Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Progress in Chemosensors Using Aldehyde-bearing Fluorophores for the Detection of Specific Analytes and their Bioimaging

Author(s): Fangjun Huo*, Yaqiong Zhang and Caixia Yin

Volume 26, Issue 21, 2019

Page: [4003 - 4028] Pages: 26

DOI: 10.2174/0929867325666180117095528

Price: $65

conference banner
Abstract

In recent years, aldehyde-appended fluorescence probes have attracted increasing attention. Fluorescent biological imaging includes many modern applications for cell and tissue imaging in biomedical research. Meanwhile, the nucleophilic mechanism is a very simple and convenient procedure for the preparation of aldehyde-sensing probes. This tutorial review focuses on aldehyde-bearing chemosensors based on nucleophilic addition mechanism with biological applications.

Keywords: Aldehyde-bearing, biological applications, sensing mechanisms, fluorescence probes, cell and tissue imaging, nucleophilic mechanism.

[1]
Das, A.; Biswas, S. A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p-nitrophenol. Sens. Actuators B Chem., 2017, 250, 121-131.
[http://dx.doi.org/10.1016/j.snb.2017.04.047]
[2]
Kang, J.; Huo, F.J.; Ning, P.; Meng, X.M.; Chao, J.B.; Yin, C.X. Two red-emission single and double ‘arms’ fluorescent materials stemed from ‘one-pot’ reaction for hydrogen sulfide vivo imaging. Sens. Actuators B Chem., 2017, 250, 342-350.
[http://dx.doi.org/10.1016/j.snb.2017.04.180]
[3]
Zhang, Y.X.; Zhao, M.Y.; Chao, D.B. A cyclometalated iridium(III) complex for selective luminescent detection of hydrogen sulfide. Sens. Actuators B Chem., 2017, 248, 19-23.
[http://dx.doi.org/10.1016/j.snb.2017.03.132]
[4]
Deng, B.B.; Ren, M.G.; Wang, J.Y.; Zhou, K.; Lin, W.Y. A mitochondrial-targeted two-photon fluorescent probe for imaging hydrogen sulfide in the living cells and mouse liver tissues. Sens. Actuators B Chem., 2017, 248, 50-56.
[http://dx.doi.org/10.1016/j.snb.2017.03.135]
[5]
Zhang, Y.X.; Zhao, M.Y.; Chao, D.B. Rational designed benzochalcone-based fluorescent probe for molecular imaging of hydrogen peroxide in live cells and tissues. Sen. Actuators B, 2017, 248, 257-264.
[6]
Ma, W.W.; Wang, M.Y.; Yin, D.; Zhang, X. Facile preparation of naphthol AS-based fluorescent probe for highly selective detection of cysteine in aqueous solution and its imaging application in living cells. Sens. Actuators B Chem., 2017, 248, 19-23.
[http://dx.doi.org/10.1016/j.snb.2017.03.169]
[7]
Wang, K.; Leng, T.H.; Liu, Y.J.; Wang, C.Y.; Shi, P.; Shena, Y.J.; Zhu, W. A novel near-infrared fluorescent probe with a large stokes shift for the detection and imaging of biothiols. Sens. Actuators B Chem., 2017, 248, 338-345.
[http://dx.doi.org/10.1016/j.snb.2017.03.127]
[8]
Kim, I.J.; Ramalingam, M.; Son, Y. A reaction based colorimetric chemosensor for the detection of cyanide ion in aqueous solution. Sens. Actuators B Chem., 2017, 246, 319-326.
[http://dx.doi.org/10.1016/j.snb.2017.02.015]
[9]
Yina, C.X.; Li, X.Q.; Yue, Y.K.; Chao, J.B.; Zhang, Y.B.; Huo, F.J. A new fluorescent material and its application in sulfite and bisulfite Bioimaging. Sens. Actuators B Chem., 2017, 246, 615-622.
[http://dx.doi.org/10.1016/j.snb.2017.02.127]
[10]
Goel, R.; Sharma, S.; Paul, K.D.; Luxam, V. Naphthalimide based chromofluorescent sensor and DNA intercalator: Triggered by Hg2+/HSO4− cleavage reaction. Sens. Actuators B Chem., 2017, 246, 776-782.
[http://dx.doi.org/10.1016/j.snb.2017.02.090]
[11]
Yue, Y.; Huo, F.; Ning, P.; Zhang, Y.; Chao, J.; Meng, X.; Yin, C. Dual-site fluorescent probe for visualizing the metabolism of cys in living cells. J. Am. Chem. Soc., 2017, 139(8), 3181-3185.
[http://dx.doi.org/10.1021/jacs.6b12845] [PMID: 28170238]
[12]
Liu, Y.; Yu, D.; Ding, S.; Xiao, Q.; Guo, J.; Feng, G. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe. ACS Appl. Mater. Interfaces, 2014, 6(20), 17543-17550.
[http://dx.doi.org/10.1021/am505501d] [PMID: 25253409]
[13]
Wang, J.F.; Li, B.; Zhao, W.Y.; Zhang, X.F.; Luo, X.; Corkins, M.E.; Cole, S.L.; Wang, C.; Xiao, Y.; Bi, X.M.; Pang, Y.; McElroy, C.A.; Bird, A.J.; Dong, Y.Z. Two-photon near infrared fluorescent turn-on probe toward cysteine and its imaging applications. ACS Sens., 2016, 1, 882-887.
[http://dx.doi.org/10.1021/acssensors.5b00271]
[14]
Tang, Y.; Kong, X.; Liu, Z.R.; Xu, A.; Lin, W. Lysosome-targeted turn-on fluorescent probe for endogenous formaldehyde in living cells. Anal. Chem., 2016, 88(19), 9359-9363.
[http://dx.doi.org/10.1021/acs.analchem.6b02879] [PMID: 27653930]
[15]
Niu, W.; Guo, L.; Li, Y.; Shuang, S.; Dong, C.; Wong, M.S. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal. Chem., 2016, 88(3), 1908-1914.
[http://dx.doi.org/10.1021/acs.analchem.5b04329] [PMID: 26717855]
[16]
Feng, W.; Liu, D.; Feng, S.; Feng, G. Readily available fluorescent probe for carbon monoxide imaging in living cells. Anal. Chem., 2016, 88(21), 10648-10653.
[http://dx.doi.org/10.1021/acs.analchem.6b03073] [PMID: 27728973]
[17]
Bouffard, J.; Kim, Y.; Swager, T.M.; Weissleder, R.; Hilderbrand, S.A. A highly selective fluorescent probe for thiol bioimaging. Org. Lett., 2008, 10(1), 37-40.
[http://dx.doi.org/10.1021/ol702539v] [PMID: 18062694]
[18]
Han, C.; Yang, H.; Chen, M.; Su, Q.; Feng, W.; Li, F. Mitochondria-targeted near-infrared fluorescent off-on probe for selective detection of cysteine in living cells and in vivo. ACS Appl. Mater. Interfaces, 2015, 7(50), 27968-27975.
[http://dx.doi.org/10.1021/acsami.5b10607] [PMID: 26618279]
[19]
Zhang, H.; Liu, R.; Tan, Y.; Xie, W.H.; Lei, H.; Cheung, H.Y.; Sun, H. A FRET-based ratiometric fluorescent probe for nitroxyl detection in living cells. ACS Appl. Mater. Interfaces, 2015, 7(9), 5438-5443.
[http://dx.doi.org/10.1021/am508987v] [PMID: 25658137]
[20]
Zhang, X.; Ren, X.; Xu, Q.H.; Loh, K.P.; Chen, Z.K. One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift. Org. Lett., 2009, 11(6), 1257-1260.
[http://dx.doi.org/10.1021/ol802979n] [PMID: 19236043]
[21]
Dai, C.G.; Liu, X.L.; Du, X.J.; Zhang, Y.; Song, Q.H. Two-input fluorescent probe for thiols and hydrogen sulfide chemosensing and live cell imaging. ACS Sens., 2016, 1, 888-895.
[http://dx.doi.org/10.1021/acssensors.6b00291]
[22]
Yu, D.; Huang, F.; Ding, S.; Feng, G. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells. Anal. Chem., 2014, 86(17), 8835-8841.
[http://dx.doi.org/10.1021/ac502227p] [PMID: 25102423]
[23]
Yushchenko, D.A.; Fauerbach, J.A.; Thirunavukkuarasu, S.; Jares-Erijman, E.A.; Jovin, T.M. Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation. J. Am. Chem. Soc., 2010, 132(23), 7860-7861.
[http://dx.doi.org/10.1021/ja102838n] [PMID: 20491471]
[24]
Chen, W.; Fang, Q.; Yang, D.; Zhang, H.; Song, X.; Foley, J. Selective, highly sensitive fluorescent probe for the detection of sulfur dioxide derivatives in aqueous and biological environments. Anal. Chem., 2015, 87(1), 609-616.
[http://dx.doi.org/10.1021/ac503281z] [PMID: 25407291]
[25]
Gu, X.; Liu, C.; Zhu, Y.C.; Zhu, Y.Z. A boron-dipyrromethene-based fluorescent probe for colorimetric and ratiometric detection of sulfite. J. Agric. Food Chem., 2011, 59(22), 11935-11939.
