barger, S.W.; Giunta, B.; Wang, Y.J.; Hou, H.; Sawmiller, D.; Tan, J. Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway. J. Neurochem., 2015, 135(3), 630-637.
[97]
Liang, Z.; Zhang, B.; Su, W.W.; Williams, P.G.; Li, Q.X. C-Glycosylflavones alleviate tau phosphorylation and amyloid neurotoxicity through GSK3β inhibition. ACS Chem. Neurosci., 2016, 7(7), 912-923.
[98]
Xu, Z.P.; Gan, G.S.; Liu, Y.M.; Xiao, J.S.; Liu, H.X.; Mei, B.; Zhang, J.J. Adiponectin attenuates streptozotocin-induced tau hyperphosphorylation and cognitive deficits by rescuing PI3K/Akt/GSK-3β pathway. Neurochem. Res., 2018, 43(2), 316-323.
[99]
Li, W.; Jiang, M.; Xiao, Y.; Zhang, X.; Cui, S.; Huang, G. Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J. Nutr. Health Aging, 2015, 19(2), 123-129.
[100]
Zheng, M.; Zou, C.; Li, M.; Huang, G.; Gao, Y.; Liu, H. Folic acid reduces tau phosphorylation by regulating PP2A methylation in streptozotocin-induced diabetic mice. Int. J. Mol. Sci., 2017, 18(4), E861.
[101]
Gorsky, M.K.; Burnouf, S.; Sofola-Adesakin, O.; Dols, J.; Augustin, H.; Weigelt, C.M.; Grönke, S.; Partridge, L. Pseudo-acetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity. Sci. Rep., 2017, 7(1), 9984.
[102]
Annadurai, N.; Agrawal, K.; Džubák, P.; Hajdúch, M.; Das, V. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease. Cell. Mol. Life Sci., 2017, 74(22), 4159-4169.
[103]
Liu, W.; Zhao, J.; Lu, G. miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2016, 478(2), 852-857.
[104]
Reddy, P.H.; Tonk, S.; Kumar, S.; Vijayan, M.; Kandimalla, R.; Kuruva, C.S.; Reddy, A.P. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2017, 483(4), 1156-1165.
[105]
Zhang, J.; An, S.; Hu, W.; Teng, M.; Wang, X.; Qu, Y.; Liu, Y.; Yuan, Y.; Wang, D. The neuroprotective properties of Hericium erinaceus in glutamate-damaged differentiated PC12 cells and an Alzheimer’s disease mouse model. Int. J. Mol. Sci., 2016, 17(11), E1810.
[106]
Liu, Q.F.; Jeong, H.; Lee, J.H.; Hong, Y.K.; Oh, Y.; Kim, Y.M.; Suh, Y.S.; Bang, S.; Yun, H.S.; Lee, K.; Cho, S.M.; Lee, S.B.; Jeon, S.; Chin, Y.W.; Koo, B.S.; Cho, K.S. Coriandrum sativum suppresses Aβ42-Induced ROS increases, glial cell proliferation, and ERK activation. Am. J. Chin. Med., 2016, 44(7), 1325-1347.
[107]
Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol. Neurobiol., 2017, 54(9), 7028-7041.
[108]
Wang, Y.; Cai, B.; Shao, J.; Wang, T.T.; Cai, R.Z.; Ma, C.J.; Han, T.; Du, J. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer’s disease. Neural Regen. Res., 2016, 11(7), 1153-1158.
[109]
Balez, R.; Steiner, N.; Engel, M.; Muñoz, S.S.; Lum, J.S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M.; Sidhu, K.; Münch, G.; Ooi, L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep., 2016, 6, 31450.
[110]
Baek, H.; Ye, M.; Kang, G.H.; Lee, C.; Lee, G.; Choi, D.B.; Jung, J.; Kim, H.; Lee, S.; Kim, J.S.; Lee, H.J.; Shim, I.; Lee, J.H.; Bae, H. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget, 2016, 7(43), 69347-69357.
[111]
Liu, S.; Tang, S.Q.; Cui, H.J.; Yin, S.; Yin, M.; Zhao, H.; Meng, L.H.; Wang, Z.J.; Lu, Y. Dipotassium N-stearoyltyrosinate ameliorated pathological injuries in triple-transgenic mouse model of Alzheimer’s disease. J. Pharmacol. Sci., 2016, 132(1), 92-99.
[112]
Cheung, T.S.; Song, T.H.; Ng, T.B.; Wu, F.H.; Lao, L.X.; Tang, S.C.W.; Ho, J.C.M.; Zhang, K.Y.B.; Sze, S.C.W. Therapeutic effects of herbal chemicals in traditional Chinese medicine on Alzheimer’s disease. Curr. Med. Chem., 2015, 22(19), 2392-2403.
[113]
Sakono, M.; Zako, T. Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J., 2010, 277(6), 1348-1358.
[114]
Veenstra, T.D. Neuroproteomic tools for battling Alzheimer’s disease. Proteomics, 2016, 16(22), 2847-2853.
[115]
Ochalek, A.; Nemes, C.; Varga, E.; Táncos, Z.; Kobolák, J.; Dinnyés, A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer’s disease. Stem Cell Res. (Amst.), 2016, 17(1), 72-74.
[116]
Chandrasekaran, A.; Varga, E.; Nemes, C.; Táncos, Z.; Kobolák, J.; Dinnyés, A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. (Amst.), 2016, 17(1), 78-80.
[117]
Táncos, Z.; Varga, E.; Kovács, E.; Dinnyés, A.; Kobolák, J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. (Amst.), 2016, 17(1), 81-83.
[118]
Lee, H.K.; Velazquez Sanchez, C.; Chen, M.; Morin, P.J.; Wells, J.M.; Hanlon, E.B.; Xia, W. Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS One, 2016, 11(9), e0163072.
[119]
Choi, S.H.; Kim, Y.H.; Quinti, L.; Tanzi, R.E.; Kim, D.Y. 3D culture models of Alzheimer’s disease: a road map to a “cure-in-a-dish”. Mol. Neurodegener., 2016, 11(1), 75.
[120]
El Hokayem, J.; Cukier, H.N.; Dykxhoorn, D.M. Blood derived induced pluripotent stem cells (iPSCs): benefits, challenges and the road ahead. J. Alzheimers Dis. Parkinsonism, 2016, 6(5), 275.
[121]
Wegrzyn, R.D.; Rudolph, A.S., Eds.; Alzheimer’s Disease: Targets for New Clinical Diagnostic and Therapeutic Strategies, 1st ed; CRC Press: Boston, 2012.
[122]
Kashiwaya, Y.; Bergman, C.; Lee, J.H.; Wan, R.; King, M.T.; Mughal, M.R.; Okun, E.; Clarke, K.; Mattson, M.P.; Veech, R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2013, 34(6), 1530-1539.
[123]
Rothman, S.M.; Herdener, N.; Frankola, K.A.; Mughal, M.R.; Mattson, M.P. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Res., 2013, 1529, 200-208.
[124]
Rothman, S.M.; Mattson, M.P. Sleep disturbances in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med., 2012, 14(3), 194-204.
[125]
Mizuno, K.; Katoh, M.; Okumura, H.; Nakagawa, N.; Negishi, T.; Hashizume, T.; Nakajima, M.; Yokoi, T. Metabolic activation of benzodiazepines by CYP3A4. Drug Metab. Dispos., 2009, 37(2), 345-351.
[126]
Wen, B.; Chen, Y.; Fitch, W.L. Metabolic activation of nevirapine in human liver microsomes: Dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab. Dispos., 2009, 37(7), 1557-1562.
[127]
Cummings, J.; Aisen, P.S.; DuBois, B.; Frölich, L.; Jack, C.R., Jr; Jones, R.W.; Morris, J.C.; Raskin, J.; Dowsett, S.A.; Scheltens, P. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res. Ther., 2016, 8(19), 39.
[128]
Diao, X.X.; Zhong, K.; Li, X.L.; Zhong, D.F.; Chen, X.Y. Isomer-selective distribution of 3-n-butylphthalide (NBP) hydroxylated metabolites, 3-hydroxy-NBP and 10-hydroxy-NBP, across the rat blood-brain barrier. Acta Pharmacol. Sin., 2015, 36(12), 1520-1527.
[129]
Wohlfart, S.; Gelperina, S.; Kreuter, J. Transport of drugs across the blood-brain barrier by nanoparticles. J. Control. Release, 2012, 161(2), 264-273.
[130]
Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci., 2011, 12(12), 723-738.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy