Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Synthesis and Catalytic Application of Cu2O Nano Hollow Arrays in Ring-Expansion Aromatization Reactions

Author(s): Farzaneh Ebrahimzadeh*

Volume 12, Issue 3, 2025

Published on: 23 January, 2025

Page: [202 - 212] Pages: 11

DOI: 10.2174/0122133372356100250116113708

Price: $65

Abstract

Introduction: Aromatization of dithioacetal derivatives is essential for the synthesis of bioactive compounds and drug design, playing a key role in pharmaceuticals, agrochemicals, and materials science. This study explores the synthesis and catalytic application of Cu2O nano hollow arrays in ring-expansion aromatization reactions of cyclic dithioacetal derivatives obtained from cyclohexanones.

Methods: By using Cu2O nano hollow arrays prepared through molecular templates and a simple hydrothermal process, the electrophilicity of N-bromosaccharin was enhanced, allowing for efficient and selective production of aromatic compounds with yields ranging from 63-96%. Copper acetate is transformed into Cu2O nano hollow arrays in aqueous media, with polyvinylpyrrolidone acting as a capping agent and (+)-L-tartaric acid as a structure-directing surfactant and multidentate ligand.

Results: The synthesized Cu2O nano hollow arrays were characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive Xray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) to verify their morphology, structure, and composition.

Conclusion: This method not only offers a cost-effective and environmentally friendly approach to synthesizing Cu2O with unique nano hollow structures, but also demonstrates their efficacy as catalysts in organic synthesis, particularly in the rarely reported ring-expansion aromatization of cyclic dithioacetal derivatives of cyclohexanone, emphasizing their broader applicability in materials science and catalysis.

Keywords: Copper (I) oxide, nano hollow arrays, dithioacetal derivatives, chemical reductions, ring-expansion aromatization, N-bromosaccharin (NBSac).

Graphical Abstract
[1]
(a) Swager, T.M.; Etkind, S.I. The properties, synthesis, and materials applications of 1, 4-dithiins and thianthrenes. Synthesis, 2022, 54(22), 4843-4863.
[http://dx.doi.org/10.1055/s-0042-1751368];
(b) Ryckaert, B.; Demeyere, E.; Degroote, F.; Janssens, H.; Winne, J.M. 1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures. Beilstein J. Org. Chem., 2023, 19(1), 115-132.
[http://dx.doi.org/10.3762/bjoc.19.12] [PMID: 36761474];
(c) Xu, C.; Wang, M.; Liu, Q. Recent advances in metal‐catalyzed bond‐forming reactions of ketene S,S‐acetals. Adv. Synth. Catal., 2019, 361(6), 1208-1229.
[http://dx.doi.org/10.1002/adsc.201801070]
[2]
(a) Groszek, G.; Leja, D.T.; Depa, W.J. Guńka, P.A.; Zachara, J.; Lechowicz, J.B. New heterocyclic organosulfur compounds derived from dithioacetals. Synlett, 2024, 35(16), 1932-1936.
[http://dx.doi.org/10.1055/a-2259-3689];
(b) Puvača, N. Bioactive compounds in dietary spices and medicinal plants. J. Agron. Technol. Enginee. Manage. (JATEM), 2022, 5(2), 704-711.
[http://dx.doi.org/10.55817/UHFO5592];
(c) Ragab, A.; Abusaif, M.S.; Gohar, N.A.; Aboul-Magd, D.S.; Fayed, E.A.; Ammar, Y.A. Development of new spiro[1,3]dithiine-4,11′-indeno[1,2-b]quinoxaline derivatives as S. aureus Sortase A inhibitors and radiosterilization with molecular modeling simulation. Bioorg. Chem., 2023, 131, 106307.
[http://dx.doi.org/10.1016/j.bioorg.2022.106307] [PMID: 36481380];
(d) El-Gaby, M.S.A.; Ammar, Y.A.; Ismail, M.A.; Ragab, A.; Abusaif, M.S. Synthesis, characterization, and biological target prediction of novel 1,3-dithiolo[4,5-b]quinoxaline and thiazolo[4,5-b]quinoxaline derivatives. Heterocycl. Commun., 2023, 29(1), 20220170.
[http://dx.doi.org/10.1515/hc-2022-0170]
[3]
(a) Gołebiewski, W.; Gucma, M. Applications of N-chlorosuccinimide in organic synthesis. Synthesis, 2007, 2007(23), 3599-3619.
[http://dx.doi.org/10.1055/s-2007-990871];
(b) Yan, J.; Pozzo, J.L.; Hamze, A.; Provot, O. Recent progress on the mild deprotection of dithioketals, dithioacetals, and oxathiolanes. Eur. J. Org. Chem., 2022, 2022(7), e202101460.
[http://dx.doi.org/10.1002/ejoc.202101460]
[4]
Caputo, R.; Ferreri, C.; Palumbo, G.; Russo, F. Reactivity of ethanediyl S,S-acetals - 3. Ring aromatization in cyclohexanone derivatives: A novelty synthesis of 1,4-benzodithians. Tetrahedron, 1991, 47(24), 4187-4194.
[http://dx.doi.org/10.1016/S0040-4020(01)86455-3]
[5]
Božić B.; Čebular, K.; Stavber, S. Metal-free and acid-free activation of carbonyl moiety using molecular halogens or N-halamines. Biol. Univer. Belgr., 2021, 15(97), 1-97.
[http://dx.doi.org/10.2174/9789814998482121150003]
[6]
(a) Tani, H.; Inamasu, T.; Masumoto, K.; Tamura, R.; Shimizu, H.; Suzuki, H. Tellurium tetrachloride as a mild deprotection reagent for acetals and thioacetals. Phosphorus Sulfur Silicon Relat. Elem., 1992, 67(1-4), 261-266.
[http://dx.doi.org/10.1080/10426509208045846];
(b) McFarlane, M.T. Metal-catalyzed cross-coupling reactions with dithiolanes and dithianes. Thesis; Winnipeg, (MB) University of Manitoba, 2012. http://hdl.handle.net/1993/13706
[7]
Kadam, S.S.; Mahajan, N.S.; Jadhav, P.A.; Dhawale, S.C. Sulfoxides and sulfones:review Ind. IDrugs, 2023, 60(2), 7-14.
[http://dx.doi.org/10.53879/id.60.02.12267]
[8]
(a) Satoh, J.Y.; Haruta, A.M.; Satoh, T.; Satoh, K.; Takahashi, T.T. Dienone–phenol rearrangement of sulphur-containing derivatives of steroids. J. Chem. Soc. Chem. Commun., 1986, (24), 1765-1766.
[http://dx.doi.org/10.1039/C39860001765];
(b) Pan, L.; Bi, X.; Liu, Q. Recent developments of ketene dithioacetal chemistry. Chem. Soc. Rev., 2013, 42(3), 1251-1286.
[http://dx.doi.org/10.1039/C2CS35329F] [PMID: 23147066]
[9]
Abdel-Wahab, B.F.; Shaaban, S.; El-Hiti, G.A. Synthesis of sulfur-containing heterocycles via ring enlargement. Mol. Divers., 2018, 22(2), 517-542.
[http://dx.doi.org/10.1007/s11030-017-9810-3] [PMID: 29388031]
[10]
Majid; Heravi, M.; Moghimi, S. Solid-supported reagents in organic synthesis using microwave irradiation. Curr. Org. Chem., 2013, 17(5), 504-527.
[http://dx.doi.org/10.2174/1385272811317050007]
[11]
(a) Zhou, L.; Zhuang, Z.; Zhao, H.; Lin, M.; Zhao, D.; Mai, L. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater., 2017, 29(20), 1602914.
[http://dx.doi.org/10.1002/adma.201602914] [PMID: 28169464];
(b) Liu, D.; Wan, J.; Pang, G.; Tang, Z. Hollow metal–organic‐framework micro/nanostructures and their derivatives: emerging multifunctional materials. Adv. Mater., 2019, 31(38), 1803291.
[http://dx.doi.org/10.1002/adma.201803291] [PMID: 30548351];
(c) Naderi, N.; Ganjali, F.; Eivazzadeh-Keihan, R.; Maleki, A.; Sillanpää, M. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants.J. Environ. Manage; , 2024, 356, p. 120670.
[http://dx.doi.org/10.1016/j.jenvman.2024.120670] [PMID: 38531142];
(d) Yang, M.; Li, N.W.; Yu, L. Hollow metal-organic frameworks and derivatives. In: Metal Organic Frameworks and Their Derivatives for Energy Conversion and Storage; Elsevier, , 2024; pp. 135-162.
[http://dx.doi.org/10.1016/B978-0-443-18847-3.00015-8]
[12]
El Mel, A.A.; Nakamura, R.; Bittencourt, C. The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein J. Nanotechnol., 2015, 6, 1348-1361.
[http://dx.doi.org/10.3762/bjnano.6.139] [PMID: 26199838]
[13]
Zhang, Y.; Teng, X-A.; Ma, Z-Q.; Wang, R-M.; Lau, W-M.; Shan, A-X. Synthesis of FeOOH scaly hollow tubes based on Cu2O wire templates toward high-efficiency oxygen evolution reaction. Rare Met., 2023, 42, 1836-1846.
[http://dx.doi.org/10.1007/s12598-023-02284-2]
[14]
Xu, J.; Bian, Y.; Tian, W.; Pan, C.; Wu, C.; Xu, L.; Wu, M.; Chen, M. The structures and compositions design of the hollow micro–nano-structured metal oxides for environmental catalysis. Nanomaterials, 2024, 14(14), 1190.
[http://dx.doi.org/10.3390/nano14141190] [PMID: 39057867]
[15]
Tang, C.; Rao, H.; Li, S.; She, P.; Qin, J. A review of metal–organic frameworks derived hollow‐structured photocatalysts: synthesis and applications. Small, 2024, 20(48), 2405533.
[http://dx.doi.org/10.1002/smll.202405533] [PMID: 39212632]
[16]
Jiang, Y.; Xu, Y.; Zhang, Q.; Zhao, X.; Xiao, F.; Wang, X.; Ma, G. Templated synthesis of Cu2S hollow structures for highly active ozone decomposition. Catalysts, 2024, 14(2), 153.
[http://dx.doi.org/10.3390/catal14020153]
[17]
Toro, C.; Buriak, J.M. Template synthesis approach to nanomaterials: charles martin. Chem. Mater., 2021, 26(17), 4889-4890.
[http://dx.doi.org/10.1021/cm5030662]
[18]
Zhang, S.; Chen, S. Surfactant-template preparation of polyaniline semi-tubes for oxygen reduction. Catalysts, 2015, 5(3), 1202-1210.
[http://dx.doi.org/10.3390/catal5031202]
[19]
Zhong, K.; Li, J.; Liu, L.; Brullot, W.; Bloemen, M.; Volodin, A.; Song, K.; Van Dorpe, P.; Verellen, N.; Clays, K. Direct fabrication of monodisperse silica nanorings from hollow spheres – a template for core–shell nanorings. ACS Appl. Mater. Interfaces, 2016, 8(16), 10451-10458.
[http://dx.doi.org/10.1021/acsami.6b00733] [PMID: 27031364]
[20]
Xie, Y.; Kocaefe, D.; Chen, C.; Kocaefe, Y. Review of research on template methods in preparation of nanomaterials. J. Nanomater., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/2302595]
[21]
Bell, R.V.; Rochford, L.A.; de Rosales, R.T.M.; Stevens, M.; Weaver, J.V.M.; Bon, S.A.F. Fabrication of calcium phosphate microcapsules using emulsion droplets stabilized with branched copolymers as templates. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(27), 5544-5552.
[http://dx.doi.org/10.1039/C5TB00893J] [PMID: 32262525]
[22]
(a) Pal, N.; Bhaumik, A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci., 2013, 189-190, 21-41.
[http://dx.doi.org/10.1016/j.cis.2012.12.002] [PMID: 23337774];
