Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Review Article

Solid Lipid Nanoparticles: Preparation Methods and Therapeutic Potential in Oral Cancer

Author(s): Md Moidul Islam, Sushil Kumar Singh, Jyotibikash Kalita and Manish Kumar*

Volume 11, 2025

Published on: 09 July, 2025

Article ID: e2212697X353981 Pages: 15

DOI: 10.2174/012212697X353981250626141257

Abstract

Introduction: Tobacco and alcohol consumption are major risk factors for oral cancer, which affects the mouth, lips, tongue, cheeks, and throat. This malignancy is characterized by abnormal cell growth driven by genetic and epigenetic alterations. Conventional treatment approaches face several limitations, necessitating a multidisciplinary strategy. Solid Lipid Nanoparticles (SLNs) have emerged as a promising therapeutic platform for enhancing treatment outcomes.

Objective: This review examines the potential of SLNs in oral cancer management, focusing on their preparation techniques and therapeutic advantages in improving drug delivery and efficacy.

Methods: Various methods exist for SLN preparation, including high-pressure homogenization, ultrasonication/high-speed homogenization, solvent evaporation, solvent emulsificationevaporation, solvent emulsification-diffusion, supercritical fluid technology, double emulsion, microemulsion-based techniques, spray drying, phase inversion, and coacervation methods.

Results and Discussion: SLNs, due to their nanoscale size, enable targeted drug delivery, improving bioavailability while minimizing systemic side effects. They address challenges such as poor drug solubility and ensure sustained drug release for prolonged therapeutic action. Furthermore, SLNs can encapsulate a variety of anticancer agents, making them a versatile and effective option for oral cancer therapy.

Conclusion: SLNs offer a promising strategy for overcoming the challenges associated with oral cancer treatment. Their ability to enhance drug stability, bioavailability, and controlled release makes them a superior alternative to conventional therapies. The versatility of SLNs in encapsulating diverse anticancer agents highlights their potential for innovative, well-tolerated, and more effective treatment solutions, signifying a major advancement in oral cancer management.

Keywords: Oral cancer, solid lipid nanoparticles, tumorigenesis, nanoscale drug delivery, multidisciplinary approach, anticancer agents.

[1]
Borse V, Konwar AN, Buragohain P. Oral cancer diagnosis and perspectives in India. Sensors International 2020; 1: 100046.
[http://dx.doi.org/10.1016/j.sintl.2020.100046] [PMID: 34766046]
[2]
Sausen D, Shechter O, Gallo E, Dahari H, Borenstein R. Herpes simplex virus, human papillomavirus, and cervical cancer: Overview, relationship, and treatment implications. Cancers 2023; 15(14): 3692.
[http://dx.doi.org/10.3390/cancers15143692] [PMID: 37509353]
[3]
Ranganathan K, Kavitha L. Oral epithelial dysplasia: Classifications and clinical relevance in risk assessment of oral potentially malignant disorders. J Oral Maxillofac Pathol 2019; 23(1): 19-27.
[http://dx.doi.org/10.4103/jomfp.JOMFP_13_19] [PMID: 31110412]
[4]
Dhanuthai K, Rojanawatsirivej S, Thosaporn W, et al. Oral cancer: A multicenter study. Med Oral Patol Oral Cir Bucal 2018; 23(1): e23-9. [PMID: 29274153
[5]
Sheikh O, Perry M. Tongue and Teeth: Part II.In: Diseases and Injuries to the Head, Face and Neck: A Guide to Diagnosis and Management. Cham, Switzerland: Springer 2021; pp. 1085-165.
[6]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[7]
Islam MM, Lunawat AK, Kumar A, Kumar A, Sharma T, Mukherjee D. Innovative progress: Artificial intelligence in the realm of oral cancer Clin Cancer Drugs 2024 10((1)): e2212697X315512.
[http://dx.doi.org/10.2174/012212697X315512240821045542]
[8]
Georgaki M, Theofilou VI, Pettas E, et al. Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132(5): 566-79.
[http://dx.doi.org/10.1016/j.oooo.2021.04.004] [PMID: 34518141]
[9]
Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol 2019; 3(1): 7.
[http://dx.doi.org/10.1038/s41698-019-0079-0] [PMID: 30854468]
[10]
Balakittnen J, Weeramange CE, Wallace DF, et al. Noncoding RNAs in oral cancer. Wiley Interdiscip Rev RNA 2023; 14(3): e1754.
[http://dx.doi.org/10.1002/wrna.1754] [PMID: 35959932]
[11]
Usman S, Jamal A, Teh MT, Waseem A. Major molecular signaling pathways in oral cancer associated with therapeutic resistance. FrontiersIn Oral Health 2021; 1: 603160.
[http://dx.doi.org/10.3389/froh.2020.603160] [PMID: 35047986]
[12]
Chen X, Zhao W, Chen S, Yu D. Mutation profiles of oral squamous cell carcinoma cells. Adv Oral Maxillofac Surg 2021; 2: 100026.
[http://dx.doi.org/10.1016/j.adoms.2021.100026]
[13]
Jain A. Molecular pathogenesis of oral squamous cell carcinoma.In:Squamous Cell Carcinoma-Hallmark and Treatment Modalities. IntechOpen 2019.
[14]
Wei D, Wang W, Shen B, et al. MicroRNA 199a 5p suppresses migration and invasion in oral squamous cell carcinoma through inhibiting the EMT related transcription factor SOX4. Int J Mol Med 2019; 44(1): 185-95.
[http://dx.doi.org/10.3892/ijmm.2019.4174] [PMID: 31059001]
[15]
Mesgari H, Esmaelian S, Nasiri K, Ghasemzadeh S, Doroudgar P, Payandeh Z. Epigenetic regulation in oral squamous cell carcinoma microenvironment: A comprehensive review. Cancers 2023; 15(23): 5600.
[http://dx.doi.org/10.3390/cancers15235600] [PMID: 38067304]
[16]
Han C, Sun LY, Wang WT, Sun YM, Chen YQ. Non-coding RNAs in cancers with chromosomal rearrangements: The signatures, causes, functions and implications. J Mol Cell Biol 2019; 11(10): 886-98.
[http://dx.doi.org/10.1093/jmcb/mjz080] [PMID: 31361891]
[17]
Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS. Role of oral microbiome on oral cancers, a review. Biomed Pharmacother 2016; 84: 552-8.
[http://dx.doi.org/10.1016/j.biopha.2016.09.082] [PMID: 27693964]
[18]
Perera M, Perera I, Tilakaratne W. Oral microbiome and oral cancer.In: Immunology for Dentistry. 2023; pp. 79-99.
[19]
D’Cruz AK, Vaish R, Dhar H. Oral cancers: Current status. Oral Oncol 2018; 87: 64-9.
[http://dx.doi.org/10.1016/j.oraloncology.2018.10.013] [PMID: 30527245]
[20]
Sankaranarayanan R, Ramadas K, Amarasinghe H, Subramanian S, Johnson N. Oral cancer: Prevention, early detection, and treatment.In:Cancer: Disease Control Priorities. (The (3rd ed).), Washington, DC: The International Bank for Reconstruction and Development / The World Bank 2015.
[http://dx.doi.org/10.1596/978-1-4648-0349-9_ch5]
[21]
Montero PH, Patel SG. Cancer of the oral cavity. Surgical Oncology Clinics 2015; 24(3): 491-508. [PMID: 25979396
[22]
Arrifin A, Heidari E, Burke M, Fenlon MR, Banerjee A. The effect of radiotherapy for treatment of head and neck cancer on oral flora and saliva. Oral Health Prev Dent 2018; 16(5): 425-9. [PMID: 30460355
[23]
Wong TSC, Wiesenfeld D. Oral cancer. Aust Dent J 2018 63(63(S1): S91-9.) ((Suppl. 1)).
[http://dx.doi.org/10.1111/adj.12594] [PMID: 29574808]
[24]
Sroussi HY, Epstein JB, Bensadoun RJ, et al. Common oral complications of head and neck cancer radiation therapy: Mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med 2017; 6(12): 2918-31.
[http://dx.doi.org/10.1002/cam4.1221] [PMID: 29071801]
[25]
Chaveli-López B, Bagán-Sebastián JV. Treatment of oral mucositis due to chemotherapy. J Clin Exp Dent 2016; 8(2): e201.
[http://dx.doi.org/10.4317/jced.52917] [PMID: 27034762]
[26]
Poulopoulos A, Papadopoulos P, Andreadis D. Chemotherapy: Oral side effects and dental interventions. A review of the literature. Stomatol Dis Sci 2017; 1(2): 35-49.
[http://dx.doi.org/10.20517/2573-0002.2017.03]
[27]
Anderson G, Ebadi M, Vo K, Novak J, Govindarajan A, Amini A. An updated review on head and neck cancer treatment with radiation therapy. Cancers 2021; 13(19): 4912.
[http://dx.doi.org/10.3390/cancers13194912] [PMID: 34638398]
[28]
Sedighi M, Zahedi Bialvaei A, Hamblin MR, et al. Therapeutic bacteria to combat cancer; Current advances, challenges, and opportunities. Cancer Med 2019; 8(6): 3167-81.
[http://dx.doi.org/10.1002/cam4.2148] [PMID: 30950210]
[29]
Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[30]
Jin J, Tang Y, Hu C, et al. Multicenter, randomized, phase III trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR). J Clin Oncol 2022; 40(15): 1681-92.
[http://dx.doi.org/10.1200/JCO.21.01667] [PMID: 35263150]
[31]
Pang Q, Duan L, Jiang Y, Liu H. Oncologic and long-term outcomes of enhanced recovery after surgery in cancer surgeries - A systematic review. World J Surg Oncol 2021; 19(1): 191.
[http://dx.doi.org/10.1186/s12957-021-02306-2]
[32]
Newton AM, Kaur S. Solid lipid nanoparticles for skin and drug delivery: Methods of preparation and characterization techniques and applications.In:Nanoarchitectonics in biomedicine. Elsevier 2019; pp. 295-334.
[http://dx.doi.org/10.1016/B978-0-12-816200-2.00015-3]
[33]
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin Drug Deliv 2018; 15(8): 771-85.
[http://dx.doi.org/10.1080/17425247.2018.1504018] [PMID: 30064267]
[34]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[35]
Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[36]
Alsaad AA, Hussien AA, Gareeb MM. Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review. Syst Rev Pharm 2020; 11: 259-73.
[37]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[38]
Ganesan P, Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 2017; 6: 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[39]
Basso J, Mendes M, Cova T, et al. A stepwise framework for the systematic development of lipid nanoparticles. Biomolecules 2022; 12(2): 223.
[http://dx.doi.org/10.3390/biom12020223] [PMID: 35204723]
[40]
Karn-orachai K, Smith SM, Saesoo S, et al. Surfactant effect on the physicochemical characteristics of γ-oryanol-containing solid lipid nanoparticles. Colloids Surf A Physicochem Eng Asp 2016; 488: 118-28.
[http://dx.doi.org/10.1016/j.colsurfa.2015.10.011]
[41]
Shah R, Eldridge D, Palombo E, Harding I. Lipid nanoparticles: Production, characterization and stability. Springer 2015.
[http://dx.doi.org/10.1007/978-3-319-10711-0]
[42]
Vinchhi P, Patel JK, Patel MM. High-pressure homogenization techniques for nanoparticles.In:Emerging Technologies for Nanoparticle Manufacturing. Springer 2021; pp. 263-85.
[43]
Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res Int 2017; 2017: 5984014.
[http://dx.doi.org/10.1155/2017/5984014]
[44]
Sadiah S, Anwar E, Djufri M, Cahyaningsih U. Preparation and characteristics of nanostructured lipid carrier (NLC) loaded red ginger extract using high pressure homogenizer method. J Pharm Sci Res 2017; 9(10): 1889-93.
[45]
Karami MA, Sharif Makhmal Zadeh B, Koochak M, Moghimipur E. Superoxide dismutase-loaded solid lipid nanoparticles prepared by cold homogenization method: Characterization and permeation study through burned rat skin. Jundishapur J Nat Pharm Prod 2016; 11(4): e33968.
[http://dx.doi.org/10.17795/jjnpp-33968]
[46]
Sastri KT, Radha GV, Pidikiti S, Vajjhala P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. J Appl Pharm Sci 2020; 10(6): 126-41.
[http://dx.doi.org/10.7324/JAPS.2020.10617]
[47]
Amoabediny G, Haghiralsadat F, Naderinezhad S, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater 2018; 67(6): 383-400.
[http://dx.doi.org/10.1080/00914037.2017.1332623]
[48]
Behbahani ES, Ghaedi M, Abbaspour M, Rostamizadeh K. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrason Sonochem 2017; 38: 271-80.
[http://dx.doi.org/10.1016/j.ultsonch.2017.03.013] [PMID: 28633826]
[49]
Duong VA, Nguyen TTL, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules 2020; 25(20): 4781.
[http://dx.doi.org/10.3390/molecules25204781] [PMID: 33081021]
[50]
Becker Peres L, Becker Peres L, de Araújo PHH, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B Biointerfaces 2016; 140: 317-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.033] [PMID: 26764112]
[51]
Li Q, Cai T, Huang Y, Xia X, Cole S, Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 2017; 7(6): 122.
[http://dx.doi.org/10.3390/nano7060122] [PMID: 28554993]
[52]
Piñón-Segundo E, Llera-Rojas VG, Leyva-Gómez G, Urbán-Morlán Z, Mendoza-Muñoz N, Quintanar-Guerrero D. The emulsification-diffusion method to obtain polymeric nanoparticles: Two decades of research.In:Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. William Andrew Publishing 2018; pp. 51-83.
[53]
Fernandes CB, Mandawgade S, Patravale VB. Solid lipid nanoparticles of etoposide using solvent emulsification diffusion technique for parenteral administration. Int J Pharma Biosci Technol 2013; 1(1): 27-33.
[54]
Ramteke K, Joshi S, Dhole S. Solid lipid nanoparticle: A review. IOSR J Pharm 2012; 2(6): 34-44.
[http://dx.doi.org/10.9790/3013-26103444]
[55]
Mendoza-Muñoz N, Alcalá-Alcala S, Quintanar-Guerrero D. Preparation of polymer nanoparticles by the emulsification-solvent evaporation method: From Vanderhoff’s pioneer approach to recent adaptations.In:Polymer Nanoparticles for Nanomedicines: A Guide for their Design, Preparation and Development. Cham: Springer 2016; pp. 87-121.
[56]
Campardelli R, Cherain M, Perfetti C, et al. Lipid nanoparticles production by supercritical fluid assisted emulsion–diffusion. J Supercrit Fluids 2013; 82: 34-40.
[http://dx.doi.org/10.1016/j.supflu.2013.05.020]
[57]
Kumar G, Paul P, Muzaffar F. Solid lipid nanoparticles: A trending outlook for drug delivery system. World J Pharm Res 2020; 9(14): 271-90.
[58]
Shah RM, Malherbe F, Eldridge D, Palombo EA, Harding IH. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J Colloid Interface Sci 2014; 428: 286-94.
[http://dx.doi.org/10.1016/j.jcis.2014.04.057] [PMID: 24910064]
[59]
Kotmakçı M, Akbaba H, Erel G, Ertan G, Kantarcı G. Improved method for solid lipid nanoparticle preparation based on hot microemulsions: Preparation, characterization, cytotoxicity, and hemocompatibility evaluation. AAPS PharmSciTech 2017; 18(4): 1355-65.
[http://dx.doi.org/10.1208/s12249-016-0606-z] [PMID: 27502405]
[60]
Mahajan A, Kaur S, Grewal NK, Kaur S. Solid lipid nanoparticles (SLNs)–as novel lipid based nanocarriers for drugs. Int J Adv Res 2014; 2(1): 433-41.
[61]
Malamatari M, Charisi A, Malamataris S, Kachrimanis K, Nikolakakis I. Spray drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation. Processes 2020; 8(7): 788.
[http://dx.doi.org/10.3390/pr8070788]
[62]
Santos D, Maurício AC, Sencadas V, Santos JD, Fernandes MH, Gomes PS. Spray drying: An overview.In: Biomaterials-Physics and Chemistry-New Edition. InTech 2018; pp. 9-35.
[http://dx.doi.org/10.5772/intechopen.72247]
[63]
Wang T, Hu Q, Zhou M, Xia Y, Nieh MP, Luo Y. Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. Eur J Pharm Biopharm 2016; 107: 273-85.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.022] [PMID: 27470922]
[64]
He H, Wang P, Cai C, Yang R, Tang X. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption. Int J Pharm 2015; 493(1-2): 451-9.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.004] [PMID: 26253378]
[65]
Subroto E, Andoyo R, Indiarto R, Wulandari E, Wadhiah EFN. Preparation of solid Lipid nanoparticle-ferrous sulfate by double emulsion method based on fat rich in monolaurin and stearic acid. Nanomaterials 2022; 12(17): 3054.
[http://dx.doi.org/10.3390/nano12173054] [PMID: 36080090]
[66]
Amasya G, Badilli U, Aksu B, Tarimci N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion — Solvent evaporation method. Eur J Pharm Sci 2016; 84: 92-102.
[http://dx.doi.org/10.1016/j.ejps.2016.01.003] [PMID: 26780593]
[67]
Gao S, McClements DJ. Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method. Colloids Surf A Physicochem Eng Asp 2016; 499: 79-87.
[http://dx.doi.org/10.1016/j.colsurfa.2016.03.065]
[68]
Jintapattanakit A. Preparation of nanoemulsions by phase inversion temperature (PIT). Pharmaceutical Sciences Asia 2018; 42(1): 1-12.
[http://dx.doi.org/10.29090/psa.2018.01.001]
[69]
Talarico L, Consumi M, Leone G, Tamasi G, Magnani A. Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin. Molecules 2021; 26(9): 2694.
[http://dx.doi.org/10.3390/molecules26092694] [PMID: 34064488]
[70]
Hao J, Wang F, Wang X, et al. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur J Pharm Sci 2012; 47(2): 497-505.
[http://dx.doi.org/10.1016/j.ejps.2012.07.006] [PMID: 22820033]
[71]
Battaglia L, Gallarate M, Peira E, et al. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: Preliminary in vitro studies. Nanotechnology 2015; 26(25): 255102.
[http://dx.doi.org/10.1088/0957-4484/26/25/255102] [PMID: 26043866]
[72]
Holpuch AS, Hummel GJ, Tong M, et al. Nanoparticles for local drug delivery to the oral mucosa: Proof of principle studies. Pharm Res 2010; 27(7): 1224-36.
[http://dx.doi.org/10.1007/s11095-010-0121-y] [PMID: 20354767]
[73]
Shi LL, Lu J, Cao Y, et al. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Dev Ind Pharm 2017; 43(5): 839-46.
[http://dx.doi.org/10.1080/03639045.2016.1220571] [PMID: 27487431]
[74]
Li H, Qu X, Qian W, Song Y, Wang C, Liu W. Andrographolide‐loaded solid lipid nanoparticles enhance anti‐cancer activity against head and neck cancer and precancerous cells. Oral Dis 2022; 28(1): 142-9.
[http://dx.doi.org/10.1111/odi.13751] [PMID: 33295090]
[75]
Radaic A, Malone E, Kamarajan P, Kapila YL. Solid lipid nanoparticles loaded with nisin (SLN-Nisin) are more effective than free nisin as antimicrobial, antibiofilm, and anticancer agents. J Biomed Nanotechnol 2022; 18(4): 1227-35.
[http://dx.doi.org/10.1166/jbn.2022.3314] [PMID: 35854440]
[76]
Gharat S, Basudkar V, Momin M, Prabhu A. Mucoadhesive oro-gel–containing chitosan lipidic nanoparticles for the management of oral squamous cell carcinoma. J Pharm Innov 2023; 18(3): 1298-315.
[http://dx.doi.org/10.1007/s12247-023-09724-7]
[77]
Ortega A, da Silva AB, da Costa LM, et al. Thermosensitive and mucoadhesive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan for the treatment of oral squamous cell carcinoma. Drug Deliv Transl Res 2023; 13(2): 642-57.
[http://dx.doi.org/10.1007/s13346-022-01227-1] [PMID: 36008703]
[78]
Baek JS, So JW, Shin SC, Cho CW. Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-β-cyclodextrin as an oral delivery system. Int J Mol Med 2012; 30(4): 953-9.
[http://dx.doi.org/10.3892/ijmm.2012.1086] [PMID: 22859311]

© 2025 Bentham Science Publishers | Privacy Policy