Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Review Article

Repositioning Proton Pump Inhibitors: Expanding Applications from Acid Suppression to Cancer Therapeutics

Author(s): Erica Alves, Gurupadayya Bannimath* and Prabitha Prabhakaran

Volume 11, 2025

Published on: 04 July, 2025

Article ID: e2212697X375313 Pages: 17

DOI: 10.2174/012212697X375313250623163944

Abstract

Proton pump inhibitors (PPIs), commonly utilized for the management of acid-related disorders, are gaining attention for their repurposing potential in oncology, particularly due to their ability to modulate the acidic tumor microenvironment and disrupt proton transport mechanisms. Beyond their primary role in gastric acid suppression, PPIs exhibit a spectrum of anticancer activities, including inhibition of vacuolar-type H-ATPase (V-ATPase), disruption of proton gradients, and interference with tumor metabolic adaptation. These effects contribute to increased lysosomal and endosomal pH, impairing autophagic flux, inducing apoptosis, and reducing cancer cell proliferation. Preclinical evidence suggests that PPIs can augment the effectiveness of conventional cancer treatments, such as chemotherapy and immunotherapy, through mechanisms like intracellular modulation of the acidic tumour microenvironment, inhibition of acidic vesicle sequestration, and suppression of efflux transporters (e.g., P-glycoprotein [P-gp], MRP1, BCRP). Furthermore, PPIs offer a promising strategy to counteract drug resistance, a significant challenge in cancer therapeutics. By targeting metabolic reprogramming pathways such as fatty acid synthase (FASN) and TOPK signaling, PPIs impair tumor survival mechanisms, enhance chemotherapy sensitivity, and restore drug efficacy in resistant cancer types. Although the precise molecular pathways responsible for these anticancer effects remain under investigation, the repurposing of PPIs as adjuncts in oncological regimens holds considerable promise. Emerging strategies, including artificial intelligence (AI)-driven drug repurposing, multi- omics biomarker identification, and nanomedicine-based PPI delivery, are expected to optimize their clinical applications. Ongoing and future studies should aim to unravel these molecular mechanisms in greater detail and prioritize clinical trials to evaluate their therapeutic efficacy. This repurposing approach could facilitate the development of innovative strategies to optimize cancer treatment and improve patient outcomes.

Keywords: Proton pump inhibitor (PPI), acidic tumor microenvironment, vacuolar-type H⁺-ATPase (V-ATPase), drug resistance, efflux transporters, oncology.

[1]
Shin JM, Sachs G. Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep 2008; 10(6): 528-34.
[http://dx.doi.org/10.1007/s11894-008-0098-4] [PMID: 19006606]
[2]
Ahmed A, Clarke JO. Proton pump inhibitors (PPI). Treasure Island, FL: StatPearls Publishing 2024.
[3]
Shanika LGT, Reynolds A, Pattison S, Braund R. Proton pump inhibitor use: Systematic review of global trends and practices. Eur J Clin Pharmacol 2023; 79(9): 1159-72.
[http://dx.doi.org/10.1007/s00228-023-03534-z] [PMID: 37420019]
[4]
Strand DS, Kim D, Peura DA. 25 years of proton pump inhibitors: A comprehensive review. Gut Liver 2017; 11(1): 27-37.
[http://dx.doi.org/10.5009/gnl15502] [PMID: 27840364]
[5]
Low ZY, Farouk IA, Lal SK. Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses 2020; 12(9): 1058.
[http://dx.doi.org/10.3390/v12091058] [PMID: 32972027]
[6]
Ahmad Z, Rauf A, Naz S, Hemeg HA. Introduction to drug repurposing: Exploring new applications for existing drugs.Drug Development and Safety. IntechOpen 2024.
[http://dx.doi.org/10.5772/intechopen.113207]
[7]
Alsultan A, Alghamdi WA, Alghamdi J, et al. Clinical pharmacology applications in clinical drug development and clinical care: A focus on Saudi Arabia. Saudi Pharm J 2020; 28(10): 1217-27.
[http://dx.doi.org/10.1016/j.jsps.2020.08.012] [PMID: 33132716]
[8]
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv Res 2022; 22(1): 970.
[http://dx.doi.org/10.1186/s12913-022-08272-z] [PMID: 35906687]
[9]
Shin JM, Kim N. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors. J Neurogastroenterol Motil 2013; 19(1): 25-35.
[http://dx.doi.org/10.5056/jnm.2013.19.1.25] [PMID: 23350044]
[10]
Ward C, Meehan J, Gray ME, et al. The impact of tumour pH on cancer progression: Strategies for clinical intervention. Explor Target Antitumor Ther 2020; 1(2): 71-100.
[http://dx.doi.org/10.37349/etat.2020.00005] [PMID: 36046070]
[11]
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol 2022; 12: 979154.
[http://dx.doi.org/10.3389/fonc.2022.979154] [PMID: 36106097]
[12]
Chen H, Kondo M, Horita N, Takahashi K, Kaneko T. The complex interaction between proton pump inhibitors and cancer treatment. Cancers 2023; 15(22): 5346.
[http://dx.doi.org/10.3390/cancers15225346] [PMID: 38001605]
[13]
Uchiyama AAT, Silva PAIA, Lopes MSM, et al. Proton pump inhibitors and oncologic treatment efficacy: A practical review of the literature for oncologists. Curr Oncol 2021; 28(1): 783-99.
[http://dx.doi.org/10.3390/curroncol28010076] [PMID: 33546228]
[14]
Pérez-Tomás R, Pérez-Guillén I. Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers 2020; 12(11): 3244.
[http://dx.doi.org/10.3390/cancers12113244] [PMID: 33153193]
[15]
Gao Y, Zhou H, Liu G, Wu J, Yuan Y, Shang A. Tumor microenvironment: Lactic acid promotes tumor development. J Immunol Res 2022; 2022: 1-8.
[http://dx.doi.org/10.1155/2022/3119375] [PMID: 35733921]
[16]
de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 2019; 9: 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[17]
Hebert KA, Bonnen MD, Ghebre YT. Proton pump inhibitors and sensitization of cancer cells to radiation therapy. Front Oncol 2022; 12: 937166.
[http://dx.doi.org/10.3389/fonc.2022.937166] [PMID: 35992826]
[18]
Spugnini E, Fais S. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Semin Cancer Biol 2017; 43: 111-8.
[http://dx.doi.org/10.1016/j.semcancer.2017.01.003] [PMID: 28088584]
[19]
Patel KJ, Lee C, Tan Q, Tannock IF. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: A potential strategy to improve the therapy of solid tumors. Clin Cancer Res 2013; 19(24): 6766-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0128] [PMID: 24141627]
[20]
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9(1): 92.
[http://dx.doi.org/10.1038/s41392-024-01808-1] [PMID: 38637540]
[21]
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, et al. Drug repurposing in oncology: A systematic review of randomized controlled clinical trials. Cancers 2023; 15(11): 2972.
[http://dx.doi.org/10.3390/cancers15112972] [PMID: 37296934]
[22]
Ikemura K, Hiramatsu S, Okuda M. Drug repositioning of proton pump inhibitors for enhanced efficacy and safety of cancer chemotherapy. Front Pharmacol 2017; 8: 911.
[http://dx.doi.org/10.3389/fphar.2017.00911] [PMID: 29311921]
[23]
Kedika RR, Souza RF, Spechler SJ. Potential anti-inflammatory effects of proton pump inhibitors: A review and discussion of the clinical implications. Dig Dis Sci 2009; 54(11): 2312-7.
[http://dx.doi.org/10.1007/s10620-009-0951-9] [PMID: 19714466]
[24]
Marino ML, Fais S, Djavaheri-Mergny M, et al. Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell Death Dis 2010; 1(10): e87.
[http://dx.doi.org/10.1038/cddis.2010.67] [PMID: 21368860]
[25]
Stransky L, Cotter K, Forgac M. The function of V-ATPases in cancer. Physiol Rev 2016; 96(3): 1071-91.
[http://dx.doi.org/10.1152/physrev.00035.2015] [PMID: 27335445]
[26]
Chen F, Kang R, Liu J, Tang D. The V-ATPases in cancer and cell death. Cancer Gene Ther 2022; 29(11): 1529-41.
[http://dx.doi.org/10.1038/s41417-022-00477-y] [PMID: 35504950]
[27]
Ridge NA, Agarwal MS, Fakhreddine MH. Old drug, new trick: Proton pump inhibitors find new purpose in cancer care. Oncotarget 2021; 12(19): 1861-2.
[http://dx.doi.org/10.18632/oncotarget.28053] [PMID: 34548903]
[28]
Zheng M, Luan S, Gao S, et al. Proton pump inhibitor ilaprazole suppresses cancer growth by targeting T-cell-originated protein kinase. Oncotarget 2017; 8(24): 39143-53.
[http://dx.doi.org/10.18632/oncotarget.16609] [PMID: 28388576]
[29]
Wang CJ, Li D, Danielson JA, et al. Proton pump inhibitors suppress DNA damage repair and sensitize treatment resistance in breast cancer by targeting fatty acid synthase. Cancer Lett 2021; 509: 1-12.
[http://dx.doi.org/10.1016/j.canlet.2021.03.026] [PMID: 33813001]
[30]
Cao Y, Chen M, Tang D, et al. The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses. Cell Death Dis 2018; 9(6): 604.
[http://dx.doi.org/10.1038/s41419-018-0642-6] [PMID: 29789637]
[31]
Ji N, Li H, Zhang Y, et al. Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration. Drug Resist Updat 2024; 76: 101100.
[http://dx.doi.org/10.1016/j.drup.2024.101100] [PMID: 38885537]
[32]
Yeo M, Kim DK, Kim YB, et al. Selective induction of apoptosis with proton pump inhibitor in gastric cancer cells. Clin Cancer Res 2004; 10(24): 8687-96.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1065] [PMID: 15623654]
[33]
Menendez JA, Cuyàs E, Encinar JA, et al. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18(3): 479-516.
[http://dx.doi.org/10.1002/1878-0261.13582] [PMID: 38158755]
[34]
Gong Q, Song X, Tong Y, et al. Recent advances of anti-tumor nano-strategies via overturning pH gradient: Alkalization and acidification. J Nanobiotechnology 2025; 23(1): 42.
[http://dx.doi.org/10.1186/s12951-025-03134-2] [PMID: 39849540]
[35]
Joo MK, Park JJ, Chun HJ. Proton pump inhibitor: The dual role in gastric cancer. World J Gastroenterol 2019; 25(17): 2058-70.
[http://dx.doi.org/10.3748/wjg.v25.i17.2058] [PMID: 31114133]
[36]
Halaby R. Influence of lysosomal sequestration on multidrug resistance in cancer cells. Cancer Drug Resist 2019; 2(1): 31-42.
[http://dx.doi.org/10.20517/cdr.2018.23] [PMID: 35582144]
[37]
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 2021; 12: 648407.
[http://dx.doi.org/10.3389/fphar.2021.648407] [PMID: 33953682]
[38]
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14(1): 79.
[http://dx.doi.org/10.1186/s13045-021-01087-1] [PMID: 33990205]
[39]
Choi Y, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 2014; 20(5): 793-807.
[http://dx.doi.org/10.2174/138161282005140214165212] [PMID: 23688078]
[40]
Matsumura S, Ishikawa T, Yoshida J, et al. Proton pump inhibitors enhance the antitumor effect of chemotherapy for esophageal squamous cell carcinoma. Cancers 2022; 14(10): 2395.
[http://dx.doi.org/10.3390/cancers14102395] [PMID: 35626000]
[41]
Wang BY, Zhang J, Wang JL, et al. Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res 2015; 34(1): 85.
[http://dx.doi.org/10.1186/s13046-015-0194-x] [PMID: 26297142]
[42]
Scarpignato C, Gatta L, Zullo A, Blandizzi C. Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression. BMC Med 2016; 14(1): 179.
[http://dx.doi.org/10.1186/s12916-016-0718-z] [PMID: 27825371]
[43]
Goh W, Sleptsova-Freidrich I, Petrovic N. Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study. J Pharm Pharm Sci 2014; 17(3): 439-46.
[http://dx.doi.org/10.18433/J34608] [PMID: 25224353]
[44]
Udelnow A, Kreyes A, Ellinger S, et al. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells. PLoS One 2011; 6(5): e20143.
[http://dx.doi.org/10.1371/journal.pone.0020143] [PMID: 21629657]
[45]
Kim YJ, Lee JS, Hong KS, Chung JW, Kim JH, Hahm KB. Novel application of proton pump inhibitor for the prevention of colitis-induced colorectal carcinogenesis beyond acid suppression. Cancer Prev Res (Phila) 2010; 3(8): 963-74.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0033] [PMID: 20628001]
[46]
Rao C, Zhang Y, Li Q, Steele VE, Rao CV. Anti-carcinogenic properties of omeprazole against human colon cancer cells and azoxymethane-induced colonic aberrant crypt foci formation in rats. Int J Oncol 2011; 40(1): 170-5.
[http://dx.doi.org/10.3892/ijo.2011.1214] [PMID: 21956158]
[47]
Lee YY, Jeon HK, Hong JE, et al. Proton pump inhibitors enhance the effects of cytotoxic agents in chemoresistant epithelial ovarian carcinoma. Oncotarget 2015; 6(33): 35040-50.
[http://dx.doi.org/10.18632/oncotarget.5319] [PMID: 26418900]
[48]
Azzarito T, Venturi G, Cesolini A, Fais S. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma. Cancer Lett 2015; 356(2): 697-703.
[http://dx.doi.org/10.1016/j.canlet.2014.10.017] [PMID: 25449440]
[49]
Liu M, Tang R, Jiang Y. Pantoprazole induces apoptosis of leukemic cells by inhibiting expression of P-glycoprotein/multidrug resistance-associated protein-1 through PI3K/AKT/mTOR signaling. Indian J Hematol Blood Transfus 2017; 33(4): 500-8.
[http://dx.doi.org/10.1007/s12288-017-0808-x] [PMID: 29075060]
[50]
Zhang JL, Liu M, Yang Q, et al. Effects of omeprazole in improving concurrent chemoradiotherapy efficacy in rectal cancer. World J Gastroenterol 2017; 23(14): 2575-84.
[http://dx.doi.org/10.3748/wjg.v23.i14.2575] [PMID: 28465642]
[51]
Eaton AF, Merkulova M, Brown D. The H + -ATPase (V-ATPase): From proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2021; 320(3): C392-414.
[http://dx.doi.org/10.1152/ajpcell.00442.2020] [PMID: 33326313]
[52]
Pérez SE, Gooz M, Maldonado EN. Mitochondrial dysfunction and metabolic disturbances induced by viral infections. Cells 2024; 13(21): 1789.
[http://dx.doi.org/10.3390/cells13211789] [PMID: 39513896]
[53]
Chen T, Lin X, Lu S, Li B, Wang H, Li J. V-ATPase in cancer: Mechanistic insights and therapeutic potentials. Cell Commun Signal 2024; 22(1): 613.
[http://dx.doi.org/10.1186/s12964-024-01998-9] [PMID: 39707503]
[54]
Pamarthy S, Kulshrestha A, Katara GK, Beaman KD. The curious case of vacuolar ATPase: Regulation of signaling pathways. Mol Cancer 2018; 17(1): 41.
[http://dx.doi.org/10.1186/s12943-018-0811-3] [PMID: 29448933]
[55]
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. Biochim Biophys Acta Biomembr 2020; 1862(12): 183341.
[http://dx.doi.org/10.1016/j.bbamem.2020.183341] [PMID: 32422136]
[56]
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 2020; 21(9): 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[57]
Man CH, Mercier FE, Liu N, et al. Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth. Blood 2022; 139(4): 502-22.
[http://dx.doi.org/10.1182/blood.2021011563] [PMID: 34610101]
[58]
Alfarouk KO, Ahmed SBM, Ahmed A, et al. The interplay of dysregulated pH and electrolyte imbalance in cancer. Cancers 2020; 12(4): 898.
[http://dx.doi.org/10.3390/cancers12040898] [PMID: 32272658]
[59]
Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 2021; 6(1): 72.
[http://dx.doi.org/10.1038/s41392-020-00449-4] [PMID: 33608497]
[60]
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19(1): 120.
[http://dx.doi.org/10.1186/s12943-020-01238-x] [PMID: 32762681]
[61]
Tong L, Jiménez-Cortegana C, Tay AHM, Wickström S, Galluzzi L, Lundqvist A. NK cells and solid tumors: Therapeutic potential and persisting obstacles. Mol Cancer 2022; 21(1): 206.
[http://dx.doi.org/10.1186/s12943-022-01672-z] [PMID: 36319998]
[62]
Huber V, Camisaschi C, Berzi A, et al. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol 2017; 43: 74-89.
[http://dx.doi.org/10.1016/j.semcancer.2017.03.001] [PMID: 28267587]
[63]
Giraldo NA, Sanchez-Salas R, Peske JD, et al. The clinical role of the TME in solid cancer. Br J Cancer 2019; 120(1): 45-53.
[http://dx.doi.org/10.1038/s41416-018-0327-z] [PMID: 30413828]
[64]
Hosonuma M, Yoshimura K. Association between pH regulation of the tumor microenvironment and immunological state. Front Oncol 2023; 13: 1175563.
[http://dx.doi.org/10.3389/fonc.2023.1175563] [PMID: 37492477]
[65]
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8(1): 70.
[http://dx.doi.org/10.1038/s41392-023-01332-8] [PMID: 36797231]
[66]
Bellone M, Calcinotto A, Filipazzi P, De Milito A, Fais S, Rivoltini L. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. OncoImmunology 2013; 2(1): e22058.
[http://dx.doi.org/10.4161/onci.22058] [PMID: 23483769]
[67]
Calcinotto A, Filipazzi P, Grioni M, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 2012; 72(11): 2746-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1272] [PMID: 22593198]
[68]
Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci 2020; 21(12): 4392.
[http://dx.doi.org/10.3390/ijms21124392] [PMID: 32575682]
[69]
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22(1): 109.
[http://dx.doi.org/10.1186/s12964-023-01302-1] [PMID: 38347575]
[70]
Zhitomirsky B, Assaraf YG. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24: 23-33.
[http://dx.doi.org/10.1016/j.drup.2015.11.004] [PMID: 26830313]
[71]
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2(2): 141-60.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[72]
Talib WH, Alsayed AR, Barakat M, Abu-Taha MI, Mahmod AI. Targeting drug chemo-resistance in cancer using natural products. Biomedicines 2021; 9(10): 1353.
[http://dx.doi.org/10.3390/biomedicines9101353] [PMID: 34680470]
[73]
Chen M, Lu J, Wei W, et al. Effects of proton pump inhibitors on reversing multidrug resistance via downregulating V-ATPases/PI3K/Akt/mTOR/HIF-1α signaling pathway through TSC1/2 complex and Rheb in human gastric adenocarcinoma cells in vitro and in vivo. OncoTargets Ther 2018; 11: 6705-22.
[http://dx.doi.org/10.2147/OTT.S161198] [PMID: 30349304]
[74]
Lu ZN, Shi ZY, Dang YF, et al. Pantoprazole pretreatment elevates sensitivity to vincristine in drug-resistant oral epidermoid carcinoma in vitro and in vivo. Biomed Pharmacother 2019; 120: 109478.
[http://dx.doi.org/10.1016/j.biopha.2019.109478] [PMID: 31568987]
[75]
Gao H, Zhang S, Hu T, et al. Omeprazole protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2 cells. Chem Biol Interact 2019; 297: 130-40.
[http://dx.doi.org/10.1016/j.cbi.2018.11.008] [PMID: 30452898]
[76]
Ferrari S, Perut F, Fagioli F, et al. Proton pump inhibitor chemosensitization in human osteosarcoma: From the bench to the patients’ bed. J Transl Med 2013; 11(1): 268.
[http://dx.doi.org/10.1186/1479-5876-11-268] [PMID: 24156349]
[77]
Tafech A, Stéphanou A. On the importance of acidity in cancer cells and therapy. Biology 2024; 13(4): 225.
[http://dx.doi.org/10.3390/biology13040225] [PMID: 38666837]
[78]
Jaworska M, Szczudło J, Pietrzyk A, et al. The Warburg effect: A score for many instruments in the concert of cancer and cancer niche cells. Pharmacol Rep 2023; 75(4): 876-90.
[http://dx.doi.org/10.1007/s43440-023-00504-1] [PMID: 37332080]
[79]
Yu M, Lee C, Wang M, Tannock IF. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors. Cancer Sci 2015; 106(10): 1438-47.
[http://dx.doi.org/10.1111/cas.12756] [PMID: 26212113]
[80]
Luciani F, Spada M, De Milito A, et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 2004; 96(22): 1702-13.
[http://dx.doi.org/10.1093/jnci/djh305] [PMID: 15547183]
[81]
To KKW, Cho WC. Drug repurposing to circumvent immune checkpoint inhibitor resistance in cancer immunotherapy. Pharmaceutics 2023; 15(8): 2166.
[http://dx.doi.org/10.3390/pharmaceutics15082166] [PMID: 37631380]
[82]
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904-12.
[http://dx.doi.org/10.1038/onc.2008.271] [PMID: 18836471]
[83]
de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41(3): 374-403.
[http://dx.doi.org/10.1016/j.ccell.2023.02.016] [PMID: 36917948]
[84]
Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18(1): 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[85]
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363: 57-83.
[http://dx.doi.org/10.1016/j.jconrel.2023.09.029] [PMID: 37739017]
[86]
Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86(Pt 3): 542-65.
[http://dx.doi.org/10.1016/j.semcancer.2022.02.010] [PMID: 35151845]
[87]
Peng K, Chen K, Teply BA, Yee GC, Farazi PA, Lyden ER. Impact of proton pump inhibitor use on the effectiveness of immune checkpoint inhibitors in advanced cancer patients. Ann Pharmacother 2022; 56(4): 377-86.
[http://dx.doi.org/10.1177/10600280211033938] [PMID: 34282636]
[88]
Li C, Xia Z, Li A, Meng J. The effect of proton pump inhibitor uses on outcomes for cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Ann Transl Med 2020; 8(24): 1655.
[http://dx.doi.org/10.21037/atm-20-7498] [PMID: 33490167]
[89]
Wada A, Enokida T, Okano S, et al. Proton pump inhibitors and antibiotics adversely effect the efficacy of nivolumab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Eur J Cancer 2023; 184: 30-8.
[http://dx.doi.org/10.1016/j.ejca.2023.02.011] [PMID: 36898232]
[90]
Chen B, Yang C, Dragomir MP, et al. Association of proton pump inhibitor use with survival outcomes in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Ther Adv Med Oncol 2022; 14: 17588359221111703.
[http://dx.doi.org/10.1177/17588359221111703] [PMID: 35860836]
[91]
Lopes S, Pabst L, Dory A, et al. Do proton pump inhibitors alter the response to immune checkpoint inhibitors in cancer patients? A meta-analysis. Front Immunol 2023; 14: 1070076.
[http://dx.doi.org/10.3389/fimmu.2023.1070076] [PMID: 36776847]
[92]
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023; 162: 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[93]
Bridoux C, Grigoriu B, Margery J, Morel H, Gervais R, Jullian H. Proton pump inhibitors and cancer: Clinical impact, drug–drug interactions, and potential biological mechanisms. Front Pharmacol 2022; 13: 798272.
[http://dx.doi.org/10.3389/fphar.2022.798272] [PMID: 35359844]
[94]
Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab Dispos 2014; 42(4): 623-31.
[http://dx.doi.org/10.1124/dmd.113.056176] [PMID: 24492893]
[95]
Bruno G, Zaccari P, Rocco G, et al. Proton pump inhibitors and dysbiosis: Current knowledge and aspects to be clarified. World J Gastroenterol 2019; 25(22): 2706-19.
[http://dx.doi.org/10.3748/wjg.v25.i22.2706] [PMID: 31235994]
[96]
Kiecka A, Szczepanik M. Proton pump inhibitor-induced gut dysbiosis and immunomodulation: Current knowledge and potential restoration by probiotics. Pharmacol Rep 2023; 75(4): 791-804.
[http://dx.doi.org/10.1007/s43440-023-00489-x] [PMID: 37142877]
[97]
Trifan A, Stanciu C, Girleanu I, et al. Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis. World J Gastroenterol 2017; 23(35): 6500-15.
[http://dx.doi.org/10.3748/wjg.v23.i35.6500] [PMID: 29085200]
[98]
Tawam D, Baladi M, Jungsuwadee P, Earl G, Han J. The positive association between proton pump inhibitors and Clostridium difficile infection. Innov Pharm 2021; 12(1): 10.
[http://dx.doi.org/10.24926/iip.v12i1.3439] [PMID: 34007671]
[99]
Jaynes M, Kumar AB. The risks of long-term use of proton pump inhibitors: A critical review. Ther Adv Drug Saf 2019; 10: 2042098618809927.
[http://dx.doi.org/10.1177/2042098618809927] [PMID: 31019676]
[100]
McDonald EG, Milligan J, Frenette C, Lee TC. Continuous proton pump inhibitor therapy and the associated risk of recurrent Clostridium difficile infection. JAMA Intern Med 2015; 175(5): 784-91.
[http://dx.doi.org/10.1001/jamainternmed.2015.42] [PMID: 25730198]
[101]
Seto CT, Jeraldo P, Orenstein R, Chia N, DiBaise JK. Prolonged use of a proton pump inhibitor reduces microbial diversity: Implications for Clostridium difficile susceptibility. Microbiome 2014; 2(1): 42.
[http://dx.doi.org/10.1186/2049-2618-2-42] [PMID: 25426290]
[102]
Alanazi AS, Almutairi H, Gupta JK, et al. Osseous implications of proton pump inhibitor therapy: An umbrella review. Bone Rep 2024; 20: 101741.
[http://dx.doi.org/10.1016/j.bonr.2024.101741] [PMID: 38348455]
[103]
Briganti SI, Naciu AM, Tabacco G, et al. Proton pump inhibitors and fractures in adults: A critical appraisal and review of the literature. Int J Endocrinol 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/8902367] [PMID: 33510787]
[104]
Thong BKS, Ima-Nirwana S, Chin KY. Proton pump inhibitors and fracture risk: A review of current evidence and mechanisms involved. Int J Environ Res Public Health 2019; 16(9): 1571.
[http://dx.doi.org/10.3390/ijerph16091571] [PMID: 31060319]
[105]
Philippoteaux C, Paccou J, Chazard E, Cortet B. Proton pump inhibitors, bone and phosphocalcic metabolism. Joint Bone Spine 2024; 91(5): 105714.
[http://dx.doi.org/10.1016/j.jbspin.2024.105714] [PMID: 38458487]
[106]
Kommer A, Kostev K, Schleicher EM, Weinmann-Menke J, Labenz C. Proton pump inhibitor use and bone fractures in patients with chronic kidney disease. Nephrol Dial Transplant 2024; 40(1): 173-81.
[http://dx.doi.org/10.1093/ndt/gfae135] [PMID: 39025803]
[107]
Romdhane H, Cheikh M, Nejma HB, Ennaifer R, Hadj NB. AB0832 Effect of long-term proton pump inhibitors on bone mineral density. Ann Rheum Dis 2017; 76: 1348.
[http://dx.doi.org/10.1136/annrheumdis-2017-eular.5281]
[108]
Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ 2008; 179(4): 319-26.
[http://dx.doi.org/10.1503/cmaj.071330] [PMID: 18695179]
[109]
Wang YH, Wintzell V, Ludvigsson JF, Svanström H, Pasternak B. Association between proton pump inhibitor use and risk of fracture in children. JAMA Pediatr 2020; 174(6): 543-51.
[http://dx.doi.org/10.1001/jamapediatrics.2020.0007] [PMID: 32176276]
[110]
Lazarus B, Chen Y, Wilson FP, et al. Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern Med 2016; 176(2): 238-46.
[http://dx.doi.org/10.1001/jamainternmed.2015.7193] [PMID: 26752337]
[111]
Hart E, Dunn TE, Feuerstein S, Jacobs DM. Proton pump inhibitors and risk of acute and chronic kidney disease: A retrospective cohort study. Pharmacotherapy 2019; 39(4): 443-53.
[http://dx.doi.org/10.1002/phar.2235] [PMID: 30779194]
[112]
Li Y, Xiong M, Yang M, et al. Proton pump inhibitors and the risk of hospital-acquired acute kidney injury in children. Ann Transl Med 2020; 8(21): 1438.
[http://dx.doi.org/10.21037/atm-20-2284] [PMID: 33313183]
[113]
Tajdini P, Foroutan M. Renal failure following the administration of proton pump inhibitors; a mini-review article on recent findings. J Renal Inj Prev 2024; 14(1): e32260.
[http://dx.doi.org/10.34172/jrip.2024.32260]
[114]
Miao J, Herrmann SM. Immune checkpoint inhibitors and their interaction with proton pump inhibitors–related interstitial nephritis. Clin Kidney J 2023; 16(11): 1834-44.
[http://dx.doi.org/10.1093/ckj/sfad109] [PMID: 37915905]
[115]
El Rouby N, Lima JJ, Johnson JA. Proton pump inhibitors: From CYP2C19 pharmacogenetics to precision medicine. Expert Opin Drug Metab Toxicol 2018; 14(4): 447-60.
[http://dx.doi.org/10.1080/17425255.2018.1461835] [PMID: 29620484]
[116]
Gronich N. lavi I, Lejbkowicz F, Pinchev M, Rennert G. Association of CYP2C19 polymorphism with proton pump inhibitors effectiveness and with fractures in real-life: Retrospective cohort study. Clin Pharmacol Ther 2022; 111(5): 1084-92.
[http://dx.doi.org/10.1002/cpt.2552] [PMID: 35124810]
[117]
Lima JJ, Thomas CD, Barbarino J, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin Pharmacol Ther 2021; 109(6): 1417-23.
[http://dx.doi.org/10.1002/cpt.2015] [PMID: 32770672]
[118]
Shubbar Q, Alchakee A, Issa KW, Adi AJ, Shorbagi AI, Saber-Ayad M. From genes to drugs: CYP2C19 and pharmacogenetics in clinical practice. Front Pharmacol 2024; 15: 1326776.
[http://dx.doi.org/10.3389/fphar.2024.1326776] [PMID: 38420192]
[119]
Aguilera Castro L. Martín de Argila de Prados C, Albillos Martínez A. Practical considerations in the management of proton-pump inhibitors. Rev Esp Enferm Dig 2015; 108(3): 145-53.
[http://dx.doi.org/10.17235/reed.2015.3812/2015] [PMID: 26666270]
[120]
Raoul JL, Moreau-Bachelard C, Gilabert M, Edeline J, Frénel JS. Drug–drug interactions with proton pump inhibitors in cancer patients: An underrecognized cause of treatment failure. ESMO Open 2023; 8(1): 100880.
[http://dx.doi.org/10.1016/j.esmoop.2023.100880] [PMID: 36764092]
[121]
Sachs G, Shin JM, Howden CW. Review article: The clinical pharmacology of proton pump inhibitors. Aliment Pharmacol Ther 2006; 23(s2): 2-8.
[http://dx.doi.org/10.1111/j.1365-2036.2006.02943.x] [PMID: 16700898]
[122]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[123]
Naylor S, Schonfeld JM. Therapeutic drug repurposing, repositioning and rescue: Part I overview. Drug Discov World 2014; 15(1): 49-62.
[124]
Breckenridge A, Jacob R. Overcoming the legal and regulatory barriers to drug repurposing. Nat Rev Drug Discov 2019; 18(1): 1-2.
[http://dx.doi.org/10.1038/nrd.2018.92] [PMID: 29880920]
[125]
Sleigh SH, Barton CL. Repurposing strategies for therapeutics. Pharmaceut Med 2010; 24(3): 151-9.
[http://dx.doi.org/10.1007/BF03256811]
[126]
Sercombe L, Veerati T, Moheimani F. Advances and challenges of liposomal drug delivery systems in cancer therapy. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[127]
Mukalel AJ, Riley RS, Zhang R, Mitchell MJ. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Lett 2019; 458: 102-12.
[http://dx.doi.org/10.1016/j.canlet.2019.04.040] [PMID: 31100411]
[128]
Spugnini EP, Citro G, Fais S. Proton pump inhibitors as anti vacuolar-ATPases drugs: A novel anticancer strategy. J Exp Clin Cancer Res 2010; 29(1): 44.
[http://dx.doi.org/10.1186/1756-9966-29-44] [PMID: 20459683]
[129]
Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[130]
Yap TA, Sandhu SK, Workman P, de Bono JS. Envisioning the future of early anticancer drug development. Nat Rev Cancer 2010; 10(7): 514-23.
[http://dx.doi.org/10.1038/nrc2870] [PMID: 20535131]
[131]
Sawyers CL. The cancer biomarker problem. Nature 2008; 452(7187): 548-52.
[http://dx.doi.org/10.1038/nature06913] [PMID: 18385728]
[132]
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372(9): 793-5.
[http://dx.doi.org/10.1056/NEJMp1500523] [PMID: 25635347]
[133]
Ashley EA. Towards precision medicine. Nat Rev Genet 2016; 17(9): 507-22.
[http://dx.doi.org/10.1038/nrg.2016.86] [PMID: 27528417]
[134]
Schork NJ. Personalized medicine: Time for one-person trials. Nature 2015; 520(7549): 609-11.
[http://dx.doi.org/10.1038/520609a] [PMID: 25925459]
[135]
Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med 2015; 372(23): 2229-34.
[http://dx.doi.org/10.1056/NEJMsb1503104] [PMID: 26014593]
[136]
Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Exp Mol Med 2022; 54(10): 1670-94.
[http://dx.doi.org/10.1038/s12276-022-00864-3] [PMID: 36224343]
[137]
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity 2020; 52(1): 17-35.
[http://dx.doi.org/10.1016/j.immuni.2019.12.011] [PMID: 31940268]
[138]
Mundekkad D, Cho WC. Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci 2022; 23(3): 1685.
[http://dx.doi.org/10.3390/ijms23031685] [PMID: 35163607]
[139]
Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1): 169.
[http://dx.doi.org/10.1186/s12943-023-01865-0] [PMID: 37814270]
[140]
Naumenko E, Guryanov I, Gomzikova M. Drug delivery nano-platforms for advanced cancer therapy. Sci Pharm 2024; 92(2): 28.
[http://dx.doi.org/10.3390/scipharm92020028]
[141]
Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology 2024; 5: 109-22.
[http://dx.doi.org/10.1016/j.bmt.2023.09.001]
[142]
Srebro J, Brniak W, Mendyk A. Formulation of dosage forms with proton pump inhibitors: State of the art, challenges and future perspectives. Pharmaceutics 2022; 14(10): 2043.
[http://dx.doi.org/10.3390/pharmaceutics14102043] [PMID: 36297478]
[143]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[144]
Wu L, Wen Y, Leng D, et al. Machine learning methods, databases and tools for drug combination prediction. Brief Bioinform 2022; 23(1): bbab355.
[http://dx.doi.org/10.1093/bib/bbab355] [PMID: 34477201]
[145]
Oyejide AJ, Adekunle YA, Abodunrin OD, Atoyebi EO. Artificial intelligence, computational tools and robotics for drug discovery, development, and delivery. Intell Pharm 2025.
[http://dx.doi.org/10.1016/j.ipha.2025.01.001]
[146]
Abbas MKG, Rassam A, Karamshahi F, Abunora R, Abouseada M. The role of AI in drug discovery. ChemBioChem 2024; 25(14): e202300816.
[http://dx.doi.org/10.1002/cbic.202300816] [PMID: 38735845]
[147]
Lu M, Yin J, Zhu Q, et al. Artificial intelligence in pharmaceutical sciences. Engineering 2023; 27: 37-69.
[http://dx.doi.org/10.1016/j.eng.2023.01.014]
[148]
Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and machine learning technology-driven modern drug discovery and development. Int J Mol Sci 2023; 24(3): 2026.
[http://dx.doi.org/10.3390/ijms24032026] [PMID: 36768346]
[149]
Qi X, Zhao Y, Qi Z, Hou S, Chen J. Machine learning empowering drug discovery: Applications, opportunities, and challenges. Molecules 2024; 29(4): 903.
[http://dx.doi.org/10.3390/molecules29040903] [PMID: 38398653]
[150]
Hachad H, Ragueneau-Majlessi I, Levy RH. A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database. Hum Genomics 2010; 5(1): 61-72.
[http://dx.doi.org/10.1186/1479-7364-5-1-61] [PMID: 21106490]
[151]
Baker RE, Peña JM, Jayamohan J, Jérusalem A. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol Lett 2018; 14(5): 20170660.
[http://dx.doi.org/10.1098/rsbl.2017.0660] [PMID: 29769297]
[152]
Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med 2019; 16(1): e1002730.
[http://dx.doi.org/10.1371/journal.pmed.1002730] [PMID: 30677016]
[153]
Pasrija P, Jha P, Upadhyaya P, Khan MS, Chopra M. Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery. Curr Top Med Chem 2022; 22(20): 1692-727.
[http://dx.doi.org/10.2174/1568026622666220701091339] [PMID: 35786336]
[154]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[155]
Cao Y, Romero J, Aspuru-Guzik A. Potential of quantum computing for drug discovery. 2018; 62(6): 6:1-6:20.
[http://dx.doi.org/10.1147/JRD.2018.2888987]
[156]
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019; 25(1): 24-9.
[http://dx.doi.org/10.1038/s41591-018-0316-z] [PMID: 30617335]
[157]
Han R, Yoon H, Kim G, Lee H, Lee Y. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals 2023; 16(9): 1259.
[http://dx.doi.org/10.3390/ph16091259] [PMID: 37765069]
[158]
Nissan N, Allen MC, Sabatino D, Biggar KK. Future perspective: Harnessing the power of artificial intelligence in the generation of new peptide drugs. Biomolecules 2024; 14(10): 1303.
[http://dx.doi.org/10.3390/biom14101303] [PMID: 39456236]
[159]
Rajaei F, Minoccheri C, Wittrup E, et al. AI-based computational methods in early drug discovery and post market drug assessment: A survey. IEEE Trans Comput Biol Bioinform 2024; 22(1): 97-115.
[http://dx.doi.org/10.1109/TCBB.2024.3492708]

© 2025 Bentham Science Publishers | Privacy Policy