[http://dx.doi.org/10.1021/jf2032928] [PMID: 21999770]
[26]
Li, G.; Zhu, D.; Xue, L.; Jiang, H. Quinoline-based fluorescent probe for ratiometric detection of lysosomal pH. Org. Lett., 2013, 15(19), 5020-5023.
[http://dx.doi.org/10.1021/ol4023547] [PMID: 24040756]
[27]
Jin, X.; Wu, S.; She, M.; Jia, Y.; Hao, L.; Yin, B.; Wang, L.; Obst, M.; Shen, Y.; Zhang, Y.; Li, J. Novel fluorescein-based fluorescent probe for detecting H2S and its real applications in blood plasma and biological imaging. Anal. Chem., 2016, 88(22), 11253-11260.
[http://dx.doi.org/10.1021/acs.analchem.6b04087] [PMID: 27780356]
[28]
Pak, Y.L.; Li, J.; Ko, K.C.; Kim, G.; Lee, J.Y.; Yoon, J. Mitochondria-targeted reaction-based fluorescent probe for hydrogen sulfide. Anal. Chem., 2016, 88(10), 5476-5481.
[http://dx.doi.org/10.1021/acs.analchem.6b00956] [PMID: 27094621]
[29]
Cao, X.; Lin, W.; Yu, Q. A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold. J. Org. Chem., 2011, 76(18), 7423-7430.
[http://dx.doi.org/10.1021/jo201199k] [PMID: 21815660]
[30]
Yin, J.; Kwon, Y.; Kim, D.; Lee, D.; Kim, G.; Hu, Y.; Ryu, J.H.; Yoon, J. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc., 2014, 136(14), 5351-5358.
[http://dx.doi.org/10.1021/ja412628z] [PMID: 24649915]
[31]
Lim, S.Y.; Hong, K.H.; Kim, D.I.; Kwon, H.; Kim, H.J. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine. J. Am. Chem. Soc., 2014, 136(19), 7018-7025.
[http://dx.doi.org/10.1021/ja500962u] [PMID: 24754635]
[32]
Li, H.D.; Yao, Q.C.; Fan, J.L.; Hu, C.; Xu, F.; Du, J.J.; Wang, J.Y.; Peng, X.P. A fluorescent probe for ratiometric imaging of SO2 derivatives in mitochondria of living cells. Ind. Eng. Chem. Res., 2016, 55, 1477-1483.
[http://dx.doi.org/10.1021/acs.iecr.5b04530]
[33]
Yang, J.; Li, K.; Hou, J.T.; Li, L.L.; Lu, C.Y.; Xie, Y.M.; Wang, X.; Yu, X.Q. Novel Tumor-Specific and Mitochondria-Targeted near InfraredEmission Fluorescent Probe for SO2 Derivatives in Living Cells. ACS Sens., 2016, 1, 166-172.
[http://dx.doi.org/10.1021/acssensors.5b00165]
[34]
Wang, X.B.; Hao, X.; Zhang, D.T.; Jiang, Y. Reaction-based fluorescent turn-on probe for selective detection of thiophenols in aqueous solution and living cellsOriginal Research Article. Dyes Pigm., 2017, 142, 167-174.
[http://dx.doi.org/10.1016/j.dyepig.2017.03.033]
[35]
Qiu, X.Y.; Jiao, X.J.; Liu, C.; Zheng, D.S.; Huang, K.; Wang, Q.; He, S.; Zhao, L.C.; Zeng, X.S. A selective and sensitive fluorescent probe for homocysteine and its application in living cells. Dyes Pigm., 2017, 140, 212-221.
[http://dx.doi.org/10.1016/j.dyepig.2017.01.047]
[36]
Fu, Y.J.; Li, Z.; Li, C.Y.; Li, Y.F.; Wu, Z.H.; Wen, P. Borondipyrrolemethene-based fluorescent probe for distinguishing cysteine from biological thiols and its application in cell image. Dyes Pigm., 2017, 139, 381-387.
[http://dx.doi.org/10.1016/j.dyepig.2016.12.033]
[37]
Su, W.; Gu, B.; Hu, X.J.; Duan, X.L.; Zhang, Y.Y.; Li, T.T.; Yao, S.Z. A near-infrared and colorimetric fluorescent probe for palladium detection and bioimaging. Dyes Pigm., 2017, 137, 293-298.
[http://dx.doi.org/10.1016/j.dyepig.2016.10.052]
[38]
Huang, Q.; Yang, X.F.; Li, H. A ratiometric fluorescent probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism. Dyes Pigm., 2013, 99, 871-877.
[http://dx.doi.org/10.1016/j.dyepig.2013.07.033]
[39]
Geng, L.H.; Yang, X.F.; Zhong, Y.G.; Li, Z.; Li, H. “Quinone-phenol” transduction activated excited-state intramolecular proton transfer: A new strategy toward ratiometric fluorescent probe for sulfite in living cells. Dyes Pigm., 2015, 120, 213-219.
[http://dx.doi.org/10.1016/j.dyepig.2015.04.016]
[40]
Shu, H.; Wu, X.L.; Zhou, B.J.; Han, Y.B.; Jin, M.J.; Zhu, J.; Bao, X.F. Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine B and N-[4-(carbonyl) phenyl]maleimide conjugate and its application in living cell imaging Original Research Article. Dyes Pigm., 2017, 136, 535-542.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.063]
[41]
Singha, S.; Kim, D.; Rao, A.S.; Wang, T.; Kim, K.H.; Lee, K.H.; Kim, K.T.; Ahn, K.H. Two-photon probes based on arylsulfonyl azides: Fluorescence detection and imaging of biothiols. Dyes Pigm., 2013, 9, 308-315.
[http://dx.doi.org/10.1016/j.dyepig.2013.05.008]
[42]
Chen, W.Q.; Yue, X.X.; Li, W.X.; Hao, Y.Q.; Zhang, L.L.; Zhu, L.L.; Sheng, J.; Song, X.J. A phenothiazine coumarin-based red emitting fluorescent probe for nanomolar detection of thiophenol with a large Stokes shift. Sens. Actuators B Chem., 2017, 245, 702-710.
[http://dx.doi.org/10.1016/j.snb.2017.01.167]
[43]
Yang, C.; Wang, X.; Liu, H.Y.; Ge, S.G.; Yan, M.; Yu, J.H.; Song, X.R. An inner filter effect fluorescent sensor based on g-C3N4 nanosheets/chromogenic probe for simple detection of glutathione. Sens. Actuators B Chem., 2017, 248, 639-645.
[http://dx.doi.org/10.1016/j.snb.2017.04.056]
[44]
Li, Z.X.; Zhang, W.Y.; Liu, C.X.; Yu, M.M.; Zhang, H.Y.; Guo, L.; Wei, L.H. A colorimetric and ratiometric fluorescent probe for hydrazine and its application in living cells with low dark toxicity. Sens. Actuators B Chem., 2017, 241, 665-671.
[http://dx.doi.org/10.1016/j.snb.2016.10.141]
[45]
Liao, Y.C.; Venkatesan, P.; Wei, L.F.; Wu, S.P. A coumarin-based fluorescent probe for thiols and its application in cell imaging. Sens. Actuators B Chem., 2016, 232, 732-737.
[http://dx.doi.org/10.1016/j.snb.2016.04.027]
[46]
Hou, Y.; Yang, X.F.; Zhong, Y.G.; Li, Z. Development of fluorescent probes for hydrogen polysulfides by using cinnamate ester as the recognition unit. Sens. Actuators B Chem., 2016, 232, 531-537.
[http://dx.doi.org/10.1016/j.snb.2016.04.008]
[47]
Khalaj, A.; Abdi, K.; Ostad, S.N.; Khoshayand, M.R.; Lamei, N.; Nedaie, H.A.; Nedaie, H.A. Synthesis, in vitro cytotoxicity and radiosensitizing activity of novel 3-[(2,4-dinitrophenylamino)alkyl] derivatives of 5-fluorouracil. Chem. Biol. Drug Des., 2014, 83(2), 183-190.
[http://dx.doi.org/10.1111/cbdd.12211] [PMID: 23964692]
[48]
Mohammad, A.; Yaghoubi, S. Development of a highly selectiveandcolorimetric probe for simultaneous detection of Cu2+ and CN− based on an azo chromophore. Sen. Actuators B, 2017, 251, 264-271.
[http://dx.doi.org/10.1016/j.snb.2017.05.068]
[49]
Duan, L.P.; Xu, Y.F.; Qian, X.H.; Wang, F.; Liu, J.W.; Cheng, T.F. Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: symmetrical naphthalimide aldehyde. Tetrahedron Lett., 2008, 49, 6624-6627.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.021]
[50]
Goswami, S.; Manna, A.; Paul, S.; Das, A.K.; Nandi, P.K.; Maity, A.K.; Saha, P. A turn on ESIPT probe for rapid and ratiometric fluorogenic detection of homocysteine and cysteine in water with live cell-imaging. Tetrahedron Lett., 2014, 55, 490-494.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.055]
[51]
Hou, X.F.; Guo, X.L.; Chen, B.; Liu, C.H.; Gao, F.; Zhao, J.; Wan, J.H. Rhodamine-based fluorescent probe for highly selective detection of glutathione over cysteine and homocysteine. Sens. Actuators B Chem., 2015, 209, 838-845.
[http://dx.doi.org/10.1016/j.snb.2014.12.009]
[52]
Yang, C.; Wang, X.; Shen, L.; Deng, W.; Liu, H.; Ge, S.; Yan, M.; Song, X. An aldehyde group-based P-acid probe for selective fluorescence turn-on sensing of cysteine and homocysteine. Biosens. Bioelectron., 2016, 80, 17-23.
[http://dx.doi.org/10.1016/j.bios.2016.01.044] [PMID: 26802748]
[53]
Chen, C.; Liu, W.; Xu, C.; Liu, W. A colorimetric and fluorescent probe for detecting intracellular biothiols. Biosens. Bioelectron., 2016, 85, 46-52.
[http://dx.doi.org/10.1016/j.bios.2016.04.098] [PMID: 27155115]
[54]
Hu, M.; Fan, J.; Li, H.; Song, K.; Wang, S.; Cheng, G.; Peng, X. Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells. Org. Biomol. Chem., 2011, 9(4), 980-983.
[http://dx.doi.org/10.1039/C0OB00957A] [PMID: 21165468]
[55]
Yuan, L.; Lin, W.; Yang, Y. A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Chem. Commun. (Camb.), 2011, 47(22), 6275-6277.
[http://dx.doi.org/10.1039/c1cc11316j] [PMID: 21503347]
[56]
Zuo, Q.P.; Li, B.; Pei, Q.; Li, Z.; Liu, S.K. A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells. J. Fluoresc., 2010, 20(6), 1307-1313.
[http://dx.doi.org/10.1007/s10895-010-0673-6] [PMID: 20473559]
[57]
Shen, Y.M.; Zhang, X.Y.; Zhang, Y.Y.; Zhang, C.X.; Jin, J.L.; Li, H.T.; Yao, S.Z. A novel colorimetric/fluorescence dual-channel sensor based on NBD for the rapid and highlysensitive detection of cysteine and homocysteine in living cells. Anal. Methods, 2016, 8, 2420-2426.
[http://dx.doi.org/10.1039/C5AY02884A]
[58]
Wang, P.; Liu, J.; Lv, X.; Liu, Y.; Zhao, Y.; Guo, W. A naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on sensing of Cys and Hcy. Org. Lett., 2012, 14(2), 520-523.
[http://dx.doi.org/10.1021/ol203123t] [PMID: 22220759]
[59]
Das, P.; Mandal, A.K.; Chandar, N.B.; Baidya, M.; Bhatt, H.B.; Ganguly, B.; Ghosh, S.K.; Das, A. New chemodosimetric reagents as ratiometric probes for cysteine and homocysteine and possible detection in living cells and in blood plasma. Chemistry, 2012, 18(48), 15382-15393.
[http://dx.doi.org/10.1002/chem.201201621] [PMID: 23060260]
[60]
Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells. Chem. Commun. (Camb.), 2013, 49(80), 9176-9178.
[http://dx.doi.org/10.1039/c3cc45519j] [PMID: 23989532]
[61]
Li, H.; Fan, J.; Wang, J.; Tian, M.; Du, J.; Sun, S.; Sun, P.; Peng, X. A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chem. Commun. (Camb.), 2009, (39), 5904-5906.
[http://dx.doi.org/10.1039/b907511a] [PMID: 19787136]
[62]
Pullela, P.K.; Chiku, T.; Carvan, M.J., III; Sem, D.S. Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Anal. Biochem., 2006, 352(2), 265-273.
[http://dx.doi.org/10.1016/j.ab.2006.01.047] [PMID: 16527239]
[63]
Yang, Z.; Zhao, N.; Sun, Y.; Miao, F.; Liu, Y.; Liu, X.; Zhang, Y.; Ai, W.; Song, G.; Shen, X.; Yu, X.; Sun, J.; Wong, W.Y. Highly selective red- and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem. Commun. (Camb.), 2012, 48(28), 3442-3444.
[http://dx.doi.org/10.1039/c2cc00093h] [PMID: 22366729]
[64]
Xiong, L.; Zhao, Q.; Chen, H.; Wu, Y.; Dong, Z.; Zhou, Z.; Li, F. Phosphorescence imaging of homocysteine and cysteine in living cells based on a cationic iridium(III) complex. Inorg. Chem., 2010, 49(14), 6402-6408.
[http://dx.doi.org/10.1021/ic902266x] [PMID: 20565069]
[65]
Lou, X.; Ou, D.; Li, Q.; Li, Z. An indirect approach for anion detection: the displacement strategy and its application. Chem. Commun. (Camb.), 2012, 48(68), 8462-8477.
[http://dx.doi.org/10.1039/c2cc33158f] [PMID: 22781135]
[66]
Ma, Y.; Liu, S.J.; Yang, H.; Wu, Y.Q.; Yang, C.J.; Liu, X.M.; Zhao, Q.W. H.Z.; Liang, J.C., Li, F.Y.; Huang, W. Water-soluble phosphorescent iridium (III) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells. J. Mater. Chem., 2011, 21, 18974-18982.
[http://dx.doi.org/10.1039/c1jm13513a]
[67]
Liu, X.M.; Xi, N.; Liu, S.J.; Ma, Y.; Yang, H.; Li, H.; He, J.H.; Zhao, Q.; Li, F.Y.; Huang, W. Highly selective phosphorescent nanoprobes for sensing and bioimaging of homocysteine and cysteine. J. Mater. Chem., 2012, 22, 7894-7901.
[http://dx.doi.org/10.1039/c2jm15946e]
[68]
Yue, Y.; Huo, F.; Zhang, Y.; Chao, J.; Martínez-Máñez, R.; Yin, C. Curcumin-based “enhanced SNAr” promoted ultrafast fluorescent probe for thiophenols detection in aqueous solution and in living cells. Anal. Chem., 2016, 88(21), 10499-10503.
[http://dx.doi.org/10.1021/acs.analchem.6b02520] [PMID: 27690389]
[69]
Park, K.M.; Blatchley, M.R.; Gerecht, S. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction. Macromol. Rapid Commun., 2014, 35(22), 1968-1975.
[http://dx.doi.org/10.1002/marc.201400369] [PMID: 25303104]
[70]
Bar, M.; Maity, D.; Das, K.; Baitalik, S. Asymmetric bimetallic ruthenium(II) complexes selectively sense cyanide in water through significant modulation of their ground and excited state properties. Sens. Actuator B, 2017, 251, 208-223.
[http://dx.doi.org/10.1016/j.snb.2017.05.025]
[71]
Wang, D.; Zheng, J.Q.; Zheng, X.J.; Fang, D.C.; Yuan, D.Q.; Jin, L.P. A fluorescent chemosensor for the sequential detection of copper (II) and histidine and its biological applications. Sens. Actuators B Chem., 2016, 228, 387-394.
[http://dx.doi.org/10.1016/j.snb.2016.01.053]
[72]
Zong, L.Y.; Song, Y.C.; Li, Q.Q.; Li, Z.A. “turn-on” fluorescence probe towards copper ions based on core-substitued naphthalene diimide. Sens. Actuators B Chem., 2016, 226, 239-244.
[http://dx.doi.org/10.1016/j.snb.2015.11.089]
[73]
Chen, X.F.; Wang, J.Y.; Cui, J.N.; Xu, Z.C.; Peng, X.J. A ratiometric and exclusively selective CuII fluorescent probe based on internal charge transfer (ICT). Tetrahedron, 2011, 67, 4869-4873.
[http://dx.doi.org/10.1016/j.tet.2011.05.001]
[74]
Kumar, A.; Vanita, V.; Walia, A.; Kumar, S.N. N-dimethylaminoethylaminoanthrone-A chromofluorogenic chemosensor for estimation of Cu2+ in aqueous medium and HeLa cells imaging. Sens. Actuators B Chem., 2013, 177, 904-912.
[http://dx.doi.org/10.1016/j.snb.2012.11.093]
[75]
Ding, S.; Feng, W.Y.; Feng, G.Q. Rapid and highly selective detection of H2S by nitrobenzofurazan (NBD) ether-based fluorescent probes with an aldehyde group. Sens. Actuators B Chem., 2017, 238, 619-625.
[http://dx.doi.org/10.1016/j.snb.2016.07.117]
[76]
Qian, Y.; Yang, B.Y.; Shen, Y.N.; Du, Q.R.; Lin, L.; Lin, J.; Zhu, H.L. A BODIPY-coumarin-based selective fluorescent probe for rapidly detecting hydrogen sulfide in blood plasma and living cells. Sens. Actuators B Chem., 2013, 182, 498-503.
[http://dx.doi.org/10.1016/j.snb.2013.03.031]
[77]
Hou, X.F.; Guo, X.L.; Luo, Z.Y.; Zhao, H.J.; Chen, B.; Zhao, J.; Wang, J.H. A rhodamine-formaldehyde probe fluorescently discriminates H2S from biothiols. Anal. Methods, 2014, 6, 3223-3226.
[http://dx.doi.org/10.1039/C4AY00090K]
[78]
Zhang, X.; Lomora, M.; Einfalt, T.; Meier, W.; Klein, N.; Schneider, D.; Palivan, C.G. Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols. Biomaterials, 2016, 89, 79-88.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.042] [PMID: 26950167]
[79]
Kim, J.H.; Kim, H.J.; Kim, S.H.; Lee, J.H.; Do, J.H.; Kim, H.J.; Lee, J.H.; Kim, J.S. Fluorescent coumarinyldithiane as a selective chemodosimeter for mercury(II) ion in aqueous solution. Tetrahedron Lett., 2009, 50, 5958-5961.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.045]
[80]
Mallya, A.N.; Ramamurthy, P.C. Investigation of selective sensing of a diamine for aldehyde by experimental and simulation studies. Analyst (Lond.), 2014, 139(24), 6456-6466.
[http://dx.doi.org/10.1039/C4AN01387E] [PMID: 25340644]
[81]
Lee, K.S.; Kim, T.K.; Lee, J.H.; Kim, H.J.; Hong, J.I. Fluorescence turn-on probe for homocysteine and cysteine in water. Chem. Commun. (Camb.), 2008, (46), 6173-6175.
[http://dx.doi.org/10.1039/b814581d] [PMID: 19082110]
[82]
Shen, Y.; Zhang, Y.; Liu, M.; Liu, X.; Guo, H.; Zhang, X.; Zhang, C.; Li, H.; Yao, S. A simple and sensitive electrochemical immunosensor based on thiol aromatic aldehyde as a substrate for the antibody immobilization. Talanta, 2015, 141, 288-292.
[http://dx.doi.org/10.1016/j.talanta.2015.04.004] [PMID: 25966416]
[83]
Cheng, X.H.; Jia, H.Z.; Feng, J.J.; Qin, J.G. Li, Z. “Reactive” probe for hydrogen sulfite: “turn-on” fluorescent sensing and bioimaging application. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 4110-4114.
[http://dx.doi.org/10.1039/c3tb20159g]
[84]
Yin, C.X.; Li, X.Q.; Yue, Y.K.; Chao, J.B.; Zhang, Y.B.; Huo, F.J. A new fluorescent material and its application in sulfite and bisulfite bioimaging. Sen. Actuators B, 2017, 246, 615-622.
[http://dx.doi.org/10.1016/j.snb.2017.02.127]
[85]
Lv, J.; Wang, F.; Qiang, J.; Ren, X.; Chen, Y.; Zhang, Z.; Wang, Y.; Zhang, W.; Chen, X. Enhanced response speed and selectivity of fluorescein-based H2S probe via the cleavage of nitrobenzene sulfonyl ester assisted by ortho aldehyde groups. Biosens. Bioelectron., 2017, 87, 96-100.
[http://dx.doi.org/10.1016/j.bios.2016.08.018] [PMID: 27522482]
[86]
Zhang, J.; Jiang, X.D.; Shao, X.M.; Zhao, J.L.; Su, Y.J.; Xi, D.M. g Yu, H.F.; Yue, S.; Xiao, L.J.; Zhao,W.L. A turn-on NIR fluorescent probe for the detection of homocysteine over cysteine. RSC Advances, 2014, 4, 54080-54083.
[http://dx.doi.org/10.1039/C4RA08771B]
[87]
Gao, Y.L.; Zhang, C.; Peng, S.W.; Chen, H.Y. A fluorescent and colorimetric probe enables simultaneous differential detection of Hg2+ and Cu2+ by two different mechanisms. Sens. Actuators B Chem., 2017, 238, 455-461.
[http://dx.doi.org/10.1016/j.snb.2016.07.076]
[88]
Feng, Y.; Yang, L.M.; Li, F. A novel sensing platform based on periodate-oxidized chitosan. Anal. Methods, 2010, 2, 2011-2016.
[http://dx.doi.org/10.1039/c0ay00499e]
[89]
Guler, M.; Turkoglu, V.; Kivrak, A. Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environ. Sci. Pollut. Res. Int., 2016, 23(12), 12343-12351.
[http://dx.doi.org/10.1007/s11356-016-6385-y] [PMID: 26979315]
[90]
Sukato, R.; Sangpetch, N.; Palaga, T.; Jantra, S.; Vchirawongkwin, V.; Jongwohan, C.; Sukwattanasinitt, M.; Wacharasindhu, S. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging. J. Hazard. Mater., 2016, 314, 277-285.
[http://dx.doi.org/10.1016/j.jhazmat.2016.04.001] [PMID: 27136733]
[91]
Madhu, S.; Basu, S.K.; Jadhav, S.; Ravikanth, M. 3,5-Diformyl-borondipyrromethene for selective detection of cyanide anion. Analyst (Lond.), 2013, 138(1), 299-306.
[http://dx.doi.org/10.1039/C2AN36407G] [PMID: 23139931]
[92]
Bera, M.K.; Chakraborty, C.; Singh, P.K.; Sahu, C.; Sen, K. Maji, S.; Dasc A.K.; Malik,S.; Fluorene-based chemodosimeter for “turn-on” sensing of cyanide by hampering ESIPT and live cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 4733-4739.
[http://dx.doi.org/10.1039/c4tb00388h]
[93]
Huo, F.J.; Zhang, Y.Q.Y. Y.K.; Chao, J.B.; Zhang, Y.B.; Yin C.X. Isophorone-based aldehyde for “ratiometric” detection of cyanide by hampering ESIPT. Dyes Pigm, 2017, 143, 270-275.
[http://dx.doi.org/10.1016/j.dyepig.2017.04.050]
[94]
Ma, Y.; Liu, S.J.; Yang, H.; Wu, Y.Q.; Sun, H.B.; Wang, J.X. Zhao, Q.; Li, F.Y.; Huang, W.; A water-soluble phosphorescent polymer for timeresolved assay and bioimaging of cysteine/homocysteine. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 319-329.
[http://dx.doi.org/10.1039/C2TB00259K]
[95]
Zuo, Q.P.; Li, B.; Pei, Q.; Li, Z.; Liu, S.K. A highly selective fluorescent probe for detection of biological samples thiol and its application in living cells. J. Fluoresc., 2010, 20(6), 1307-1313.
[http://dx.doi.org/10.1007/s10895-010-0673-6] [PMID: 20473559]
[96]
Madhu, S.; Basu, S.K.; Jadhav, S.; Ravikanth, M. 3,5-Diformyl-borondipyrromethene for selective detection of cyanide anion. Analyst (Lond.), 2013, 138(1), 299-306.
[http://dx.doi.org/10.1039/C2AN36407G] [PMID: 23139931]
[97]
Wang, F.; Wang, L.; Chen, X.; Yoon, J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev., 2014, 43(13), 4312-4324.
[http://dx.doi.org/10.1039/c4cs00008k] [PMID: 24668230]
[98]
Das, A.J.; Goswami, S.; Quah, C.K.; Fun, H.K. Neighbouring group participation of thiol through aldehyde group assisted thiolysis of active ether: ratiometric and vapor phase fast detection of hydrogen sulfide in mixed aqueous media. New J. Chem., 2015, 39, 5669-5675.
[http://dx.doi.org/10.1039/C5NJ00689A]
[99]
Maity, S.B.; Bharadwaj, P.K. A molecular dual fluorescence-ON probe for Mg2+ and Zn2+: Higher selectivity towards Mg2+ over Zn2+ in a mixture. J. Lumin., 2014, 155, 21-26.
[http://dx.doi.org/10.1016/j.jlumin.2014.06.020]
[100]
Vo, E.; Murray, D.K.; Scott, T.L.; Attar, A.J. Development of a novel colorimetric indicator pad for detecting aldehydes. Talanta, 2007, 73(1), 87-94.
[http://dx.doi.org/10.1016/j.talanta.2007.03.014] [PMID: 19071854]
[101]
Jung, H.S.; Chen, X.; Kim, J.S.; Yoon, J. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem. Soc. Rev., 2013, 42(14), 6019-6031.
[http://dx.doi.org/10.1039/c3cs60024f] [PMID: 23689799]
[102]
Yin, C.; Huo, F.; Zhang, J.; Martínez-Máñez, R.; Yang, Y.; Lv, H.; Li, S. Thiol-addition reactions and their applications in thiol recognition. Chem. Soc. Rev., 2013, 42(14), 6032-6059.
[http://dx.doi.org/10.1039/c3cs60055f] [PMID: 23703585]
[103]
Jang, G.; Kim, J.H.; Kim, D.G.; Lee, T.S. Synthesis of triphenylamine-containing conjugated polyelectrolyte and fabrication of fluorescence color-changeable, paper-based sensor strips for biothiol detection. Polym. Chem., 2015, 6, 714-720.
[http://dx.doi.org/10.1039/C4PY01201A]
[104]
Zhang, X.; Shen, G.; Shen, Y.; Yin, D.; Zhang, C. Direct immobilization of antibodies on a new polymer film for fabricating an electrochemical impedance immunosensor. Anal. Biochem., 2015, 485, 81-85.
[http://dx.doi.org/10.1016/j.ab.2015.06.007] [PMID: 26072006]
[105]
Son, S.H.; Kim, Y.K.; Heo, M.B.; Lim, Y.T.; Lee, T.S. A fluorescence turn-on probe for the detection of thiol-containing amino acids in aqueous solution and bioimaging in cells. Tetrahedron, 2014, 70, 2034-2039.
[http://dx.doi.org/10.1016/j.tet.2014.01.060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy