Abstract
Intense research efforts are currently directed at elucidating the etiology of Parkinson's disease (PD). One approach that has begun to shed light on the PD pathogenic pathways is the identification of disease genes through genetic linkage or association studies. These studies have revealed that several kinases may be involved in PD, as some PD genes encode kinases themselves while other PD genes are found in the same cellular pathways as kinases. Two of these kinases stand out as potential drug targets for novel PD therapy, namely leucine rich repeat kinase 2 (LRRK2) and the alpha-synuclein (α-syn) phosphorylating polo-like kinase 2 (PLK2). Indeed, both α- syn and LRRK2 show genetic linkage as well as genetic association with PD, indicating their relevance to a large number of PD cases. Also, due to the dominant mode of α-syn and LRRK2 inheritance and based on current knowledge of LRRK2 and α-syn phosphorylation by PLK2, inhibition of LRRK2 and PLK2 may constitute a potential therapy for PD. Here we discuss the function of these kinases as well as progress in their validation as drug targets for the treatment of PD.
Keywords: Leucine rich repeat kinase 2, Polo like kinase 2, alpha-synuclein, PINK1, ROC-GTPase, Autophosphorylation, ROCO protein, D. melanogaster, enzyme linked immunosorbant assay, PLKS
CNS & Neurological Disorders - Drug Targets
Title: Kinases as Targets for Parkinson's Disease: From Genetics to Therapy
Volume: 10 Issue: 6
Author(s): Renee Vancraenenbroeck, Evy Lobbestael, Marc De Maeyer, Veerle Baekelandt and Jean-Marc Taymans
Affiliation:
Keywords: Leucine rich repeat kinase 2, Polo like kinase 2, alpha-synuclein, PINK1, ROC-GTPase, Autophosphorylation, ROCO protein, D. melanogaster, enzyme linked immunosorbant assay, PLKS
Abstract: Intense research efforts are currently directed at elucidating the etiology of Parkinson's disease (PD). One approach that has begun to shed light on the PD pathogenic pathways is the identification of disease genes through genetic linkage or association studies. These studies have revealed that several kinases may be involved in PD, as some PD genes encode kinases themselves while other PD genes are found in the same cellular pathways as kinases. Two of these kinases stand out as potential drug targets for novel PD therapy, namely leucine rich repeat kinase 2 (LRRK2) and the alpha-synuclein (α-syn) phosphorylating polo-like kinase 2 (PLK2). Indeed, both α- syn and LRRK2 show genetic linkage as well as genetic association with PD, indicating their relevance to a large number of PD cases. Also, due to the dominant mode of α-syn and LRRK2 inheritance and based on current knowledge of LRRK2 and α-syn phosphorylation by PLK2, inhibition of LRRK2 and PLK2 may constitute a potential therapy for PD. Here we discuss the function of these kinases as well as progress in their validation as drug targets for the treatment of PD.
Export Options
About this article
Cite this article as:
Vancraenenbroeck Renee, Lobbestael Evy, De Maeyer Marc, Baekelandt Veerle and Taymans Jean-Marc, Kinases as Targets for Parkinson's Disease: From Genetics to Therapy, CNS & Neurological Disorders - Drug Targets 2011; 10 (6) . https://dx.doi.org/10.2174/187152711797247858
DOI https://dx.doi.org/10.2174/187152711797247858 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
Call for Papers in Thematic Issues
Heart and Brain Axis Targets in CNS Neurological Disorders
Recently there has been a surge of interest in delving deeper into the complex interplay between the heart and brain. This fascination stems from a growing recognition of the profound influence each organ holds over the other, particularly in the realm of central nervous system (CNS) neurological disorders. The purpose ...read more
Lifestyle Interventions to Prevent and Treat Cognitive Impairment and Dementia
More than 55 million people live with dementia worldwide. By 2050, the population affected by dementia will exceed 139 million individuals. Mild cognitive impairment (MCI) is a pre-dementia stage, also known as prodromal dementia, affecting older adults. MCI emerges years before the manifestation of dementia but can be avoidable and ...read more
Pathogenic Proteins in Neurodegenerative Diseases: From Mechanisms to Treatment Modalities
The primary objective of this thematic issue is to elucidate the molecular mechanisms by which pathogenic proteins contribute to neurodegenerative diseases and to highlight current and emerging therapeutic strategies aimed at mitigating their effects. By bringing together cutting-edge research and reviews, this issue aims to: 1.Enhance Understanding: Provide a comprehensive ...read more
Role of glial cells in autism spectrum disorder: Molecular mechanism and therapeutic approaches
Emerging evidence suggests that glial cells may play a pivotal role in neuroanatomical and behavioral changes found in autism spectrum disorder (ASD). Many individuals with ASD experience a neuro-immune system abnormalities throughout life, which implicates a potential role of microglia in the pathogenesis of ASD. Dysfunctional astrocytes and oligodendrocytes were ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Pharmacogenomics of Breast Cancer Targeted Therapy: Focus on Recent Patents
Recent Patents on DNA & Gene Sequences ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development
Current Pharmaceutical Design A Second Look into the Oxidant Mechanisms in Alzheimers Disease
Current Neurovascular Research Recent Patents on Proteasome Inhibitors of Natural Origin
Recent Patents on Anti-Cancer Drug Discovery Selective α7 Nicotinic Acetylcholine Receptor Ligands
Current Medicinal Chemistry The Role of IGF-1 Receptor and Insulin Receptor Signaling for the Pathogenesis of Alzheimers Disease: From Model Organisms to Human Disease
Current Alzheimer Research Anticancer Potential of Aguerin B, a Sesquiterpene Lactone Isolated from <i>Centaurea behen</i> in Metastatic Breast Cancer Cells
Recent Patents on Anti-Cancer Drug Discovery Role of 2-methoxyestradiol, an Endogenous Estrogen Metabolite, in Health and Disease
Mini-Reviews in Medicinal Chemistry Perturbation of HSP Network in MCF-7 Breast Cancer Cell Line Triggers Inducible HSP70 Expression and Leads to Tumor Suppression
Anti-Cancer Agents in Medicinal Chemistry Effect of PSEN1 mutations on MAPT methylation in early-onset Alzheimer’s disease
Current Alzheimer Research Basic Mechanisms Involved in the Anti-Cancer Effects of Melatonin
Current Medicinal Chemistry Hypoxia-Inducible Factor-1 (HIF-1): A Potential Target for Intervention in Ocular Neovascular Diseases
Current Drug Targets Immunocal® and Preservation of Glutathione as a Novel Neuroprotective Strategy for Degenerative Disorders of the Nervous System
Recent Patents on CNS Drug Discovery (Discontinued) Wnt Signaling Pathway in Schizophrenia
CNS & Neurological Disorders - Drug Targets The Cholesterol Transport Inhibitor U18666a Regulates Amyloid Precursor Protein Metabolism and Trafficking in N2aAPP “Swedish” Cells
Current Alzheimer Research FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus
Current Neurovascular Research Immunotherapies for Parkinson’s Disease: Progression of Clinical Development
CNS & Neurological Disorders - Drug Targets Interaction of Endocannabinoid Receptors with Biological Membranes
Current Medicinal Chemistry Gold Nanoparticle-Mediated High-Performance Enzyme-Linked Immunosorbent Assay for Detection of Tuberculosis ESAT-6 Protein
Micro and Nanosystems Cyclotron Production of PET Radiometals in Liquid Targets: Aspects and Prospects
Current Radiopharmaceuticals