Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Insights Into the Molecular Aspects of Neuroprotective Bacoside A and Bacopaside I

Author(s): Vini C. Sekhar, Gayathri Viswanathan and Sabulal Baby*

Volume 17, Issue 5, 2019

Page: [438 - 446] Pages: 9

DOI: 10.2174/1570159X16666180419123022

Price: $65

conference banner
Abstract

Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in the liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities.

Keywords: Bacopa monnieri, bacoside A, bacopaside I, neuroprotection, antioxidants, nanoparticles.

Graphical Abstract
[1]
Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine, 2005, 12(4), 305-317. [http://dx.doi. org/10.1016/j.phymed.2003.12.008]. [PMID: 15898709].
[2]
Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res., 2013, 16(4), 313-326. [http://dx.doi.org/10.1089/rej.2013.1431]. [PMID: 23772955].
[3]
Al-Snafi, A.E. The pharmacology of Bacopa monniera. A review. Int. J. Pharm. Sci. Res, 2013, 4 (12), 0975-9492
[4]
Kamkaew, N.; Scholfield, C.N.; Ingkaninan, K.; Maneesai, P.; Parkington, H.C.; Tare, M.; Chootip, K. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J. Ethnopharmacol., 2011, 137(1), 790-795. [http://dx.doi.org/10.1016/j.jep.2011.06.045]. [PMID: 21762768].
[5]
Shahid, M.; Subhan, F.; Ullah, I.; Ali, G.; Alam, J.; Shah, R. Beneficial effects of Bacopa monnieri extract on opioid induced toxicity. Heliyon, 2016, 2(2), e00068. [http://dx.doi.org/10.1016/ j.heliyon.2016.e00068]. [PMID: 27441247].
[6]
Janani, P.; Sivakumari, K.; Parthasarathy, C. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats. Cell Biol. Toxicol., 2009, 25(5), 425-434. [http://dx.doi.org/10.1007/s10565-008-9096-4]. [PMID: 18679812].
[7]
Janani, P.; Sivakumari, K.; Geetha, A.; Ravisankar, B.; Parthasarathy, C. Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. J. Cancer Res. Clin. Oncol., 2010, 136(5), 759-770. [http://dx.doi.org/ 10.1007/s00432-009-0715-0]. [PMID: 19916024].
[8]
Anand, T.; Phani, K.G.; Pandareesh, M.D.; Swamy, M.S.; Khanum, F.; Bawa, A.S. Effect of bacoside extract from Bacopa monniera on physical fatigue induced by forced swimming. Phytother. Res., 2012, 26(4), 587.
[9]
Sharath, R.; Harish, B.G.; Krishna, V.; Sathyanarayana, B.N.; Swamy, H.M. Wound healing and protease inhibition activity of Bacoside-A, isolated from Bacopa monnieri wettest. Phytother. Res., 2010, 24(8), 1217-1222. [PMID: 20213670].
[10]
Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 2005, 66(23), 2719-2728. [http://dx.doi.org/10. 1016/j.phytochem.2005.09.016]. [PMID: 16293276].
[11]
Bhandari, P.; Kumar, N.; Singh, B.; Kaur, I. Dammarane triterpenoid saponins from Bacopa monnieri. Can. J. Chem., 2009, 87, 1230-1234. [http://dx.doi.org/10.1139/V09-111].
[12]
Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry, 2001, 58(4), 553-556. [http://dx.doi.org/10.1016/S0031-9422(01)00275-8]. [PMID: 11576596].
[13]
Chakravarty, A.K.; Garai, S.; Masuda, K.; Nakane, T.; Kawahara, N. Bacopasides III-V: three new triterpenoid glycosides from Bacopa monniera. Chem. Pharm. Bull. (Tokyo), 2003, 51(2), 215-217. [http://dx.doi.org/10.1248/cpb.51.215]. [PMID: 12576661].
[14]
Garai, S.; Mahato, S.B.; Ohtani, K.; Yamasaki, K. Dammarane-type triterpenoid saponins from Bacopa monniera. Phytochemistry, 1996, 42(3), 815-820. [http://dx.doi.org/10.1016/0031-9422(95) 00936-1]. [PMID: 8768327].
[15]
Deepak, M.; Sangli, G.K.; Arun, P.C.; Amit, A. Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem. Anal., 2005, 16(1), 24-29. [http://dx.doi.org/10.1002/pca.805]. [PMID: 15688952].
[16]
Rastogi, M.; Ojha, R.P.; Prabu, P.C.; Devi, B.P.; Agrawal, A.; Dubey, G.P. Prevention of age-associated neurodegeneration and promotion of healthy brain ageing in female Wistar rats by long term use of bacosides. Biogerontology, 2012, 13(2), 183-195. [http://dx.doi.org/10.1007/s10522-011-9367-y]. [PMID: 22143822].
[17]
Christopher, C.; Johnson, A.J.; Mathew, P.J.; Baby, S. Elite genotypes of Bacopa monnieri, with high contents of Bacoside A and Bacopaside I, from southern Western Ghats in India. Ind. Crops Prod., 2017, 98, 76-81. [http://dx.doi.org/10.1016/j.indcrop. 2017.01.018].
[18]
Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry, 2001, 58(4), 553-556. [http://dx.doi.org/10.1016/S0031-9422(01)00275-8]. [PMID: 11576596].
[19]
Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Corrigendum to “Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera”. Phytochemistry, 2002, 59(3), 365. [Phytochemistry, 2001, 58(4), 553–556]. [http://dx.doi.org/10.1016/S0031-9422(01)00475-7].
[20]
Rastogi, S.; Pal, R.; Kulshreshtha, D.K. Bacoside A3--a triterpenoid saponin from Bacopa monniera. Phytochemistry, 1994, 36(1), 133-137. [http://dx.doi.org/10.1016/S0031-9422(00)97026-2]. [PMID: 7764837].
[21]
Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 2005, 66(23), 2719-2728. [http://dx.doi.org/ 10.1016/j.phytochem.2005.09.016]. [PMID: 16293276].
[22]
Garai, S.; Mahato, S.B.; Ohtani, K.; Yamasaki, K. Dammarane-type triterpenoid saponins from Bacopa monniera. Phytochemistry, 1996, 42(3), 815-820. [http://dx.doi.org/10.1016/0031-9422(95) 00936-1]. [PMID: 8768327].
[23]
Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R18-R36. [http://dx.doi.org/10.1152/ajpregu.00327. 2006]. [PMID: 16917020].
[24]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84. [http://dx.doi.org/10.1016/j.biocel.2006.07.001]. [PMID: 16978905].
[25]
Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci., 1997, 2, 152-159. [http:// dx.doi.org/10.1016/S1360-1385(97)01018-2].
[26]
De Grey, A. The Mitochondrial Free Radical Theory of Aging; Austin, TX R.G. Landes Company, 1999.
[27]
Maxwell, S.R.J. Prospects for the use of antioxidant therapies. Drugs, 1995, 49(3), 345-361. [http://dx.doi.org/10.2165/00003495-199549030-00003]. [PMID: 7774511].
[28]
Arivazhagan, P.; Shila, S.; Kumaran, S.; Panneerselvam, C. Effect of DL-a-lipoic acid in various brain regions of aged rats. Exp. Gerontol., 2002, 37, 803-811. [http://dx.doi.org/10.1016/S0531-5565(02)00015-3]. [PMID: 12175480].
[29]
Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40(8), 959-975. [http://dx.doi.org/10.1016/S0028-3908(01)00019-3]. [PMID: 11406187].
[30]
Saini, N.; Singh, D.; Sandhir, R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem. Res., 2012, 37(9), 1928-1937. [http://dx.doi.org/10.1007/s11064-012-0811-4]. [PMID: 22700087].
[31]
Shobana, C.; Kumar, R.R.; Sumathi, T. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study. Cell. Mol. Neurobiol., 2012, 32(7), 1099-1112. [http://dx. doi.org/10.1007/s10571-012-9833-3]. [PMID: 22527857].
[32]
Singh, M.; Murthy, V.; Ramassamy, C. Standardized extracts of Bacopa monniera protect against MPP+- and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways. Toxicol. Sci., 2012, 125(1), 219-232. [http://dx.doi.org/10.1093/toxsci/kfr255]. [PMID: 21972102].
[33]
Shinomol, G.K.; Bharath, M.M. Muralidhara, Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences. Neurotox. Res., 2012, 22(2), 102-114. [http://dx.doi.org/10.1007/ s12640-011-9303-6]. [PMID: 22203611].
[34]
Sumathi, T.; Shobana, C.; Christinal, J.; Anusha, C. Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats. Cell. Mol. Neurobiol., 2012, 32(6), 979-987. [http://dx.doi.org/10.1007/s10571-012-9813-7]. [PMID: 22366895].
[35]
Verma, P.; Singh, P.; Gandhi, B.S. Neuromodulatory role of Bacopa monnieri on oxidative stress induced by postnatal exposure to decabromodiphenyl ether (PBDE -209) in neonate and young female mice. Iran. J. Basic Med. Sci., 2014, 17(4), 307-311. [PMID: 24904725].
[36]
Anbarasi, K.; Vani, G.; Balakrishna, K.; Devi, C.S. Creatine kinase isoenzyme patterns upon chronic exposure to cigarette smoke: protective effect of Bacoside A. Vascul. Pharmacol., 2005, 42(2), 57-61. [http://dx.doi.org/10.1016/j.vph.2005.01.003].
[37]
Anbarasi, K.; Vani, G.; Devi, C.S. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats. J. Environ. Pathol. Toxicol. Oncol., 2005, 24(3), 225-234. [http://dx.doi.org/10.1615/JEnvPathToxOncol.v24.i3.80]. [PMID: 16050806].
[38]
Anbarasi, K.; Sabitha, K.E.; Devi, C.S. Lactate dehydrogenase isoenzyme patterns upon chronic exposure to cigarette smoke: Protective effect of bacoside A. Environ. Toxicol. Pharmacol., 2005, 20(2), 345. b
[39]
Anbarasi, K.; Vani, G.; Balakrishna, K.; Devi, C.S. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci., 2006, 78(12), 1378-1384. [http://dx.doi.org/10.1016/ j.lfs.2005.07.030]. [PMID: 16226278].
[40]
Ramasamy, S.; Chin, S.P.; Sukumaran, S.D.; Buckle, M.J.C.; Kiew, L.V.; Chung, L.Y. In silico and in vitro analysis of bacoside A aglycones and its derivatives as the constituents responsible for the cognitive effects of Bacopa monnieri. PLoS One, 2015, 10(5), e0126565. [http://dx.doi.org/10.1371/journal.pone.0126565]. [PMID: 25965066].
[41]
Liu, X.; Yue, R.; Zhang, J.; Shan, L.; Wang, R.; Zhang, W. Neuroprotective effects of bacopaside I in ischemic brain injury. Restor. Neurol. Neurosci., 2013, 31(2), 109-123. [PMID: 23160060].
[42]
Roesler, R.; Schröder, N. Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol. Biochem. Behav., 2011, 99(2), 155-163. [http://dx. doi.org/10.1016/j.pbb.2010.12.028]. [PMID: 21236291].
[43]
Passafaro, M.; Piëch, V.; Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci., 2001, 4(9), 917-926. [http://dx.doi.org/ 10.1038/nn0901-917]. [PMID: 11528423].
[44]
Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev., 1999, 51(1), 7-61. [PMID: 10049997].
[45]
Soman, S.; Anju, T.R.; Jayanarayanan, S.; Antony, S.; Paulose, C.S. Impaired motor learning attributed to altered AMPA receptor function in the cerebellum of rats with temporal lobe epilepsy: ameliorating effects of Withania somnifera and withanolide A. Epilepsy Behav., 2013, 27(3), 484-491. [http://dx.doi.org/10.1016/ j.yebeh.2013.01.007]. [PMID: 23602240].
[46]
Yamaguchi, S.; Donevan, S.D.; Rogawski, M.A. Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBOX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res., 1993, 15(3), 179-184. [http://dx.doi.org/ 10.1016/0920-1211(93)90054-B]. [PMID: 7693450].
[47]
Rogawski, M.A.; Kurzman, P.S.; Yamaguchi, S.I.; Li, H. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neuropharmacology, 2001, 40(1), 28-35. [http://dx.doi.org/10.1016/ S0028-3908(00)00112-X]. [PMID: 11077068].
[48]
Pandey, S.P.; Singh, H.K.; Prasad, S. Alterations in hippocampal oxidative stress, expression of AMPA receptor GluR2 subunit and associated spatial memory loss by Bacopa monnieri extract (CDRI-08) in streptozotocin-induced diabetes mellitus type 2 mice. PLoS One, 2015, 10(7), e0131862. [http://dx.doi.org/10.1371/journal. pone.0131862]. [PMID: 26161865].
[49]
Rani, A.; Prasad, S. A special extract of Bacopa monnieri (CDRI-08)-restored memory in CoCl2-hypoxia mimetic mice is associated with upregulation of Fmr-1 gene expression in hippocampus. Evid. Based Complement. Alternat. Med., 2015, 2015, 347978. [http:// dx.doi.org/10.1155/2015/347978]. [PMID: 26413121].
[50]
Khan, R.; Krishnakumar, A.; Paulose, C.S. Decreased glutamate receptor binding and NMDA R1 gene expression in hippocampus of pilocarpine-induced epileptic rats: neuroprotective role of Bacopa monnieri extract. Epilepsy Behav., 2008, 12(1), 54-60. [http://dx.doi.org/10.1016/j.yebeh.2007.09.021]. [PMID: 18086456].
[51]
Krishnakumar, A.; Anju, T.R.; Abraham, P.M.; Paulose, C.S. Alteration in 5-HT2C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri. Neurochem. Res., 2015, 40(1), 216-225. [http://dx.doi.org/10.1007/s11064-014-1472-2]. [PMID: 25503823].
[52]
Piyabhan, P.; Wetchateng, T. Neuroprotective effects of Bacopa monnieri (Brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia. J. Med. Assoc. Thai., 2014, 97(Suppl. 8), S50-S55. [PMID: 25518293].
[53]
Piyabhan, P.; Wannasiri, S.; Naowaboot, J. Bacopa monnieri (Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia. Clin. Exp. Pharmacol. Physiol., 2016, 43(12), 1234-1242. [http://dx.doi.org/10.1111/ 1440-1681.12658]. [PMID: 27562725].
[54]
Kumar, S.; Mondal, A.C. Neuroprotective, neurotrophic and anti-oxidative role of Bacopa monnieri on CUS induced model of depression in rat. Neurochem. Res., 2016, 41(11), 3083-3094. [http://dx.doi.org/10.1007/s11064-016-2029-3]. [PMID: 27506204].
[55]
Hazra, S.; Kumar, S.; Saha, G.K.; Mondal, A.C. Reversion of BDNF, Akt and CREB in hippocampus of chronic unpredictable stress induced rats: effects of phytochemical, Bacopa Monnieri. Psychiatry Investig., 2017, 14(1), 74-80. [http://dx.doi.org/10. 4306/pi.2017.14.1.74]. [PMID: 28096878].
[56]
Mondal, P.; Trigun, S.K. Bacopa monnieri extract (CDRI-08) modulates the NMDA receptor subunits and nNOS-apoptosis axis in cerebellum of hepatic encephalopathy rats. Evid. Based Complement. Alternat. Med., 2015, 2015, 535013. [http://dx.doi. org/10.1155/2015/535013]. [PMID: 26413124].
[57]
Verma, P.; Gupta, R.K.; Gandhi, B.S.; Singh, P. CDRI-08 attenuates REST/NRSF-mediated expression of NMDAR1 gene in PBDE-209-exposed mice brain. Evid. Based Complement. Alternat. Med., 2015, 2015, 403840. [http://dx.doi.org/10.1155/2015/ 403840]. [PMID: 26413122].
[58]
Rai, R.; Singh, H.K.; Prasad, S. A special extract of Bacopa monnieri (CDRI-08) restores learning and memory by upregulating expression of the NMDA receptor subunit GluN2B in the brain of scopolamine-induced amnesic mice. Evid. Based Complement. Alternat. Med., 2015, 2015, 254303. [http://dx.doi.org/10.1155/ 2015/254303]. [PMID: 26413117].
[59]
Le, X.T.; Pham, H.T.N.; Do, P.T.; Fujiwara, H.; Tanaka, K.; Li, F.; Van Nguyen, T.; Nguyen, K.M.; Matsumoto, K. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems. Neurochem. Res., 2013, 38(10), 2201-2215. [http://dx.doi.org/10. 1007/s11064-013-1129-6]. [PMID: 23949198].
[60]
Dwivedi, S.; Nagarajan, R.; Hanif, K.; Siddiqui, H.H.; Nath, C.; Shukla, R. Standardized extract of Bacopa monniera attenuates okadaic acid induced memory dysfunction in rats: effect on Nrf2 pathway. Evid. Based Complement. Alternat. Med., 2013, 2013, 294501. [http://dx.doi.org/10.1155/2013/294501]. [PMID: 24078822].
[61]
Bauer, B.; Hartz, A.M.; Fricker, G.; Miller, D.S. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol. Pharmacol., 2004, 66(3), 413-419. [PMID: 15322232].
[62]
Evan Prince, S.; Udhaya, L.B.; Sunitha, P.S.; Arumugam, G. Reparation of isoniazid and rifampicin combinatorial therapy-induced hepatotoxic effects by Bacopa monnieri. Pharmacology, 2016, 98(1-2), 29-34. [http://dx.doi.org/10.1159/000444856]. [PMID: 27007136].
[63]
Singh, R.; Rachumallu, R.; Bhateria, M.; Panduri, J.; Bhatta, R.S. In vitro effects of standardized extract of Bacopa monniera and its five individual active constituents on human P-glycoprotein activity. Xenobiotica, 2015, 45(8), 741-749. [http://dx.doi.org/ 10.3109/00498254.2015.1017752]. [PMID: 25869246].
[64]
Mathew, J.; Balakrishnan, S.; Antony, S.; Abraham, P.M.; Paulose, C.S. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A. J. Biomed. Sci., 2012, 19(1), 25. [http://dx.doi.org/10.1186/1423-0127-19-25]. [PMID: 22364254].
[65]
Thomas, R.B.; Joy, S.; Ajayan, M.S.; Paulose, C.S. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats. Cell. Mol. Neurobiol., 2013, 33(8), 1065-1074. [http://dx.doi.org/10.1007/s10571-013-9973-0]. [PMID: 23975094].
[66]
Zu, X.; Zhang, M.; Li, W.; Xie, H.; Lin, Z.; Yang, N.; Liu, X.; Zhang, W. Zhang, W. Antidepressant-like effect of Bacopaside I in mice exposed to chronic unpredictable mild stress by modulating the hypothalamic-pituitary-adrenal axis function and activating BDNF signaling pathway. Neurochem. Res., 2017, 42(11), 3233-3244. [Liu, X]. [http://dx.doi.org/10.1007/s11064-017-2360-3] [PMID: 28758176]
[67]
Pei, J.V.; Kourghi, M.; De Ieso, M.L.; Campbell, E.M.; Dorward, H.S.; Hardingham, J.E.; Yool, A.J. Differential inhibition of water and ion channel activities of mammalian aquaporin-1 by two structurally related bacopaside compounds derived from the medicinal plant Bacopa monnieri. Mol. Pharmacol., 2016, 90(4), 496-507. [http://dx.doi.org/10.1124/mol.116.105882]. [PMID: 27474162].
[68]
Le, X.T.; Nguyet Pham, H.T.; Van Nguyen, T.; Minh Nguyen, K.; Tanaka, K.; Fujiwara, H.; Matsumoto, K. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of bacopaside I and underlying mechanism. J. Ethnopharmacol., 2015, 164, 37-45. [http://dx.doi. org/10.1016/j.jep.2015.01.041]. [PMID: 25660331].
[69]
Singh, R.; Ramakrishna, R.; Bhateria, M.; Bhatta, R.S. In vitro evaluation of Bacopa monniera extract and individual constituents on human recombinant monoamine oxidase enzymes. Phytother. Res., 2014, 28(9), 1419-1422. [http://dx.doi.org/10.1002/ptr.5116]. [PMID: 24449518].
[70]
Schroeder, U.; Sommerfeld, P.; Ulrich, S.; Sabel, B.A. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J. Pharm. Sci., 1998, 87(11), 1305-1307. [http://dx. doi.org/10.1021/js980084y]. [PMID: 9811481].
[71]
Leroux, J.C.; Allémann, E.; De Jaeghere, F.; Doelker, E.; Gurny, R. Biodegradable nanoparticles-from sustained release formulations to improved site specific drug delivery. J. Control. Release, 1996, 39(2-3), 339-350. [http://dx.doi.org/10.1016/0168-3659(95)00164-6].
[72]
Budhian, A.; Siegel, S.J.; Winey, K.I. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J. Microencapsul., 2005, 22(7), 773-785. [http://dx. doi.org/10.1080/02652040500273753]. [PMID: 16421087].
[73]
Mu, L.; Feng, S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release, 2003, 86(1), 33-48. [http:// dx.doi.org/10.1016/S0168-3659(02)00320-6]. [PMID: 12490371].
[74]
Damgé, C.; Maincent, P.; Ubrich, N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release, 2007, 117(2), 163-170. [http://dx.doi.org/10.1016/ j.jconrel.2006.10.023]. [PMID: 17141909].
[75]
Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J. Chest Dis. Allied Sci., 2006, 48(3), 171-176. [PMID: 18610673].
[76]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(2), 241-250. [http://dx.doi.org/10.1007/ s10549-007-9591-y]. [PMID: 17476588].
[77]
Cai, Q.; Wang, L.; Deng, G.; Liu, J.; Chen, Q.; Chen, Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am. J. Transl. Res., 2016, 8(2), 749-764. [PMID: 27158367].
[78]
van Vlerken, L.E.; Vyas, T.K.; Amiji, M.M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res., 2007, 24(8), 1405-1414. [http://dx.doi.org/10.1007/ s11095-007-9284-6]. [PMID: 17393074].
[79]
Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trends Analyt. Chem., 2016, 80, 30-40. [http://dx.doi.org/10.1016/j.trac. 2015.06.014].
[80]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360. [http://dx.doi.org/10.1038/ nrd1088]. [PMID: 12750738].
[81]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18. [http://dx.doi.org/10.1016/ j.colsurfb.2009.09.001]. [PMID: 19782542].
[82]
Sah, H.; Thoma, L.A.; Desu, H.R.; Sah, E.; Wood, G.C. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int. J. Nanomedicine, 2013, 8, 747-765. [http://dx.doi.org/10.2147/IJN.S40579]. [PMID: 23459088].
[83]
Jose, S.; Sowmya, S.; Cinu, T.A.; Aleykutty, N.A.; Thomas, S.; Souto, E.B. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur. J. Pharm. Sci., 2014, 63, 29-35. [http://dx.doi.org/10.1016/j.ejps.2014.06.024]. [PMID: 25010261].
[84]
Nellore, J.; Pauline, C.; Amarnath, K. Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine-induced experimental parkinsonism in zebrafish. J. Neurodegener. Dis., 2013, 2013, 972391. [http://dx.doi.org/10.1155/2013/972391]. [PMID: 26317003].
[85]
Mahitha, B.; Deva Prasad Raju, B.; Mallikarjuna, K. Durga Mahalakshmi, ChN.; Sushmal, N.J. Bacopa monniera stabilized silver nanoparticles attenuates oxidative stress induced by aluminum in albino mice. J. Nanosci. Nanotechnol., 2015, 15(2), 1101-1109. [http://dx.doi.org/10.1166/jnn.2015.8995]. [PMID: 26353618].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy