Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Mini-Review Article

Targeting Cancer with Graphene Quantum Dots (GQDs): A Novel Approach

Author(s): Md Moidul Islam, Jyotibikash Kalita, Simranjeet Kaur and Akashdeep Singh*

Volume 11, 2025

Published on: 07 March, 2025

Article ID: e2212697X350689 Pages: 11

DOI: 10.2174/012212697X350689250227092216

Price: $65

Abstract

In the realm of nanomedicine, graphene quantum dots (GQDs) stand at the forefront, offering transformative potential for cancer diagnosis and therapy. Possessing exceptional optical and electronic properties, biocompatibility, and versatile surface customization, GQDs emerge as powerful tools for advanced imaging and targeted drug delivery. Synthesized through innovative bottom-up and top-down methods, GQDs present a diverse tool for precise tailoring. Their application in cancer therapy, especially when functionalized with vitamins, proteins, peptides, and polysaccharides, showcases remarkable versatility and efficacy. These tailored drug delivery systems demonstrate not only enhanced drug effectiveness and reduced toxicity but also enable targeted cancer treatment. Ongoing research into GQD synthesis and functionalization, coupled with a deeper understanding of their interactions with biological systems, promises to further refine cancer diagnosis and therapy. The potential of GQDs as intelligent carriers holds the key to revolutionizing cancer treatment, offering renewed hope for improved patient outcomes and quality of life.

Keywords: Graphene quantum dots, cancer therapy, targeted drug delivery, top-down method, bottom-up method, multimodal imaging.

[1]
Khandakar, S. Unveiling early detection and prevention of cancer: Machine learning and deep learning approaches. Educat. Administ. Theory Pract., 2024, 30(5), 14614-14628.
[2]
Beygisangchin, M.; Kamarudin, S.K.; Rashid, S.A. Synthesis, properties, and applications of polyaniline–graphene quantum dot nanocomposites: Comprehensive review. J. Environ. Chem. Eng., 2024, 12(5), 113460.
[http://dx.doi.org/10.1016/j.jece.2024.113460]
[3]
Rani, P.; Dalal, R.; Srivastava, S. Effect of surface modification on optical and electronic properties of graphene quantum dots. Appl. Surf. Sci., 2023, 609, 155379.
[http://dx.doi.org/10.1016/j.apsusc.2022.155379]
[4]
Karami, M.H.; Abdouss, M.; Rahdar, A.; Pandey, S. Graphene quantum dots: Background, synthesis methods, and applications as nanocarrier in drug delivery and cancer treatment: An updated review. Inorg. Chem. Commun., 2024, 161, 112032.
[http://dx.doi.org/10.1016/j.inoche.2024.112032]
[5]
Barati, F.; Avatefi, M.; Moghadam, N.B.; Asghari, S.; Ekrami, E.; Mahmoudifard, M. A review of graphene quantum dots and their potential biomedical applications. J. Biomater. Appl., 2023, 37(7), 1137-1158.
[http://dx.doi.org/10.1177/08853282221125311] [PMID: 36066191]
[6]
Bhattacharya, T.; Preetam, S.; Mukherjee, S.; Kar, S.; Roy, D.S.; Singh, H.; Ghose, A.; Das, T.; Mohapatra, G. Anticancer activity of quantum size carbon dots: Opportunities and challenges. Discov. Nano, 2024, 19(1), 122.
[http://dx.doi.org/10.1186/s11671-024-04069-7] [PMID: 39103694]
[7]
Arab, K.; Jafari, A.; Shahi, F. The role of graphene quantum dots in cutting‐edge medical therapies. Polym. Adv. Technol., 2024, 35(9), e6571.
[http://dx.doi.org/10.1002/pat.6571]
[8]
Akmal, M.H.; Kalashgrani, M.Y.; Mousavi, S.M.; Rahmanian, V.; Sharma, N.; Gholami, A.; Althomali, R.H.; Rahman, M.M.; Chiang, W.H. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J. Mater. Chem. B Mater. Biol. Med., 2024, 12(21), 5039-5060.
[http://dx.doi.org/10.1039/D4TB00024B] [PMID: 38716622]
[9]
Agrawal, A. Top-down strategies for achieving high-quality graphene: Recent advancements. J. Ind. Eng. Chem., 2024, 142, 103-126.
[10]
Yang, S.; Li, Y.; Chen, L.; Wang, H.; Shang, L.; He, P.; Dong, H.; Wang, G.; Ding, G. Fabrication of carbon‐based quantum dots via a “bottom‐up” approach: Topology, chirality, and free radical processes in “Building Blocks”. Small, 2023, 19(31), 2205957.
[http://dx.doi.org/10.1002/smll.202205957] [PMID: 36610043]
[11]
Lee, B.; Stokes, G.A.; Valimukhametova, A.; Nguyen, S.; Gonzalez-Rodriguez, R.; Bhaloo, A.; Coffer, J.; Naumov, A.V. Automated approach to in vitro image-guided photothermal therapy with top-down and bottom-up-synthesized graphene quantum dots. Nanomaterials, 2023, 13(5), 805.
[http://dx.doi.org/10.3390/nano13050805] [PMID: 36903683]
[12]
Saadh, M.J.; Ballal, S.; Kumar, A.; Prasad, S.G.V.; Qassem, L.Y.; Formanova, S.B.; Al-khalidi, A.; Altimari, U.S.; Al Khidhir Abdullah, S.A.; Dawood, I.I.; Alam, M.M.; Alhadrawi, M.; Abualigah, L. Advances in synthesis and characterization of GQDs for enhanced photocatalytic degradation of contaminants: A comprehensive review. Inorg. Chem. Commun., 2024, 169, 113072.
[http://dx.doi.org/10.1016/j.inoche.2024.113072]
[13]
Singha, D.K. Graphene, its Family and Potential Applications; Covalent Materials and Hybrids: From 0D to 3D, 2023, pp. 87-125.
[http://dx.doi.org/10.1039/9781839169656-00087]
[14]
Dananjaya, V.; Marimuthu, S.; Yang, R.C.; Grace, A.N.; Abeykoon, C. Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites. Prog. Mater. Sci., 2024, 144, 101282.
[http://dx.doi.org/10.1016/j.pmatsci.2024.101282]
[15]
Harish, V.; Ansari, M.M.; Tewari, D.; Yadav, A.B.; Sharma, N.; Bawarig, S.; García-Betancourt, M-L.; Karatutlu, A.; Bechelany, M.; Barhoum, A. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. J. Taiwan Inst. Chem. Eng., 2023, 149, 105010.
[http://dx.doi.org/10.1016/j.jtice.2023.105010]
[16]
Kharangarh, P.R.; Ravindra, N.M.; Singh, G.; Umapathy, S. Synthesis of luminescent graphene quantum dots from biomass waste materials for energy‐related applications—An overview. Energy Storage, 2023, 5(3), e390.
[http://dx.doi.org/10.1002/est2.390]
[17]
Daud, S. Carbon nanotubes: Fabrication using the arc discharge process. Springer Nature: Cham, 2023; pp. 1-84.
[http://dx.doi.org/10.1007/978-981-99-4962-5]
[18]
Ye, F.; Musselman, K.P. Synthesis of low dimensional nanomaterials by pulsed laser ablation in liquid. APL Mater., 2024, 12(5), 050602.
[http://dx.doi.org/10.1063/5.0199104]
[19]
Singh, J.; Jindal, N.; Kumar, V.; Singh, K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. Chem. Phy.Impact, 2023, 6, 100185.
[http://dx.doi.org/10.1016/j.chphi.2023.100185]
[20]
Nair, A.S.; Sreejakumari, S.S.; Venkatesan, J.; Rakhi, R.B.; Sumathi, R.R.; Jayasankar, K. A novel top-down approach for high yield production of graphene from natural graphite and its supercapacitor applications. Dia. Rel. Mater., 2024, 144, 111025.
[http://dx.doi.org/10.1016/j.diamond.2024.111025]
[21]
Kaur, A.; Morton, J.A.; Tyurnina, A.V.; Priyadarshi, A.; Ghorbani, M.; Mi, J.; Porfyrakis, K.; Eskin, D.G.; Tzanakis, I. Dual frequency ultrasonic liquid phase exfoliation method for the production of few layer graphene in green solvents. Ultrason. Sonochem., 2024, 108, 106954.
[http://dx.doi.org/10.1016/j.ultsonch.2024.106954] [PMID: 38879962]
[22]
Saha, A.; Bhattacharjee, L.; Bhattacharjee, R.R. Synthesis of carbon quantum dots in Carbon Quantum Dots for Sustainable Energy and Optoelectronics. Elsevier: Netherlands, 2023; pp. 39-54.
[http://dx.doi.org/10.1016/B978-0-323-90895-5.00014-X]
[23]
Kalluri, A.; Dharmadhikari, B.; Debnath, D.; Patra, P.; Kumar, C.V. Advances in structural modifications and properties of graphene quantum dots for biomedical applications. ACS Omega, 2023, 8(24), 21358-21376.
[http://dx.doi.org/10.1021/acsomega.2c08183] [PMID: 37360447]
[24]
Hu, Y.; Neumann, C.; Scholtz, L.; Turchanin, A.; Resch-Genger, U.; Eigler, S. Polarity, intramolecular charge transfer, and hydrogen bond co-mediated solvent effects on the optical properties of graphene quantum dots. Nano Res., 2023, 16(1), 45-52.
[http://dx.doi.org/10.1007/s12274-022-4752-1]
[25]
Goldstein, A.C.; Araujo-Lima, C.F.; Fernandes, A.S.; Santos-Oliveira, R.; Felzenszwalb, I. In vitro genotoxicity assessment of graphene quantum dots nanoparticles: A metabolism-dependent response. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2023, 885, 503563.
[http://dx.doi.org/10.1016/j.mrgentox.2022.503563] [PMID: 36669812]
[26]
Tade, R.S.; Kalkal, A.; Patil, P.O. Functionalized graphene quantum dots (gqds) based label-free optical fluorescence sensor for cd59 antigen detection and cellular bioimaging. J. Fluoresc., 2023, •••, 1-12.
[http://dx.doi.org/10.1007/s10895-023-03501-y] [PMID: 37976023]
[27]
Ravi, P.V.; Subramaniyam, V.; Saravanakumar, N.; Pattabiraman, A.; Pichumani, M. What works and what doesn’t when graphene quantum dots are functionalized for contemporary applications? Coord. Chem. Rev., 2023, 493, 215270.
[http://dx.doi.org/10.1016/j.ccr.2023.215270]
[28]
Ramezani, Z.; Thompson, M.; Mohammadi, E. Quantum dots in imaging. In: The Royal Society of Chemistry Diagnosis, and Targeted Drug Delivery to Cancer Cells; , 2023; pp. 107-141.
[http://dx.doi.org/10.3390/cancers14030622] [PMID: 35158888]
[29]
Ahmadi, M.; Ritter, C.A.; Woedtke, v.T.; Bekeschus, S.; Wende, K. Package delivered: Folate receptor-mediated transporters in cancer therapy and diagnosis. Chem. Sci., 2024, 15(6), 1966-2006.
[http://dx.doi.org/10.1039/D3SC05539F] [PMID: 38332833]
[30]
Li, J.; Zhang, Z.; Zhang, B.; Yan, X.; Fan, K. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy. Biomater. Sci., 2023, 11(10), 3394-3413.
[http://dx.doi.org/10.1039/D2BM02152H] [PMID: 36847174]
[31]
Yan, H.; Wang, Q.; Wang, J.; Shang, W.; Xiong, Z.; Zhao, L.; Sun, X.; Tian, J.; Kang, F.; Yun, S.H. Plantes for targeted, enhanced tumor imaging and long‐term visualization of local phad graphene quantum dotrmacokinetics. Adv. Mater., 2023, 35(15), 2210809.
[http://dx.doi.org/10.1002/adma.202210809] [PMID: 36740642]
[32]
Huang, Q.; Chen, Y.; Zhang, W.; Xia, X.; Li, H.; Qin, M.; Gao, H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J. Control. Rel., 2024, 366, 519-534.
[http://dx.doi.org/10.1016/j.jconrel.2023.12.054] [PMID: 38182059]
[33]
Wei, Z.; Yin, X.; Cai, Y.; Xu, W.; Song, C.; Wang, Y.; Zhang, J.; Kang, A.; Wang, Z.; Han, W. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int. J. Nanomedicine, 2018, 13, 1505-1524.
[http://dx.doi.org/10.2147/IJN.S156984] [PMID: 29559779]
[34]
Zarepour, A.; Khosravi, A.; Ayten, Y.N.; Hatır, C.P.; Iravani, S.; Zarrabi, A. Innovative approaches for cancer treatment: Graphene quantum dots for photodynamic and photothermal therapies. J. Mater. Chem. B Mater. Biol. Med., 2024, 12(18), 4307-4334.
[http://dx.doi.org/10.1039/D4TB00255E]
[35]
Iannazzo, D.; Pistone, A.; Celesti, C.; Triolo, C.; Patané, S.; Giofré, S.V.; Romeo, R.; Ziccarelli, I.; Mancuso, R.; Gabriele, B.; Visalli, G.; Facciolà, A.; Pietro, D.A. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials, 2019, 9(2), 282.
[http://dx.doi.org/10.3390/nano9020282] [PMID: 30781623]
[36]
Iannazzo, D.; Celesti, C.; Espro, C. Recent advances on graphene quantum dots as multifunctional nanoplatforms for cancer treatment. Biotechnol. J., 2021, 16(2), 1900422.
[http://dx.doi.org/10.1002/biot.201900422] [PMID: 32618417]
[37]
Wang, S.; Cole, I.S.; Li, Q. The toxicity of graphene quantum dots. RSC Adv., 2016, 6(92), 89867-89878.
[http://dx.doi.org/10.1039/C6RA16516H] [PMID: 28496970]
[38]
Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Pietro, D.A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.060] [PMID: 28057464]
[39]
De, S.; Patra, K.; Ghosh, D.; Dutta, K.; Dey, A.; Sarkar, G.; Maiti, J.; Basu, A.; Rana, D.; Chattopadhyay, D. Tailoring the efficacy of multifunctional biopolymeric graphene oxide quantum dot-based nanomaterial as nanocargo in cancer therapeutic application. ACS Biomater. Sci. Eng., 2018, 4(2), 514-531.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00689] [PMID: 33418741]
[40]
Mohammadnejad, P.; Hosseini, S.M.M.; Sohrabi, B. The graphene quantum dots encased in the molecularly imprinted polymer as a new fluorescent nanosensor for the detection of biotin. Sens. Actuators Rep., 2024, 7, 100187.
[http://dx.doi.org/10.1016/j.snr.2024.100187]
[41]
Chaudhari, R.; Patel, V.; Kumar, A. Cutting-edge approaches for targeted drug delivery in breast cancer: Beyond conventional therapies. Nanoscale Adv., 2024, 6(9), 2270-2286.
[http://dx.doi.org/10.1039/D4NA00086B] [PMID: 38694472]
[42]
Bandyopadhyay, A.; Das, T.; Nandy, S.; Sahib, S.; Preetam, S.; Gopalakrishnan, A.V.; Dey, A. Ligand-based active targeting strategies for cancer theranostics. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(12), 3417-3441.
[http://dx.doi.org/10.1007/s00210-023-02612-4] [PMID: 37466702]
[43]
Alibakhshi, A.; Kahaki, A.F.; Ahangarzadeh, S.; Yaghoobi, H.; Yarian, F.; Arezumand, R.; Ranjbari, J.; Mokhtarzadeh, A.; de la Guardia, M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J. Control. Release, 2017, 268, 323-334.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.036] [PMID: 29107128]
[44]
Ko, N.R.; Nafiujjaman, M.; Lee, J.S.; Lim, H-N.; Lee, Y.; Kwon, I.K. Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Adv., 2017, 7(19), 11420-11427.
[http://dx.doi.org/10.1039/C6RA25949A]
[45]
Ko, N.R.; Hong, S.H.; Nafiujjaman, M.; An, S.Y.; Revuri, V.; Lee, S.J.; Kwon, I.K.; Lee, Y.; Oh, S.J. Glutathione-responsive PEGylated GQD-based nanomaterials for diagnosis and treatment of breast cancer. J. Ind. Eng. Chem., 2019, 71, 301-307.
[http://dx.doi.org/10.1016/j.jiec.2018.11.039]
[46]
Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer, 2013, 13(12), 871-882.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[47]
Nasrollahi, F.; Koh, Y.R.; Chen, P.; Varshosaz, J.; Khodadadi, A.A.; Lim, S. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater. Sci. Eng. C, 2019, 94, 247-257.
[http://dx.doi.org/10.1016/j.msec.2018.09.020] [PMID: 30423706]
[48]
Wang, K.; Li, D.; Sun, L. High levels of EGFR expression in tumor stroma are associated with aggressive clinical features in epithelial ovarian cancer. OncoTargets Ther., 2016, 9, 377-386.
[http://dx.doi.org/10.2147/OTT.S96309] [PMID: 26855586]
[49]
Mahrooqi, A.J.H.; Khutoryanskiy, V.; Williams, A.C. Thiolated and PEGylated organosilica nanoparticles: A model carrier for drug delivery to the hair follicles and vitreous humour; University of Reading: England, 2021, 593, .
[http://dx.doi.org/10.1016/j.ijpharm.2020.120130]
[50]
Dong, J.; Yao, X.; Sun, S.; Zhong, Y.; Qian, C.; Yang, D. In vivo targeting of breast cancer with a vasculature-specific GQDs/hMSN nanoplatform. RSC Adv., 2019, 9(20), 11576-11584.
[http://dx.doi.org/10.1039/C9RA01833F] [PMID: 35520225]
[51]
Nobari, A.S.; Doustvandi, M.A.; Yaghoubi, S.M.; Oskouei, S.S.S.; Alizadeh, E.; Nour, A.M.; Khiabani, A.N.; Baradaran, B.; Rahmati, M. Emerging trends in quantum dot-based photosensitizers for enhanced photodynamic therapy in cancer treatment. J. Pharm. Investig., 2024, •••, 1-36.
[http://dx.doi.org/10.1007/s40005-024-00698-3]
[52]
Haider, M.; Cagliani, R.; Jagal, J.; Jayakumar, M.N.; Fayed, B.; Shakartalla, S.B.; Pasricha, R.; Greish, K.; El-Awady, R. Peptide-functionalized graphene oxide quantum dots as colorectal cancer theranostics. J. Colloid Interf. Sci., 2023, 630(Pt A), 698-713.
[http://dx.doi.org/10.1016/j.jcis.2022.10.045] [PMID: 36274405]
[53]
Gui, W.; Zhang, J.; Chen, X.; Yu, D.; Ma, Q. N-Doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Mikrochim. Acta, 2018, 185(1), 66.
[http://dx.doi.org/10.1007/s00604-017-2598-0] [PMID: 29594582]
[54]
Senbanjo, L.T.; Chellaiah, M.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol., 2017, 5, 18.
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[55]
Joshi, N.P.; Agawane, S.; Athalye, M.C.; Jadhav, V.; Sarkar, D.; Prakash, R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater. Sci. Eng. C, 2017, 78, 1203-1211.
[http://dx.doi.org/10.1016/j.msec.2017.03.176] [PMID: 28575959]
[56]
Li, Z.; Fan, J.; Tong, C.; Zhou, H.; Wang, W.; Li, B.; Liu, B.; Wang, W. A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine, 2019, 14(15), 2011-2025.
[http://dx.doi.org/10.2217/nnm-2018-0378] [PMID: 31355696]
[57]
Chowdhury, D.A.; Ganganboina, A.B.; Tsai, Y.; Chiu, H.; Doong, R. Multifunctional GQDs-Concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery. Anal. Chim. Acta, 2018, 1027, 109-120.
[http://dx.doi.org/10.1016/j.aca.2018.04.029] [PMID: 29866260]
[58]
Dong, J.; Wang, K.; Sun, L.; Sun, B.; Yang, M.; Chen, H.; Wang, Y.; Sun, J.; Dong, L. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens. Actuators B Chem., 2018, 256, 616-623.
[http://dx.doi.org/10.1016/j.snb.2017.09.200]
[59]
Mohkam, M.; Sadraeian, M.; Lauto, A.; Gholami, A.; Nabavizadeh, S.H.; Esmaeilzadeh, H.; Alyasin, S. Exploring the potential and safety of quantum dots in allergy diagnostics. Microsyst. Nanoeng., 2023, 9(1), 145.
[http://dx.doi.org/10.1038/s41378-023-00608-x] [PMID: 38025887]
[60]
Biswas, P. Quantum dots as functional nanosystems for enhanced biomedical applications. J. Biol. Regul. Homeost. Agents, 2024, 38(3), 1831-1857.
[61]
Babazad, A.M.; Foroozandeh, A.; Abdouss, M.; SalarAmoli, H.; Babazad, R.A.; Hasanzadeh, M. Recent progress and challenges in biosensing of carcinoembryonic antigen. Trends Analyt. Chem., 2024, 180, 117964.
[http://dx.doi.org/10.1016/j.trac.2024.117964]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy