Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Review Article

Nanotechnology in Anti-EGFR Treatments: Enhancing Delivery and Minimizing Toxicity in Cancer Therapy

Author(s): Md Moidul Islam, Harmanjot Kaur, Harpreet kaur, Sushil Kumar Singh, Jyotibikash Kalita, Amit Kumar and Akashdeep Singh*

Volume 11, 2025

Published on: 30 July, 2025

Article ID: e2212697X377694 Pages: 14

DOI: 10.2174/012212697X377694250715132428

Abstract

The EGFR, a major receptor tyrosine kinase in the HER family, controls cell growth and division via its extracellular and intracellular tyrosine kinase domains. Ligand binding and receptor dimerization stimulate downstream pathways such as KRAS-BRAF-MEK-ERK, which are critical for cell proliferation, survival, and angiogenesis. Dysregulation of EGFR is linked to cancer development by encouraging uncontrolled cell proliferation, resistance to apoptosis, and metastases. Anti-EGFR medicines, including monoclonal antibodies (e.g., cetuximab) that prevent ligand binding and tyrosine kinase inhibitors (e.g., gefitinib), suppress abnormal EGFR signaling to slow cancer growth. Their usefulness is, however, constrained by issues, such as drug resistance, off-target effects, and limited potency in specific tumors. By using nanoparticles, including liposomes, polymeric nanoparticles, and quantum dots, for accurate drug administration, decreased systemic toxicity, and circumvention of resistance mechanisms, nanotechnologybased techniques have been developed to improve EGFR-targeted therapy. Functionalized nanoparticles improve effectiveness and make combo treatments possible by permitting regulated drug release and active targeting. These developments hold promise for addressing present constraints and offering individualized treatment choices. Comprehending EGFR signaling and using nanotechnology continue to be essential for creating more potent, focused cancer treatments.

Keywords: EGFR, cancer treatment, nanotechnology, HER, monoclonal antibodies, quantum dots.

[1]
Burgess AW. Regulation of signaling from the epidermal growth factor family. J Phys Chem B 2022; 126(39): 7475-85.
[http://dx.doi.org/10.1021/acs.jpcb.2c04156] [PMID: 36169380]
[2]
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-targeted photodynamic therapy. Pharmaceutics 2022; 14(2): 241.
[http://dx.doi.org/10.3390/pharmaceutics14020241] [PMID: 35213974]
[3]
Poorasamy J, Garg D, Bharti J, et al. Overexpression of ErbB-1 (EGFR) protein in eutopic endometrium of infertile women with severe ovarian endometriosis during the ‘implantation window’ of menstrual cycle. Reprod Med 2022; 3(4): 280-96.
[http://dx.doi.org/10.3390/reprodmed3040022]
[4]
Sankarapandian V, Rajendran RL, Miruka CO, et al. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol Res Pract 2024; 263: 155607.
[http://dx.doi.org/10.1016/j.prp.2024.155607] [PMID: 39326367]
[5]
Shetty SR. Recent advances on epidermal growth factor receptor as a molecular target for breast cancer therapeutics. Anticancer Agents Med Chem 2021; 21(14): 1783-92.
[http://dx.doi.org/10.2174/1871520621666201222143213]
[6]
Li Y, Mao T, Wang J, et al. Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun Signal 2023; 21(1): 71.
[http://dx.doi.org/10.1186/s12964-023-01082-8] [PMID: 37041601]
[7]
Pourmadadi M, Mohammadzadeh V, Sadat Mohammadi Z, et al. Advances in erlotinib delivery systems: Addressing challenges and exploring opportunities in EGFR-targeted cancer therapies. Inorg Chem Commun 2024; 161: 112114.
[http://dx.doi.org/10.1016/j.inoche.2024.112114]
[8]
Zhang J, Li Y, Guo S, Zhang W, Fang B, Wang S. Moving beyond traditional therapies: The role of nanomedicines in lung cancer. Front Pharmacol 2024; 15: 1363346.
[http://dx.doi.org/10.3389/fphar.2024.1363346] [PMID: 38389925]
[9]
Nwankwo EI. Innovative drug delivery methods for combating antimicrobial resistance. Inter Med Sci Res J 2024; 4(8): 1-7.
[http://dx.doi.org/10.51594/imsrj.v4i8.1454]
[10]
Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Technol 2024; 5: 109-22.
[http://dx.doi.org/10.1016/j.bmt.2023.09.001]
[11]
Roszkowski S, Durczynska Z. Advantages and limitations of nanostructures for biomedical applications. Adv Clin Exp Med 2025; 34(3): 447-56.
[http://dx.doi.org/10.17219/acem/186846] [PMID: 38860712]
[12]
Joshi P, Verma K, Kumar Semwal D, Dwivedi J, Sharma S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother Res 2023; 37(12): 5435-63.
[http://dx.doi.org/10.1002/ptr.7983] [PMID: 37649266]
[13]
Menon S. Dynamical modeling of the core gene network and mutation in transitional cell carcinoma. J Emerg Technol Innov Res 2023; 10(12): 1-8.
[14]
Gatta A. Novel anti-glioblastoma therapeutic vaccines based on optimal stimulation of tumor specific CD4+ T helper cells. Anno Accademico 2024; pp. 1-7.
[15]
Rahman MA, Islam F, Hasan M, et al. Monoclonal antibody: A cell specific immunotherapy to treat cancer. Int J Basic Clin Pharmacol 2023; 12(2): 290-302.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20230404]
[16]
Yan Y. Frontiers in oncology.In: Targeted cancer therapies, from small molecules to antibodies. Lausanne, Switzerland: Frontiers 2023; p. 272.
[17]
Caswell DR, Gui P, Mayekar MK, et al. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat Genet 2024; 56(1): 60-73.
[http://dx.doi.org/10.1038/s41588-023-01592-8] [PMID: 38049664]
[18]
Han R, Lu C, Hu C, et al. Brigatinib, a newly discovered AXL inhibitor, suppresses AXL-mediated acquired resistance to osimertinib in EGFR-mutated non-small cell lung cancer. Acta Pharmacol Sin 2024; 45(6): 1264-75.
[http://dx.doi.org/10.1038/s41401-024-01237-4] [PMID: 38438582]
[19]
Kumar P, Mangla B, Javed S, et al. Gefitinib: An updated review of its role in the cancer management, its nanotechnological interventions, recent patents and clinical trials. Rec Pat Anticancer Drug Discov 2023; 18(4): 448-69.
[http://dx.doi.org/10.2174/1574892818666221026164940] [PMID: 36305149]
[20]
Wang C, Zhang Y, Zhang T, et al. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253(Pt 7): 127440.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127440] [PMID: 37839594]
[21]
Shahbaz M, Imran M, Alsagaby SA, et al. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int J Food Prop 2023; 26(1): 1140-66.
[http://dx.doi.org/10.1080/10942912.2023.2205040]
[22]
Dickerson H, Diab A, Al Musaimi O. Epidermal growth factor receptor tyrosine kinase inhibitors in cancer: Current use and future prospects. Int J Mol Sci 2024; 25(18): 10008.
[http://dx.doi.org/10.3390/ijms251810008] [PMID: 39337496]
[23]
Gonzalez-Sanchez E, Vaquero J, Caballero-Diaz D, et al. The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome within the liver fibrotic niche. J Pathol 2024; 263(4-5): 482-95.
[http://dx.doi.org/10.1002/path.6299] [PMID: 38872438]
[24]
Muratani S, Ichikawa S, Erami K, Ito S. Oxidative stress‐mediated epidermal growth factor receptor activation by cigarette smoke or heated tobacco aerosol in human primary bronchial epithelial cells from multiple donors. J Appl Toxicol 2023; 43(9): 1347-57.
[http://dx.doi.org/10.1002/jat.4469] [PMID: 36946243]
[25]
Muluh TA, Lu X, Zhang Y, et al. Combined immunotherapy and targeted therapies for cancer treatment: Recent advances and future perspectives. Curr Cancer Drug Targets 2023; 23(4): 251-64.
[http://dx.doi.org/10.2174/1568009623666221020104603] [PMID: 36278447]
[26]
Wujcik D. EGFR as a target: Rationale for therapy.In: Seminars in oncology nursing. Amsterdam, Netherlands: Elsevier 2006.
[http://dx.doi.org/10.1016/j.soncn.2006.01.010]
[27]
Głuszak P. Xerosis as the toxicity of novel anti-cancer therapies—pathophysiology and management. Forum Dermatol 2023; 9(2): 50.
[http://dx.doi.org/10.5603/FD.a2023.0004]
[28]
Trenker R, Diwanji D, Bingham T, Verba KA, Jura N. Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation. eLife 2024; 12: RP92873.
[http://dx.doi.org/10.7554/eLife.92873] [PMID: 38498590]
[29]
Iyer RS, Needham SR, Galdadas I, et al. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers. Nat Commun 2024; 15(1): 2130.
[http://dx.doi.org/10.1038/s41467-024-46284-x] [PMID: 38503739]
[30]
Kot EF, Goncharuk SA, Franco ML, et al. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun 2024; 15(1): 9316.
[http://dx.doi.org/10.1038/s41467-024-53710-7] [PMID: 39472452]
[31]
Anwar S, Yokota T. Navigating the complex landscape of fibrodysplasia ossificans progressiva: From current paradigms to therapeutic frontiers. Genes (Basel) 2023; 14(12): 2162.
[http://dx.doi.org/10.3390/genes14122162] [PMID: 38136984]
[32]
Rao PP, Zhao Y, Huang R. Check for updates chapter 2. Computat Mod Drugs Again Alzheimer’s Dis 2023. (51)
[33]
Sher EF. DNA Pole Inhibition in Triple-Negative Breast Cancer (TNBC) Leads to Robust Tumor Control and NF-kB-Mediated Inflammation. New York: New York University 2024.
[34]
Albagoush S, Zubair M, Limaiem F. Tissue Evaluation for HER2 Tumor Marker. Treasure Island, Florida: StatPearls 2024.
[35]
Mangla B, Mittal P, Kumar P, Aggarwal G. Multifaceted role of erlotinib in various cancer: Nanotechnology intervention, patent landscape, and advancements in clinical trials. Med Oncol 2024; 41(7): 173.
[http://dx.doi.org/10.1007/s12032-024-02414-5] [PMID: 38864966]
[36]
Marques AC. Antibody-functionalized nanoparticles for targeted drug delivery in cancer therapy.In: handbook of cancer and immunology Cham: Springer 2023. 1-43.
[http://dx.doi.org/10.1007/978-3-030-80962-1_297-1]
[37]
Zhao H, Li Y, Chen J, et al. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids Surf B Biointerfaces 2024; 234: 113758.
[http://dx.doi.org/10.1016/j.colsurfb.2024.113758] [PMID: 38241892]
[38]
Cheng R, Santos HA. Smart nanoparticle‐based platforms for regulating tumor microenvironment and cancer immunotherapy. Adv Healthc Mater 2023; 12(8): 2202063.
[http://dx.doi.org/10.1002/adhm.202202063] [PMID: 36479842]
[39]
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023; 162: 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[40]
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers 2024; 16(13): 2478.
[http://dx.doi.org/10.3390/cancers16132478] [PMID: 39001539]
[41]
Huang P, Wang C, Deng H, Zhou Y, Chen X. Surface engineering of nanoparticles toward cancer theranostics. Acc Chem Res 2023; 56(13): 1766-79.
[http://dx.doi.org/10.1021/acs.accounts.3c00122] [PMID: 37314368]
[42]
Tan KF. In LLA, Vijayaraj Kumar P. Surface functionalization of gold nanoparticles for targeting the tumor microenvironment to improve antitumor efficiency. ACS Appl Bio Mater 2023; 6(8): 2944-81.
[http://dx.doi.org/10.1021/acsabm.3c00202] [PMID: 37435615]
[43]
Sriranga T. Controlled Drug Delivery System: A Comprehensive Review on Existing and Novel Technologies. Mod Res Pharma Sci 2024; 99: 23.
[44]
Ewii UE. Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems. China: Nano TransMed 2024; p. 100042.
[45]
Askarizadeh M, Esfandiari N, Honarvar B, Sajadian SA. Azdarpour A. Kinetic modeling to explain the release of medicine from drug delivery systems. ChemBioEng Rev 2023; 10(6): 1006-49.
[http://dx.doi.org/10.1002/cben.202300027]
[46]
Khalbas AH, Albayati TM, Ali NS, Salih IK. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review. S Afr J Chem Eng 2024; 50: 261-80.
[http://dx.doi.org/10.1016/j.sajce.2024.08.013]
[47]
Gautam S, Lakhanpal I, Sonowal L, Goyal N. Recent advances in targeted drug delivery using metal-organic frameworks: Toxicity and release kinetics. Next Nanotech 2023; 3-4: 100027.
[http://dx.doi.org/10.1016/j.nxnano.2023.100027]
[48]
Burande AS. EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech 2020; 21: 1-12.
[49]
Eloy JO, Ruiz A, de Lima FT, et al. EGFR-targeted immuno] liposomes efficiently deliver docetaxel to prostate cancer cells. Colloids Surf B Biointerfaces 2020; 194: 111185.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111185] [PMID: 32574928]
[50]
Gu H, Shi R, Xu C, et al. EGFR-targeted liposomes combined with Ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis. Bioconjug Chem 2023; 34(6): 1157-65.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00207] [PMID: 37235785]
[51]
Jia D, Yang Y, Yuan F, et al. Increasing the antitumor efficacy of doxorubicin liposomes with coupling an anti-EGFR affibody in EGFR-expressing tumor models. Int J Pharm 2020 586(119541)
[http://dx.doi.org/10.1016/j.ijpharm.2020.119541 ] [PMID: 32544521]
[52]
Soleimani A, Mirzavi F, Nikoofal-Sahlabadi S, et al. CD73 downregulation by EGFR-targeted liposomal CD73 siRNA potentiates antitumor effect of liposomal doxorubicin in 4T1 tumor-bearing mice. Sci Rep 2022; 12(1): 10423.
[http://dx.doi.org/10.1038/s41598-022-14392-7] [PMID: 35729230]
[53]
Kumari L, Ehsan I, Mondal A, et al. Cetuximab-conjugated PLGA nanoparticles as a prospective targeting therapeutics for non-small cell lung cancer. J Drug Target 2023; 31(5): 521-36.
[http://dx.doi.org/10.1080/1061186X.2023.2199350] [PMID: 37010248]
[54]
Emami F, Duwa R, Banstola A, Woo SM, Kwon TK, Yook S. Dual receptor specific nanoparticles targeting EGFR and PD-L1 for enhanced delivery of docetaxel in cancer therapy. Biomed Pharmacother 2023; 165: 115023.
[http://dx.doi.org/10.1016/j.biopha.2023.115023] [PMID: 37329708]
[55]
Bhattacharya S. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Recent Patents Anticancer Drug Discov 2021; 16(1): 84-100.
[http://dx.doi.org/10.2174/22123970MTEyvNTYd3] [PMID: 33349222]
[56]
Duwa R, Banstola A, Emami F, Jeong J-H, Lee S, Yook S. Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells. J Drug Deliv Sci Technol 2020; 60: 101928.
[http://dx.doi.org/10.1016/j.jddst.2020.101928]
[57]
Revilla G, Al Qtaish N, Caruana P, et al. Lenvatinib-loaded poly(lactic-co-glycolic acid) nanoparticles with epidermal growth factor receptor antibody conjugation as a preclinical approach to therapeutically improve thyroid cancer with aggressive behavior. Biomolecules 2023; 13(11): 1647.
[http://dx.doi.org/10.3390/biom13111647] [PMID: 38002329]
[58]
Yu AYH, Fu R-H, Hsu S, et al. Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer. Mater Today Adv 2021; 12: 100191.
[http://dx.doi.org/10.1016/j.mtadv.2021.100191]
[59]
Anisuzzman M, Komalla V, Tarkistani MAM, Kayser V. Anti-tumor activity of novel nimotuzumab-functionalized gold nanoparticles as a potential immunotherapeutic agent against skin and lung cancers. J Funct Biomater 2023; 14(8): 407.
[http://dx.doi.org/10.3390/jfb14080407] [PMID: 37623652]
[60]
Huang S, Huang G. The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging. RSC Advances 2024; 14(29): 20884-97.
[http://dx.doi.org/10.1039/D4RA04402A] [PMID: 38957578]
[61]
Qi L, Liu S, Ping J, et al. Recent advances in fluorescent nanoparticles for stimulated emission depletion imaging. Biosensors 2024; 14(7): 314.
[http://dx.doi.org/10.3390/bios14070314] [PMID: 39056590]
[62]
Choi MJ, Lee YK, Choi KC, et al. Tumor-targeted erythrocyte membrane nanoparticles for theranostics of triple-negative breast cancer. Pharmaceutics 2023; 15(2): 350.
[http://dx.doi.org/10.3390/pharmaceutics15020350] [PMID: 36839675]
[63]
Yazdian F. Aptamer-functionalized quantum dots for targeted cancer therapy.In:Aptamers engineered nanocarriers for cancer therapy. Amsterdam, Netherlands: Elsevier 2023; pp. 295-315.
[http://dx.doi.org/10.1016/B978-0-323-85881-6.00012-9]
[64]
Albayati TM, Alardhi SM, Khalbas AH, et al. Comprehensive review of mesoporous silica nanoparticles: Drug loading, release, and applications as hemostatic agents. ChemistrySelect 2024; 9(23): 202400450.
[http://dx.doi.org/10.1002/slct.202400450]
[65]
Wu H, Ding X, Chen Y, Cai Y, Yang Z, Jin J. EGFR-targeted humanized single chain antibody fragment functionalized silica nanoparticles for precision therapy of cancer. Int J Biol Macromol 2023; 253(Pt 8): 127538.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127538] [PMID: 37866562]
[66]
Kim Y, Kim J, Eom S, et al. Protein nanoparticles simultaneously displaying trail and EGFR-binding ligands effectively induce apoptotic cancer cell death and overcome EGFR-TKI resistance in lung cancer. ACS Appl Mater Interfaces 2025; 17(17): 25139-51.
[http://dx.doi.org/10.1021/acsami.5c04021] [PMID: 40237189]
[67]
Djermane R, Nieto C, Vega MA, del Valle EMM. EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy. Sci Rep 2024; 14(1): 29265.
[http://dx.doi.org/10.1038/s41598-024-80879-0] [PMID: 39587206]
[68]
Mehta M, Bui TA, Care A, Deng W. Targeted polymer lipid hybrid nanoparticles for in-vitro siRNA therapy in triple-negative breast cancer. J Drug Deliv Sci Technol 2024; 98: 105911.
[http://dx.doi.org/10.1016/j.jddst.2024.105911]
[69]
Rahmani Kheyrollahi M, Mohammadnejad J, Eidi A, Jafary H. Synthesis and in vitro study of surface-modified and anti-EGFR DNA aptamer conjugated chitosan nanoparticles as a potential targeted drug delivery system. Heliyon 2024; 10(19): 38904.
[http://dx.doi.org/10.1016/j.heliyon.2024.e38904] [PMID: 39435057]
[70]
Syed YY. Amivantamab: First approval. Drugs 2021; 81(11): 1349-53.
[http://dx.doi.org/10.1007/s40265-021-01561-7] [PMID: 34292533]
[71]
Duke ES, Stapleford L, Drezner N, et al. FDA approval summary: Mobocertinib for metastatic non–small cell lung cancer with] EGFR Exon 20 Insertion Mutations. Clin Cancer Res 2023; 29(3): 508-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-2072] [PMID: 36112541]
[72]
Grigorescu AC. 2024: Ten years of progress in EGFRm NSCLC. Oncol Hemat 2024; 68(3): 14-7.
[73]
Milane L, Amiji M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: Impact on translational nanomedicine. Drug Deliv Transl Res 2021; 11(4): 1309-15.
[http://dx.doi.org/10.1007/s13346-021-00911-y] [PMID: 33512669]
[74]
Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation Clin Exp Reprod Med 2020 47((4)): 245-62.
[http://dx.doi.org/10.5653/cerm.2020.03650] [PMID: 33227186]

© 2025 Bentham Science Publishers | Privacy Policy