Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Mini-Review Article

Understanding Immunomodulation and Managing Cancer Cachexia: A Narrative Review

Author(s): Lingbing Zhang* and Xun Zhu

Volume 11, 2025

Published on: 14 July, 2025

Article ID: e2212697X400236 Pages: 10

DOI: 10.2174/012212697X400236250630115449

Abstract

Cancer cachexia is a complex, multifactorial syndrome commonly seen in patients with advanced cancer. Characterized by progressive weight loss, muscle and fat wasting, systemic inflammation, and impaired immune responses, cachexia involves a dysregulated host-tumor interaction that alters metabolism and disrupts immune homeostasis. Unlike malnutrition, cancer cachexia significantly affects the quality of life (QoL), treatment response, and overall survival. Despite its clinical relevance, particularly in cancers such as pancreatic, lung, liver, and gastrointestinal malignancies, there is a lack of standardized, effective treatments, and the immunological mechanisms underlying cachexia are not yet fully understood. Therefore, a better understanding of not just the pathways but also the underlying factors that influence the occurrence of cancer cachexia is vital to develop targeted therapeutic strategies. This review aims to explore the pathophysiology of cancer cachexia and also highlight a few key factors influencing cachexia occurrence, such as age, gender, comorbidities, cancer type, and stage. It also evaluates current and emerging therapeutic approaches, potential immunomodulatory strategies, and identifies the gaps in research and proposes future directions for the personalized management of cancer cachexia. Therapeutic strategies such as exercise, nutritional support, ghrelin agonists, myostatin inhibitors, and anti-inflammatory agents offer partial benefits. Promising immunomodulatory approaches, including agents like R-ketorolac and gut microbiota-targeted therapies, demonstrate potential in some clinical studies. However, cancer cachexia necessitates a multimodal treatment framework incorporating immunological insights and integrating physical activity and nutritional support along with pharmacological intervention, personalized as per the patients’ needs.

Keywords: Cachexia, cancer, immunomodulation, homeostasis, anorexia, metabolism.

[1]
Arends, J.; Strasser, F.; Gonella, S. Cancer cachexia in adult patients: ESMO Clinical Practice Guidelines. ESMO Open, 2021, 6(3), 100092.
[http://dx.doi.org/10.1016/j.esmoop.2021.100092] [PMID: 34144781]
[2]
Pandey, S.; Bradley, L.; Del Fabbro, E. Updates in cancer cachexia: Clinical management and pharmacologic interventions. Cancers, 2024, 16(9), 1696.
[http://dx.doi.org/10.3390/cancers16091696] [PMID: 38730648]
[3]
Zhang, L.; Bonomi, P.D. Immune system disorder and cancer-associated cachexia. Cancers, 2024, 16(9), 1709.
[http://dx.doi.org/10.3390/cancers16091709] [PMID: 38730660]
[4]
Gaafer, O.U.; Zimmers, T.A. Nutrition challenges of cancer cachexia. JPEN J. Parenter. Enteral Nutr., 2021, 45(S2), 16-25.
[http://dx.doi.org/10.1002/jpen.2287] [PMID: 34897740]
[5]
Vagnildhaug, O.M.; Balstad, T.R.; Almberg, S.S. A cross-sectional study examining the prevalence of cachexia and areas of unmet need in patients with cancer. Support. Care Cancer, 2018, 26(6), 1871-1880.
[http://dx.doi.org/10.1007/s00520-017-4022-z] [PMID: 29274028]
[6]
Ryan, A.M.; Power, D.G.; Daly, L.; Cushen, S.J.; Ní Bhuachalla, Ē.; Prado, C.M. Cancer-associated malnutrition, cachexia and sarcopenia: The skeleton in the hospital closet 40 years later. Proc. Nutr. Soc., 2016, 75(2), 199-211.
[http://dx.doi.org/10.1017/S002966511500419X] [PMID: 26786393]
[7]
Kimura, M.; Naito, T.; Kenmotsu, H. Prognostic impact of cancer cachexia in patients with advanced non-small cell lung cancer. Support. Care Cancer, 2015, 23(6), 1699-1708.
[http://dx.doi.org/10.1007/s00520-014-2534-3] [PMID: 25430482]
[8]
Biswas, A.K.; Acharyya, S. The etiology and impact of muscle wasting in metastatic cancer. Cold Spring Harb. Perspect. Med., 2020, 10(10), a037416.
[http://dx.doi.org/10.1101/cshperspect.a037416] [PMID: 31615873]
[9]
Furuse, J.; Osugi, F.; Machii, K.; Niibe, K.; Endo, T. Effect of cancer cachexia on first-line chemotherapy in patients with advanced pancreatic cancer: A claims database study in Japan. Int. J. Clin. Oncol., 2024, 29(4), 456-463.
[http://dx.doi.org/10.1007/s10147-024-02467-6] [PMID: 38353906]
[10]
Ezeoke, C.C.; Morley, J.E. Pathophysiology of anorexia in the cancer cachexia syndrome. J. Cachexia Sarcopenia Muscle, 2015, 6(4), 287-302.
[http://dx.doi.org/10.1002/jcsm.12059] [PMID: 26675762]
[11]
Siddiqui, J.A.; Pothuraju, R.; Jain, M.; Batra, S.K.; Nasser, M.W. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188359.
[http://dx.doi.org/10.1016/j.bbcan.2020.188359] [PMID: 32222610]
[12]
Watanabe, H.; Oshima, T. The latest treatments for cancer cachexia: An overview. Anticancer Res., 2023, 43(2), 511-521.
[http://dx.doi.org/10.21873/anticanres.16188] [PMID: 36697073]
[13]
Brown, J. Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J. Cachexia Sarcopenia Muscle, 2019, 10(3), 712-2.
[http://dx.doi.org/10.1002/jcsm.12354] [PMID: 31246374]
[14]
Alves, M.J.; Figuerêdo, R.G.; Azevedo, F.F. Adipose tissue fibrosis in human cancer cachexia: The role of TGFβ pathway. BMC Cancer, 2017, 17(1), 190.
[http://dx.doi.org/10.1186/s12885-017-3178-8] [PMID: 28288584]
[15]
Setiawan, T.; Sari, I.N.; Wijaya, Y.T. Cancer cachexia: Molecular mechanisms and treatment strategies. J. Hematol. Oncol., 2023, 16(1), 54.
[http://dx.doi.org/10.1186/s13045-023-01454-0] [PMID: 37217930]
[16]
Molfino, A.; Carletti, R.; Imbimbo, G. Histomorphological and inflammatory changes of white adipose tissue in gastrointestinal cancer patients with and without cachexia. J. Cachexia Sarcopenia Muscle, 2022, 13(1), 333-342.
[http://dx.doi.org/10.1002/jcsm.12893] [PMID: 34939367]
[17]
Luan, Y.; Zhang, Y.; Yu, S.Y. Development of ovarian tumour causes significant loss of muscle and adipose tissue: A novel mouse model for cancer cachexia study. J. Cachexia Sarcopenia Muscle, 2022, 13(2), 1289-1301.
[http://dx.doi.org/10.1002/jcsm.12864] [PMID: 35044098]
[18]
Machado, S.A.; Pasquarelli-do-Nascimento, G.; da Silva, D.S. Browning of the white adipose tissue regulation: New insights into nutritional and metabolic relevance in health and diseases. Nutr. Metab., 2022, 19(1), 61.
[http://dx.doi.org/10.1186/s12986-022-00694-0] [PMID: 36068578]
[19]
Ruan, G.T.; Ge, Y.Z.; Xie, H.L. Association between systemic inflammation and malnutrition with survival in patients with cancer sarcopenia—a prospective multicenter study. Front. Nutr., 2022, 8, 811288.
[http://dx.doi.org/10.3389/fnut.2021.811288] [PMID: 35198586]
[20]
Mariean, C.R.; Tiucă, O.M.; Mariean, A.; Cotoi, O.S. Cancer cachexia: New insights and future directions. Cancers, 2023, 15(23), 5590.
[http://dx.doi.org/10.3390/cancers15235590] [PMID: 38067294]
[21]
Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers, 2018, 4(1), 17105.
[http://dx.doi.org/10.1038/nrdp.2017.105] [PMID: 29345251]
[22]
Takayoshi, K.; Uchino, K.; Nakano, M.; Ikejiri, K.; Baba, E. Weight loss during initial chemotherapy predicts survival in patients with advanced gastric cancer. Nutr. Cancer, 2017, 69(3), 408-415.
[http://dx.doi.org/10.1080/01635581.2017.1267774] [PMID: 28102709]
[23]
Ni, J.; Zhang, L. Cancer cachexia: Definition, staging, and emerging treatments. Cancer Manag. Res., 2020, 12, 5597-5605.
[http://dx.doi.org/10.2147/CMAR.S261585] [PMID: 32753972]
[24]
Penna, F.; Rubini, G.; Costelli, P. Immunomodulation: A new approach to cancer cachexia, potentially suitable for aging. Mol. Aspects Med., 2024, 100, 101318.
[http://dx.doi.org/10.1016/j.mam.2024.101318] [PMID: 39260232]
[25]
Argilés, J.M.; Betancourt, A.; Guàrdia-Olmos, J. Validation of the CAchexia SCOre (CASCO). Staging cancer patients: The use of miniCASCO as a simplified tool. Front. Physiol., 2017, 8, 92.
[http://dx.doi.org/10.3389/fphys.2017.00092] [PMID: 28261113]
[26]
Law, M.L. Cancer cachexia: Pathophysiology and association with cancer-related pain. Front. Pain Res., 2022, 3, 971295.
[http://dx.doi.org/10.3389/fpain.2022.971295] [PMID: 36072367]
[27]
Nishie, K.; Yamamoto, S.; Nagata, C.; Koizumi, T.; Hanaoka, M. Anamorelin for advanced non-small-cell lung cancer with cachexia: Systematic review and meta-analysis. Lung Cancer, 2017, 112, 25-34.
[http://dx.doi.org/10.1016/j.lungcan.2017.07.023] [PMID: 29191597]
[28]
Nishie, K.; Nishie, T.; Sato, S.; Hanaoka, M. Update on the treatment of cancer cachexia. Drug Discov. Today, 2023, 28(9), 103689.
[http://dx.doi.org/10.1016/j.drudis.2023.103689] [PMID: 37385369]
[29]
Bianchini, C.; Bonomo, P.; Bossi, P.; Caccialanza, R.; Fabi, A. Bridging gaps in cancer cachexia Care: Current insights and future perspectives. Cancer Treat. Rev., 2024, 125, 102717.
[http://dx.doi.org/10.1016/j.ctrv.2024.102717] [PMID: 38518714]
[30]
Ferrara, M.; Samaden, M.; Ruggieri, E.; Vénéreau, E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front. Cell Dev. Biol., 2022, 10, 960341.
[http://dx.doi.org/10.3389/fcell.2022.960341] [PMID: 36158184]
[31]
Marceca, G.P.; Londhe, P.; Calore, F. Management of cancer cachexia: Attempting to develop new pharmacological agents for new effective therapeutic options. Front. Oncol., 2020, 10, 298.
[http://dx.doi.org/10.3389/fonc.2020.00298] [PMID: 32195193]
[32]
Zhang, L. A new study uncovering the cause of health deterioration and mortality in late-stage cancer patients. J. Cancer Immunol., 2024, 6(3), 119-124.
[http://dx.doi.org/10.33696/cancerimmunol.6.092]
[33]
Yu, Y.; Yan, L.; Huang, T.; Wu, Z.; Liu, J. Cancer cachexia reduces the efficacy of immune checkpoint inhibitors in cancer patients. Aging, 2024, 16(6), 5354-5369.
[http://dx.doi.org/10.18632/aging.205652] [PMID: 38466657]
[34]
Baazim, H.; Antonio-Herrera, L.; Bergthaler, A. The interplay of immunology and cachexia in infection and cancer. Nat. Rev. Immunol., 2022, 22(5), 309-321.
[http://dx.doi.org/10.1038/s41577-021-00624-w] [PMID: 34608281]
[35]
McGovern, J.; Dolan, R.D.; Skipworth, R.J.; Laird, B.J.; McMillan, D.C. Cancer cachexia: A nutritional or a systemic inflammatory syndrome? Br. J. Cancer, 2022, 127(3), 379-382.
[http://dx.doi.org/10.1038/s41416-022-01826-2] [PMID: 35523879]
[36]
Shukla, S.K.; Markov, S.D.; Attri, K.S. Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Lett., 2020, 484, 29-39.
[http://dx.doi.org/10.1016/j.canlet.2020.04.017] [PMID: 32344015]
[37]
Olguín, J.E.; Fernández, J.; Salinas, N. Adoptive transfer of CD4+Foxp3+ regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect., 2015, 17(8), 586-595.
[http://dx.doi.org/10.1016/j.micinf.2015.04.002] [PMID: 25899946]
[38]
Vanhoutte, G.; van de Wiel, M.; Wouters, K. Cachexia in cancer: What is in the definition? BMJ Open Gastroenterol., 2016, 3(1), 000097.
[http://dx.doi.org/10.1136/bmjgast-2016-000097] [PMID: 27843571]
[39]
Sayers, J.; Skipworth, R.J.E.; Laird, B.J.A. Cancer cachexia – Adopting a systems wide approach. Curr. Opin. Clin. Nutr. Metab. Care, 2023, 26(4), 393-398.
[http://dx.doi.org/10.1097/MCO.0000000000000951] [PMID: 37265093]
[40]
Yu, Y.; Zeng, D.; Ou, Q. Association of survival and immune-related biomarkers with immunotherapy in patients with non–small cell lung cancer: A meta-analysis and individual patient–level analysis. JAMA Netw. Open, 2019, 2(7), e196879-e9.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.6879] [PMID: 31290993]
[41]
Miyawaki, T.; Naito, T.; Kodama, A. Desensitizing effect of cancer cachexia on immune checkpoint inhibitors in patients with advanced NSCLC. JTO Clin. Res. Rep., 2020, 1(2), 100020.
[http://dx.doi.org/10.1016/j.jtocrr.2020.100020] [PMID: 34589927]
[42]
Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The spectrum of malnutrition/cachexia/sarcopenia in oncology according to different cancer types and settings: A narrative review. Nutrients, 2021, 13(6), 1980.
[http://dx.doi.org/10.3390/nu13061980] [PMID: 34207529]
[43]
Ferrer, M.; Anthony, T.G.; Ayres, J.S. Cachexia: A systemic consequence of progressive, unresolved disease. Cell, 2023, 186(9), 1824-1845.
[http://dx.doi.org/10.1016/j.cell.2023.03.028] [PMID: 37116469]
[44]
Dunne, R.F.; Loh, K.P.; Williams, G.R.; Jatoi, A.; Mustian, K.M.; Mohile, S.G. Cachexia and sarcopenia in older adults with cancer: A comprehensive review. Cancers, 2019, 11(12), 1861.
[http://dx.doi.org/10.3390/cancers11121861] [PMID: 31769421]
[45]
Dupont, J. Revised sarcopenia consensus: Are we missing the preclinical stage? Online comment on. Age Ageing, 2018, 48(1), 1-1.
[46]
Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol., 2018, 15(9), 505-522.
[http://dx.doi.org/10.1038/s41569-018-0064-2] [PMID: 30065258]
[47]
Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine, 2019, 49, 381-388.
[http://dx.doi.org/10.1016/j.ebiom.2019.10.034] [PMID: 31662290]
[48]
Geppert, J.; Walth, A.; Terrón Expósito, R. Aging aggravates cachexia in tumor-bearing mice. Cancers, 2021, 14(1), 90.
[http://dx.doi.org/10.3390/cancers14010090] [PMID: 35008253]
[49]
Zhong, X.; Zimmers, T.A. Sex differences in cancer cachexia. Curr. Osteoporos. Rep., 2020, 18(6), 646-654.
[http://dx.doi.org/10.1007/s11914-020-00628-w] [PMID: 33044689]
[50]
Pryce, B.R.; Wang, D.J.; Zimmers, T.A.; Ostrowski, M.C.; Guttridge, D.C. Cancer cachexia: Involvement of an expanding macroenvironment. Cancer Cell, 2023, 41(3), 581-584.
[http://dx.doi.org/10.1016/j.ccell.2023.02.007] [PMID: 36868225]
[51]
Hetzler, K.L.; Hardee, J.P.; Puppa, M.J. Sex differences in the relationship of IL-6 signaling to cancer cachexia progression. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(5), 816-825.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.015] [PMID: 25555992]
[52]
Bryant, J.; Yi, P.; Miller, L.; Peek, K.; Lee, D. Potential sex bias exists in orthopaedic basic science and translational research. J. Bone Joint Surg. Am., 2018, 100(2), 124-130.
[http://dx.doi.org/10.2106/JBJS.17.00458] [PMID: 29342062]
[53]
Haizlip, K.M.; Harrison, B.C.; Leinwand, L.A. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology, 2015, 30(1), 30-39.
[http://dx.doi.org/10.1152/physiol.00024.2014] [PMID: 25559153]
[54]
Brown, L.R.; Laird, B.J.A.; Wigmore, S.J.; Skipworth, R.J.E. Understanding cancer cachexia and its implications in upper gastrointestinal cancers. Curr. Treat. Options Oncol., 2022, 23(12), 1732-1747.
[http://dx.doi.org/10.1007/s11864-022-01028-1] [PMID: 36269458]
[55]
Liao, W.C.; Chen, P.R.; Huang, C.C. Relationship between pancreatic cancer‐associated diabetes and cachexia. J. Cachexia Sarcopenia Muscle, 2020, 11(4), 899-908.
[http://dx.doi.org/10.1002/jcsm.12553] [PMID: 32100478]
[56]
Holtedahl, K. Challenges in early diagnosis of cancer: the fast track., 2020, 251-2.
[57]
Karuppannan, M.; Muthanna, F.M.S.; Mohd Fauzi, F. Breaking down Cachexia: A narrative review on the prevalence of Cachexia in Cancer patients and its Associated Risk factors. Nutr. Cancer, 2024, 76(5), 404-418.
[http://dx.doi.org/10.1080/01635581.2024.2321654] [PMID: 38546174]
[58]
Loyala, J.V.; Down, B.; Wong, E.; Tan, B. Treatment of cachexia in gastric cancer: Exploring the use of anti-inflammatory natural products and their derivatives. Nutrients, 2024, 16(8), 1246.
[http://dx.doi.org/10.3390/nu16081246] [PMID: 38674936]
[59]
Bruggeman, A.R.; Kamal, A.H.; LeBlanc, T.W.; Ma, J.D.; Baracos, V.E.; Roeland, E.J. Cancer cachexia: Beyond weight loss. J. Oncol. Pract., 2016, 12(11), 1163-1171.
[http://dx.doi.org/10.1200/JOP.2016.016832] [PMID: 27858548]
[60]
Garcia-Castillo, L.; Rubini, G.; Costelli, P. Pharmacotherapeutic options for cancer cachexia: Emerging drugs and recent approvals. Expert Opin. Pharmacother., 2023, 24(9), 1053-1065.
[http://dx.doi.org/10.1080/14656566.2023.2209316] [PMID: 37132359]
[61]
Bowers, M.; Petrasso, C.; McLuskie, A. Multicomponent interventions for adults with cancer cachexia: A systematic review. J. Cachexia Sarcopenia Muscle, 2025, 16(2), 13716.
[http://dx.doi.org/10.1002/jcsm.13716] [PMID: 40012451]
[62]
Dev, R.; Del Fabbro, E.; Dalal, S. Endocrinopathies and cancer cachexia. Curr. Opin. Support. Palliat. Care, 2019, 13(4), 286-291.
[http://dx.doi.org/10.1097/SPC.0000000000000464] [PMID: 31567482]
[63]
Arends, J.; Baracos, V.; Bertz, H. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr., 2017, 36(5), 1187-1196.
[http://dx.doi.org/10.1016/j.clnu.2017.06.017] [PMID: 28689670]
[64]
Braha, A.; Albai, A.; Timar, B. Nutritional interventions to improve cachexia outcomes in cancer—A systematic review. Medicina, 2022, 58(7), 966.
[http://dx.doi.org/10.3390/medicina58070966] [PMID: 35888685]
[65]
Madeddu, C.; Mantovani, G.; Gramignano, G.; Macciò, A. Advances in pharmacologic strategies for cancer cachexia. Expert Opin. Pharmacother., 2015, 16(14), 2163-2177.
[http://dx.doi.org/10.1517/14656566.2015.1079621] [PMID: 26330024]
[66]
Molfino, A.; Amabile, M.I.; Giorgi, A.; Monti, M.; D’Andrea, V.; Muscaritoli, M. Investigational drugs for the treatment of cancer cachexia: A focus on phase I and phase II clinical trials. Expert Opin. Investig. Drugs, 2019, 28(8), 733-740.
[http://dx.doi.org/10.1080/13543784.2019.1646727] [PMID: 31347405]
[67]
Kadakia, K.C.; Hamilton-Reeves, J.M.; Baracos, V.E. Current therapeutic targets in cancer cachexia: A pathophysiologic approach. Am. Soc. Clin. Oncol. Educ. Book, 2023, 43(43), 389942.
[http://dx.doi.org/10.1200/EDBK_389942] [PMID: 37290034]
[68]
Crawford, J.; Calle, R.A.; Collins, S.M. A phase Ib first-in-patient study assessing the safety, tolerability, pharmacokinetics, and pharmacodynamics of ponsegromab in participants with cancer and cachexia. Clin. Cancer Res., 2024, 30(3), 489-497.
[http://dx.doi.org/10.1158/1078-0432.CCR-23-1631] [PMID: 37982848]
[69]
da Fonseca, G.W.P.; Sato, R.; de Nazaré Nunes Alves, M.J.; von Haehling, S. Current advancements in pharmacotherapy for cancer cachexia. Expert Opin. Pharmacother., 2023, 24(5), 629-639.
[http://dx.doi.org/10.1080/14656566.2023.2194489] [PMID: 36995115]
[70]
Chen, H.; Ishihara, M.; Kazahari, H. Efficacy and safety of pharmacotherapy for cancer cachexia: A systematic review and network meta‐analysis. Cancer Med., 2024, 13(17), 70166.
[http://dx.doi.org/10.1002/cam4.70166] [PMID: 39225556]
[71]
Sandhya, L.; Devi Sreenivasan, N.; Goenka, L. Randomized double-blind placebo-controlled study of olanzapine for chemotherapy-related anorexia in patients with locally advanced or metastatic gastric, hepatopancreaticobiliary, and lung cancer. J. Clin. Oncol., 2023, 41(14), 2617-2627.
[http://dx.doi.org/10.1200/JCO.22.01997] [PMID: 36977285]
[72]
Stewart Coats, A.J.; Ho, G.F.; Prabhash, K. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non‐small cell lung cancer or colorectal cancer: A randomized, double‐blind, placebo‐controlled, international multicentre phase II study (the ACT‐ONE trial). J. Cachexia Sarcopenia Muscle, 2016, 7(3), 355-365.
[http://dx.doi.org/10.1002/jcsm.12126] [PMID: 27386169]
[73]
Panebianco, C.; Villani, A.; Potenza, A. Targeting gut microbiota in cancer cachexia: Towards new treatment options. Int. J. Mol. Sci., 2023, 24(3), 1849.
[http://dx.doi.org/10.3390/ijms24031849] [PMID: 36768173]
[74]
Levi, A. Effect of ketorolac on serum GDF-15 and IL-8 in patients with pancreatic cancer with cachexia; American Society of Clinical Oncology, 2025.
[http://dx.doi.org/10.1200/JCO.2025.43.4_suppl.713]
[75]
Bowers, M.; Cucchiaro, B.; Reid, J.; Slee, A. Non‐steroidal anti‐inflammatory drugs for treatment of cancer cachexia: A systematic review. J. Cachexia Sarcopenia Muscle, 2023, 14(6), 2473-2497.
[http://dx.doi.org/10.1002/jcsm.13327] [PMID: 37750475]

© 2025 Bentham Science Publishers | Privacy Policy