(b) Bhaumik, A.; Pal, N. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci., 2018, 190, 21-41.
[http://dx.doi.org/10.1016/j.cis.2012.12.002] [PMID: 23337774]
[23]
(a) Li, Y.; Liu, J.; McClements, D.J.; Zhang, X.; Zhang, T.; Du, Z. Recent advances in hollow nanostructures: synthesis methods, structural characteristics, and applications in food and biomedicine. J. Agric. Food Chem., 2024, 72(37), 20241-20260.
[http://dx.doi.org/10.1021/acs.jafc.4c05910] [PMID: 39253980];
(b) Zhu, M.; Tang, J.; Wei, W.; Li, S. Recent progress in the syntheses and applications of multishelled hollow nanostructures. Mater. Chem. Front., 2020, 4(4), 1105-1149.
[http://dx.doi.org/10.1039/C9QM00700H]
[24]
(a) Liu, J.; Xue, D. Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater., 2008, 20(13), 2622-2627.
[http://dx.doi.org/10.1002/adma.200800208];
(b) Zhong, J.H.; Li, G.R.; Wang, Z.L.; Ou, Y.N.; Tong, Y.X. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application. Inorg. Chem., 2011, 50(3), 757-763.
[http://dx.doi.org/10.1021/ic1017664] [PMID: 21182331]
[25]
(a) Walker, A.V.; Yates, J.T. Does cuprous oxide photosplit water? J. Phys. Chem. B, 2000, 104(38), 9038-9043.
[http://dx.doi.org/10.1021/jp001568x];
(b) Tang, N.; Chen, B.; Xia, Y.; Chen, D.; Jiao, X. Facile synthesis of Cu2O nanocages and gas sensing performance towards gasoline. RSC Advances, 2015, 5(67), 54433-54438.
[http://dx.doi.org/10.1039/C5RA07638B];
(c) Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater., 2006, 18(4), 867-871.
[http://dx.doi.org/10.1021/cm052256f]
[26]
(a) Wang, B.; Zhang, W.; Zhang, Z.; Li, R.; Wu, Y.; Hu, Z.; Wu, X.; Guo, C.; Cheng, G.; Zheng, R. Cu2O hollow structures—microstructural evolution and photocatalytic properties. RSC Advances, 2016, 6(105), 103700-103706.
[http://dx.doi.org/10.1039/C6RA22474A];
(b) Ebrahimzadeh, F. Synthesis of secondary amines via amination of alcohols with benzylamine using the magnetic nano-catalyst Fe3O4@SiO2@CS@EDTA/Cu(II). Iranian J. Org. Chem., 2023, 4(15), 3667-3673.;
(c) Ebrahimzadeh, F. Employment of the magnetic nano-catalyst Fe3O4@SiO2@CS@POCl2-x/Cu (II) for the amination of alcohols. J. Chem. React. Syn., 2023, 13(3), 240-254.;
(d) Ebrahimzadeh, F.; Baramakeh, L. Efficient removal of organic and inorganic pollutants from water using Fe3O4@SiO2@CS@EDTA nanocomposite: optimization via response surface methodology (RSM). ChemistrySelect, 2024, 9(10), e202302524.
[http://dx.doi.org/10.1002/slct.202302524];
(e) Liu, C.; Guo, R.; Zhu, H.; Cui, H.; Liu, M.; Pan, W. Cu2O-based catalysts applied for electrocatalytic CO2 reduction: a review. J. Mater. Chem. A Mater. Energy Sustain., 2024, 12(46), 31769-31796.
[http://dx.doi.org/10.1039/D4TA06287F];
(f) Su, Q.; Zuo, C.; Liu, M.; Tai, X. A review on Cu2O-based composites in photocatalysis: synthesis, modification, and applications. Molecules, 2023, 28(14), 5576.
[http://dx.doi.org/10.3390/molecules28145576] [PMID: 37513448];
(g) Rooydell, R.; Brahma, S.; Wang, R.C.; Modaberi, M.R.; Ebrahimzadeh, F.; Liu, C.P. Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties. J. Alloys Compd., 2017, 691, 936-945.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.324];
(h) Ebrahimzadeh, F. Chemical reduction synthesis of copper nanoparticles in aqueous media in present of maleic acid and polyvinylpyrrolidone (PVP). J. New Mater., 2017, 8(29), 121-128. 20.1001.1.22285946.1396.8.29.10.9
[27]
(a) Hung, L.I.; Tsung, C.K.; Huang, W.; Yang, P. Room-temperature formation of hollow Cu(2)O nanoparticles. Adv. Mater., 2010, 22(17), 1910-1914.
[http://dx.doi.org/10.1002/adma.200903947] [PMID: 20526993];
(b) Dong, Y.; Tao, F.; Wang, L.; Lan, M.; Zhang, J.; Hong, T. One-pot preparation of hierarchical Cu2O hollow spheres for improved visible-light photocatalytic properties. RSC Advances, 2020, 10(38), 22387-22396.
[http://dx.doi.org/10.1039/D0RA02460K] [PMID: 35514579];
(c) Wang, N.; Zhou, Y.; Chen, K.; Wang, T.; Sun, P.; Wang, C.; Chuai, X.; Zhang, S.; Liu, X.; Lu, G. Double shell Cu2O hollow microspheres as sensing material for high performance n-propanol sensor. Sens. Actuators B Chem., 2021, 333, 129540.
[http://dx.doi.org/10.1016/j.snb.2021.129540]
[28]
Yang, L.; Guo, J.; Yang, T.; Guo, C.; Zhang, S.; Luo, S.; Dai, W.; Li, B.; Luo, X.; Li, Y. Self-assembly Cu2O nanowire arrays on Cu mesh: A solid-state, highly-efficient, and stable photocatalyst for toluene degradation under sunlight. J. Hazard. Mater., 2021, 402, 123741.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123741] [PMID: 33254768]
[29]
Su, Y.; Yuan, G.; Hu, J.; Feng, W.; Zeng, Q.; Liu, Y.; Pang, H. Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions. Chem. Syn., 2022, 3(1), 1.
[http://dx.doi.org/10.20517/cs.2022.24]
[30]
Firouzabadi, H.; Iranpoor, N.; Garzan, A.; Shaterian, H.R.; Ebrahimzadeh, F. Facile ring‐expansion substitution reactions of 1,3‐dithiolanes and 1,3‐dithianes initiated by electrophilic reagents to produce monohalo‐ ‐cyano‐ ‐azido‐ and ‐thiocyanato‐1,4‐dithiins and ‐1,4‐dithiepins. Eur. J. Org. Chem., 2005, 2005(2), 416-428.
[http://dx.doi.org/10.1002/ejoc.200400502]
[31]
Ebrahimzadeh, F.; Fung, K.Z. One-pot synthesis of size and shape controlled copper nanostructures in aqueous media and their application for fast catalytic degradation of organic dyes. J. Chem. Res., 2016, 40(9), 552-557.
[http://dx.doi.org/10.3184/174751916X14718784323425]
[32]
(a) Chastain, J.; King, R.C. Jr Handbook of X-ray photoelectron spectroscopy.Perkin-Elm. Corporat; , 1992, 40, p. 221.;
(b) Chen, T.; Zhang, L.; Li, J.; Guo, C.; Qiao, S.; Zhao, Y.; Wang, J. The exploration of relationship between the evolution of Cu to Cu2O/CuO and photocatalytic efficiency toward water oxidation reaction. Int. J. Hydrogen Energy, 2024, 67, 644-650.
[http://dx.doi.org/10.1016/j.ijhydene.2023.11.091]
[33]
(a) Huang, K.; Liang, G.; Sun, S.; Hu, H.; Peng, X.; Shen, R.; Li, X. Interface-induced charge transfer pathway switching of a Cu2O-TiO2 photocatalyst from p-n to S-scheme heterojunction for effective photocatalytic H2 evolution. J. Mater. Sci. Technol., 2024, 193, 98-106.
[http://dx.doi.org/10.1016/j.jmst.2024.01.034];
(b) Oh, Y.; Theerthagiri, J.; Aruna Kumari, M.L.; Min, A.; Moon, C.J.; Choi, M.Y. Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu2O and CoO on nickel foam. J. Energy Chem., 2024, 91, 145-154.
[http://dx.doi.org/10.1016/j.jechem.2023.12.023]
[34]
Chanda, K.; Rej, S.; Huang, M.H. Investigation of facet effects on the catalytic activity of Cu2O nanocrystals for efficient regioselective synthesis of 3,5-disubstituted isoxazoles. Nanoscale, 2013, 5(24), 12494-12501.
[http://dx.doi.org/10.1039/c3nr03790h] [PMID: 24165690]
[35]
Espinosa, S.; Solivan, M.; Vlaar, C.P. Synthesis and redox-enzyme modulation by amino-1,4-dihydro-benzo [d] [1,2]dithiine derivatives. Tetrahedron Lett., 2009, 50(25), 3023-3026.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.209] [PMID: 20161292]
[36]
Ali Shah, S.T.; Merkel, P.; Ragge, H.; Duszenko, M.; Rademann, J.; Voelter, W. Stereospecific synthesis of chiral 2,3-dihydro-1,4-benzodithiine and methyl-2,3-dihydro-1,4-benzodithiine derivatives and their toxic effects on Trypanosoma brucei. ChemBioChem, 2005, 6(8), 1438-1441.
[http://dx.doi.org/10.1002/cbic.200400375] [PMID: 16052614]
[37]
Jin, G.; Okujima, T.; Hashimoto, Y.; Yamada, H.; Uno, H.; Ono, N. Synthesis of 2,3-Dihydrobenzo [1,4]dithiin-fused porphyrins. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(5-6), 1108-1116.
[http://dx.doi.org/10.1080/10426501003773449]
[38]
Barrett, M. Investigations into the reactivity of alkynes and sulfur oxides under gold catalysis; University of Birmingham: Birmingham, UK, 2016, p. 313.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy