Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Review Article

CAR-T Cell Therapy: A Revolutionary Approach to Targeting and Treating Cancer

Author(s): Virender Kumar*, Davinder Kumar, Monika Verma, Hardik Pruthi, Tanya Dhiman, Naveen Khatri, Vandana Garg, Saloni Kakkar and Ashwani Kumar

Volume 11, 2025

Published on: 17 April, 2025

Article ID: e2212697X366863 Pages: 15

DOI: 10.2174/012212697X366863250331152051

Price: $65

Abstract

CAR-T cell therapy has transformed cancer treatment by harnessing genetically engineered T cells to specifically target and destroy cancer cells, especially in blood cancers like leukemia and lymphoma. Despite its success, challenges such as serious side effect cytokine release syndrome, neurotoxicity and the high cost of treatment hinder widespread access. Research is ongoing to broaden its use to solid tumors and improve its safety, effectiveness, and affordability. Future efforts will focus on refining CAR constructs, reducing adverse effects, enhancing manufacturing efficiency, and ensuring equitable access through regulatory cooperation, facilitating its wider adoption in precision oncology.

Keywords: CAR-T cell therapy, chimeric antigen receptors, genetically modified T cells, cancer treatment, hematologic malignancies, leukemia, lymphoma, cytokine release syndrome, solid tumors, clinical trials, precision medicine.

[1]
Lustberg M B, Kuderer N M, Desai A, Bergerot C, Lyman G H. Mitigating long-term and delayed adverse events associated with cancer treatment: Implications for survivorship. Nat Rev Clin Oncol 2023; 20(8): 527-42.
[http://dx.doi.org/10.1038/s41571-023-00776-9]
[2]
Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017; 377(26): 2545-54.
[http://dx.doi.org/10.1056/NEJMoa1708566] [PMID: 29226764]
[3]
Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018; 378(5): 449-59.
[http://dx.doi.org/10.1056/NEJMoa1709919] [PMID: 29385376]
[4]
“CAR T Cells: Engineering Immune Cells to Treat Cancer - NCI” Available from: https://www.cancer.gov/about-cancer/treatment/research/car-t-cells [Accessed: Jan. 09, 2025].
[5]
Bandara V, Foeng J, Gundsambuu B, et al. Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7. Nat Commun 2023; 14(1): 5546.
[http://dx.doi.org/10.1038/s41467-023-41338-y] [PMID: 37684239]
[6]
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378(5): 439-48.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[7]
Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: Chimeric antigen receptor T cells targeting CD19. Cytotherapy 2020; 22(2): 57-69.
[http://dx.doi.org/10.1016/j.jcyt.2019.12.004] [PMID: 32014447]
[8]
Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017; 377(26): 2531-44.
[http://dx.doi.org/10.1056/NEJMoa1707447] [PMID: 29226797]
[9]
Bui TA, Mei H, Sang R, Ortega DG, Deng W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024; 106: 105266.
[http://dx.doi.org/10.1016/j.ebiom.2024.105266] [PMID: 39094262]
[10]
“T-cell Transfer Therapy - Immunotherapy - NCI” Available from: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy [Accessed: Jan. 09, 2025].
[11]
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S, Kobold S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci 2019; 20(6): 1283.
[http://dx.doi.org/10.3390/ijms20061283] [PMID: 30875739]
[12]
Visser dKE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41(3): 374-403.
[http://dx.doi.org/10.1016/j.ccell.2023.02.016] [PMID: 36917948]
[13]
Redeker A, Arens R. Improving adoptive T cell therapy: The particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol 2016; 7(SEP): 345.
[http://dx.doi.org/10.3389/fimmu.2016.00345] [PMID: 27656185]
[14]
Kazemi MH, Sadri M, Najafi A, et al. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13: 1018962.
[http://dx.doi.org/10.3389/fimmu.2022.1018962] [PMID: 36389779]
[15]
Lin P, Lin Y, Mai Z, et al. Targeting cancer with precision: Strategical insights into TCR-engineered T cell therapies. Theranostics 2025; 15(1): 300-23.
[http://dx.doi.org/10.7150/thno.104594] [PMID: 39744228]
[16]
Hensen L, Illing PT, Rowntree LC, et al. T cell epitope discovery in the context of distinct and unique indigenous HLA profiles. Front Immunol 2022; 13: 812393.
[http://dx.doi.org/10.3389/fimmu.2022.812393] [PMID: 35603215]
[17]
Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B. From bench to bedside: The history and progress of CAR T cell therapy. Front Immunol 2023; 14: 1188049.
[http://dx.doi.org/10.3389/fimmu.2023.1188049] [PMID: 37256141]
[18]
Lonez C, Breman E. Allogeneic car-T therapy technologies: Has the promise been met? Cells 2024; 13(2): 146.
[http://dx.doi.org/10.3390/cells13020146] [PMID: 38247837]
[19]
Capitani N, Baldari CT. The immunological synapse: An emerging target for immune evasion by bacterial pathogens. Front Immunol 2022; 13: 943344.
[http://dx.doi.org/10.3389/fimmu.2022.943344] [PMID: 35911720]
[20]
Joshi H, Morley SC. Efficient T cell migration and activation require L-plastin. Front Immunol 2022; 13: 916137.
[http://dx.doi.org/10.3389/fimmu.2022.916137] [PMID: 35844504]
[21]
Knörck A, Schäfer G, Alansary D, et al. Cytotoxic efficiency of human CD8+ T cell memory subtypes. Front Immunol 2022; 13: 838484.
[http://dx.doi.org/10.3389/fimmu.2022.838484] [PMID: 35493468]
[22]
Dustin ML, Long EO. Cytotoxic immunological synapses. Immunol Rev 2010; 235(1): 24-34.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00904.x] [PMID: 20536553]
[23]
Pores-Fernando AT, Zweifach A. Calcium influx and signaling in cytotoxic T‐lymphocyte lytic granule exocytosis. Immunol Rev 2009; 231(1): 160-73.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00809.x] [PMID: 19754896]
[24]
McKenzie C, El-Kholy M, Parekh F, et al. Novel Fas-TNFR chimeras that prevent Fas ligand-mediated kill and signal synergistically to enhance CAR T cell efficacy. Mol Ther Nucleic Acids 2023; 32: 603-21.
[http://dx.doi.org/10.1016/j.omtn.2023.04.017] [PMID: 37200859]
[25]
Korell F, Berger TR, Maus MV. Understanding CAR T cell-tumor interactions: Paving the way for successful clinical outcomes. Med 2022; 3(8): 538-64.
[http://dx.doi.org/10.1016/j.medj.2022.05.001] [PMID: 35963235]
[26]
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural killer cells and cytotoxic T Cells: Complementary partners against microorganisms and cancer. Microorganisms 2024; 12(1): 230.
[http://dx.doi.org/10.3390/microorganisms12010230] [PMID: 38276215]
[27]
Cappell K M, Kochenderfer J N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat Rev Clin Oncol 2023; 20(6): 359-71.
[http://dx.doi.org/10.1038/s41571-023-00754-1]
[28]
Meiraz A, Garber OG, Harari S, Hassin D, Berke G. Switch from perforin‐expressing to perforin‐deficient CD8 + T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo. Immunology 2009; 128(1): 69-82.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03072.x] [PMID: 19689737]
[29]
Schäfer D, Henze J, Pfeifer R, et al. A novel siglec-4 derived spacer improves the functionality of CAR T cells against membrane-proximal epitopes. Front Immunol 2020; 11: 1704.
[http://dx.doi.org/10.3389/fimmu.2020.01704] [PMID: 32849600]
[30]
Mazinani M, Rahbarizadeh F. CAR-T cell potency: From structural elements to vector backbone components. Biomark Res 2022; 10(1): 70.
[http://dx.doi.org/10.1186/s40364-022-00417-w] [PMID: 36123710]
[31]
Marcucci KT, Jadlowsky JK, Hwang WT, et al. Retroviral and lentiviral safety analysis of gene-modified T cell products and infused hiv and oncology patients. Mol Ther 2018; 26(1): 269-79.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.012] [PMID: 29203150]
[32]
Dagar G, Gupta A, Masoodi T, Nisar S, Dagar M, Mirza S. Harnessing the potential of CAR-T cell therapy: Progress, challenges, and future directions in hematological and solid tumor treatments J Transl Med 2023; 21(1): 449.
[http://dx.doi.org/10.1186/s12967-023-04292-3]
[33]
Westin JR, Kersten MJ, Salles G, et al. Efficacy and safety of CD19 ‐directed CAR‐T cell therapies in patients with relapsed/refractory aggressive B‐cell lymphomas: Observations from the JULIET, ZUMA ‐1, and TRANSCEND trials. Am J Hematol 2021; 96(10): 1295-312.
[http://dx.doi.org/10.1002/ajh.26301] [PMID: 34310745]
[34]
Vera GD, Waghela H, Nuh M, Pan J, Lulla P. Approved CAR-T therapies have reproducible efficacy and safety in clinical practice. Hum Vaccin Immunother 2024; 20(1): 2378543.
[http://dx.doi.org/10.1080/21645515.2024.2378543] [PMID: 39104200]
[35]
Verdun N, Marks P. Secondary cancers after chimeric antigen receptor T-cell therapy. N Engl J Med 2024; 390(7): 584-6.
[http://dx.doi.org/10.1056/NEJMp2400209] [PMID: 38265704]
[36]
Guzman G, Reed MR, Bielamowicz K, Koss B, Rodriguez A. CAR-T therapies in solid tumors: Opportunities and challenges. Curr Oncol Rep 2023; 25(5): 479-89.
[http://dx.doi.org/10.1007/s11912-023-01380-x] [PMID: 36853475]
[37]
Szlasa W, Sztuder A, Kaczmar-Dybko A, Maciejczyk A, Dybko J. Efficient combination of radiotherapy and CAR-T – A systematic review. Biomed Pharmacother 2024; 174: 116532.
[http://dx.doi.org/10.1016/j.biopha.2024.116532] [PMID: 38574625]
[38]
Maalej K M, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol Cancer 2023; 22(1): 20.
[http://dx.doi.org/10.1186/s12943-023-01723-z]
[39]
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13(1): 22.
[http://dx.doi.org/10.1186/s40164-024-00490-x]
[40]
Zhang J, Li J, Ma Q, Yang H, Signorovitch J, Wu E. A review of two regulatory approved anti-cd19 car t-cell therapies in diffuse large B-cell lymphoma: Why are indirect treatment comparisons not feasible? Adv Ther 2020; 37(7): 3040-58.
[http://dx.doi.org/10.1007/s12325-020-01397-9] [PMID: 32524498]
[41]
Chiorazzi N, Chen SS, Rai KR. Chronic lymphocytic leukemia. Cold Spring Harb Perspect Med 2021; 11(2): a035220.
[http://dx.doi.org/10.1101/cshperspect.a035220] [PMID: 32229611]
[42]
Huang Z, Chavda V P, Bezbaruah R, Dhamne H, Yang D H, Zhao H B. CAR T-Cell therapy for the management of mantle cell lymphoma. Mol Cancer 2023; 22(1): 67.
[http://dx.doi.org/10.1186/s12943-023-01755-5]
[43]
Westin J, Sehn LH. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood 2022; 139(18): 2737-46.
[http://dx.doi.org/10.1182/blood.2022015789] [PMID: 35240677]
[44]
Denlinger N, Bond D, Jaglowski S. CAR T-cell therapy for B-cell lymphoma. Curr Probl Cancer 2022; 46(1): 100826.
[http://dx.doi.org/10.1016/j.currproblcancer.2021.100826] [PMID: 35012754]
[45]
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9(11): e21776.
[http://dx.doi.org/10.1016/j.heliyon.2023.e21776] [PMID: 38027932]
[46]
Vitale C, Strati P. CAR T-Cell therapy for B-Cell non-hodgkin lymphoma and chronic lymphocytic leukemia: Clinical trials and real-world experiences. Front Oncol 2020; 10: 849.
[http://dx.doi.org/10.3389/fonc.2020.00849] [PMID: 32670869]
[47]
Patel U, Abernathy J, Savani BN. CAR T cell therapy in solid tumors: A review of current clinical trials. EJHaem 2021; 3(1): 24-31.
[http://dx.doi.org/10.1002/jha2.356]
[48]
Maccari M, Baek C, Caccese M, et al. Present and future of immunotherapy in patients with glioblastoma: Limitations and opportunities. Oncologist 2024; 29(4): 289-302.
[http://dx.doi.org/10.1093/oncolo/oyad321] [PMID: 38048782]
[49]
Zhang C, Wang Z, Yang Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther 2017; 25(5): 1248-58.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.010] [PMID: 28366766]
[50]
DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T‐cell therapy for pancreatic cancer. J Surg Oncol 2017; 116(1): 63-74.
[http://dx.doi.org/10.1002/jso.24627] [PMID: 28346697]
[51]
Scavone C, Mauro dG, Mascolo A, Berrino L, Rossi F, Capuano A. The new paradigms in clinical research: From early access programs to the novel therapeutic approaches for unmet medical needs. Front Pharmacol 2019; 10: 111.
[http://dx.doi.org/10.3389/fphar.2019.00111] [PMID: 30814951]
[52]
Knight A, Karapetyan L, Kirkwood JM. Immunotherapy in melanoma: Recent advances and future directions. Cancers 2023; 15(4): 1106.
[http://dx.doi.org/10.3390/cancers15041106] [PMID: 36831449]
[53]
“CAR T-cell Therapy and Its Side Effects | American Cancer Society” Available from: https://www.cancer.org/cancer/managing-cancer/treatment-types/immunotherapy/car-t-cell1.html [Accessed: Jan. 11, 2025].
[54]
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, et al. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23(1): 9.
[http://dx.doi.org/10.1186/s12943-023-01925-5] [PMID: 38195537]
[55]
Wang X, Zeng X, Li D, et al. PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed Pharmacother 2022; 153: 113458.
[http://dx.doi.org/10.1016/j.biopha.2022.113458] [PMID: 36076571]
[56]
Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 2018; 17: 1-13.
[http://dx.doi.org/10.1186/s12943-018-0782-4]
[57]
Kolanu ND. CRISPR–Cas9 gene editing: Curing genetic diseases by inherited epigenetic modifications. Glob Med Genet 2024; 11(1): 113-22.
[http://dx.doi.org/10.1055/s-0044-1785234] [PMID: 38560484]
[58]
Lei T, et al. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38(12): 2517-43.
[http://dx.doi.org/10.1038/s41375-024-02444-y]
[59]
Li X, You J, Hong L, Liu W, Guo P, Hao X. Neoantigen cancer vaccines: A new star on the horizon. Cancer Biol Med 2023; 21(4): 1-38.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2023.0395] [PMID: 38164734]
[60]
D’Orazi G, Cirone M. Cancer chemotherapy: Combination with inhibitors (Volume I). Cancers 2024; 16(3): 607.
[http://dx.doi.org/10.3390/cancers16030607] [PMID: 38339356]
[61]
He J, Zhang H. Research progress and treatment status of malignant ascites. Front Oncol 2024; 14: 1390426.
[http://dx.doi.org/10.3389/fonc.2024.1390426] [PMID: 39737405]
[62]
Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant 2019; 25(4): e123-7.
[http://dx.doi.org/10.1016/j.bbmt.2018.12.756] [PMID: 30586620]
[63]
Wei Z, Xu J, Zhao C, et al. Prediction of severe CRS and determination of biomarkers in B cell-acute lymphoblastic leukemia treated with CAR-T cells. Front Immunol 2023; 14: 1273507.
[http://dx.doi.org/10.3389/fimmu.2023.1273507] [PMID: 37854590]
[64]
Philippis DC, Mannina D, Giordano L, et al. Impact of preemptive use of tocilizumab on chimeric antigen receptor T cell outcomes in non-hodgkin lymphoma. Transplant Cell Ther 2023; 29(7): 429.e1-6.
[http://dx.doi.org/10.1016/j.jtct.2023.03.019] [PMID: 36966874]
[65]
Jain MD, Smith M, Shah NN. How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood 2023; 141(20): blood.2022017414.
[http://dx.doi.org/10.1182/blood.2022017414] [PMID: 36989488]
[66]
Tallantyre EC, Evans NA, Parry-Jones J, Morgan MPG, Jones CH, Ingram W. Neurological updates: Neurological complications of CAR-T therapy. J Neurol 2021; 268(4): 1544-54.
[http://dx.doi.org/10.1007/s00415-020-10237-3] [PMID: 33140239]
[67]
Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 2022; 22(2): 85-96.
[http://dx.doi.org/10.1038/s41577-021-00547-6] [PMID: 34002066]
[68]
Hu Y, Sun J, Wu Z, et al. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol 2016; 9(1): 70.
[http://dx.doi.org/10.1186/s13045-016-0299-5] [PMID: 27526682]
[69]
Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol 2023; 20(1): 49-62.
[http://dx.doi.org/10.1038/s41571-022-00704-3] [PMID: 36418477]
[70]
Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015; 125(26): 4017-23.
[http://dx.doi.org/10.1182/blood-2014-12-580068] [PMID: 25999455]
[71]
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361-5.
[http://dx.doi.org/10.1126/science.aar6711] [PMID: 29567707]
[72]
Heczey A, Xu X, Courtney AN, et al. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: Updated phase 1 trial interim results. Nat Med 2023; 29(6): 1379-88.
[http://dx.doi.org/10.1038/s41591-023-02363-y] [PMID: 37188782]
[73]
Wang S, Yang Y, Ma P, et al. CAR-macrophage: An extensive immune enhancer to fight cancer. EBioMedicine 2022; 76: 103873.
[http://dx.doi.org/10.1016/j.ebiom.2022.103873] [PMID: 35152151]
[74]
Kinkhabwala A, Herbel C, Pankratz J, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep 2022; 12(1): 1911.
[http://dx.doi.org/10.1038/s41598-022-05841-4] [PMID: 35115587]
[75]
Gajra A, Zalenski A, Sannareddy A, Jeune-Smith Y, Kapinos K, Kansagra A. Barriers to chimeric antigen receptor T-Cell (CAR-T) therapies in clinical practice. Pharmaceut Med 2022; 36(3): 163-71.
[http://dx.doi.org/10.1007/s40290-022-00428-w] [PMID: 35672571]
[76]
Gautam S, Gautam B, Shilpakar R, C KS, Kurmi OP. CAR-T cell therapy in developing countries: How long should we wait? J Immunother Cancer 2024; 12(12): e009611.
[http://dx.doi.org/10.1136/jitc-2024-009611] [PMID: 39794933]
[77]
Jagannath S, Joseph N, Crivera C, et al. Component costs of CAR-T therapy in addition to treatment acquisition costs in patients with multiple myeloma. Oncol Ther 2023; 11(2): 263-75.
[http://dx.doi.org/10.1007/s40487-023-00228-5] [PMID: 37014590]
[78]
Wakase S, Teshima T, Zhang J, et al. Cost-effectiveness analysis of tisagenlecleucel for the treatment of pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia in japan. Transplant Cell Ther 2021; 27(3): 241.e1-241.e11.
[http://dx.doi.org/10.1016/j.jtct.2020.12.023] [PMID: 33781519]
[79]
Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev 2011; 2011(3): CD001886.
[http://dx.doi.org/10.1002/14651858.CD001886.pub4] [PMID: 21412876]
[80]
Dias J, Garcia J, Agliardi G, Roddie C. CAR-T cell manufacturing landscape—Lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev 2024; 32(2): 101250.
[http://dx.doi.org/10.1016/j.omtm.2024.101250] [PMID: 38737799]
[81]
Shah M, Krull A, Odonnell L, Lima dMJ, Bezerra E. Promises and challenges of a decentralized CAR T-cell manufacturing model. Front Transplant 2023; 2: 1238535.
[http://dx.doi.org/10.3389/frtra.2023.1238535] [PMID: 38993860]
[82]
Chen S, van den Brink MRM. Allogeneic "Off-the-Shelf" CAR-T cells: Challenges and advances. Best Pract Res Clin Haematol. 2024; Sep; 37(3): 101566.; Epub 2024 Jul 25..
[http://dx.doi.org/10.1016/j.beha.2024.101566.] [PMID: 39396256]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy