Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Synthesis and Characterization of Thioamidoalkyl Fluorescein Analogs for Antibacterial Activity and Molecular Docking Analyses

Author(s): Shazia Kousar*, Maryam Tabassum, Saif Mabkhot Qaid, Nur Intan Saidaah Mohamed Yusof, Fazlin Mohd Fauzi, Syed Adnan Ali Shah*, Muhammad Shahid, Madiha Irfan, Ayesha Monawar, Syed Waqas Bukhari and Muhammad Ahmad Mudassir*

Volume 12, Issue 3, 2025

Published on: 21 January, 2025

Page: [167 - 176] Pages: 10

DOI: 10.2174/0122133372319377241218122708

Price: $65

Abstract

Aims and Objectives: The study aimed to employ one-pot solvent-free boric acid-catalyzed multicomponent reactions (MCRs) to synthesize bioactive thioamidoalkyl fluorescein analogs. The study aimed to introduce a facile and environmentally sustainable strategy for efficiently producing alternate potent bioactivity agents.

Background: Population growth trends, limited efficacy and side effects of available medicine, and new challenges like antibiotic resistance have led to the urgent need for more and better pharmaceuticals and a notable increase in drug development. The global health demands and significant medicinal value of thioamidoalkyl compounds prompted synthesizing new fluorescein-based thioamidoalkyl derivatives to explore their prospective biomedical potential.

Methods: To prepare thioamidoalkyl fluorescein analogs, a solvent-free three-component reaction of fluorescein with aryl aldehydes and thiobenzamide catalyzed by boric acid was used. The antibacterial potentials of thioamidoalkyl fluorescein analogs against Escherichia coli (E. coli) bacteria were analyzed in terms of half-maximal inhibitory concentration (IC50). Moreover, molecular docking experiments explored the binding affinities and possible interaction mechanisms between newly synthesized analogs and active sites of E. coli adhesion protein FimH.

Results: FTIR, 1H, and 13C NMR results verified the successful formation of all analogs. The experimental and theoretical antibacterial activity results confirmed that the compound M-11 is relatively more potent against E. coli based on lower IC50 values of 54.14 nM and binding energy value of ‒6.30 kcal/mol (comparable to ‒6.70 kcal/mol of reference ligand) probably because of unique structure and strong binding affinities for target protein structure.

Conclusion: The findings demonstrated the potential of the currently employed synthetic approach to produce new analogs with decent yields facilely. Interestingly, the M-11 compound proved to be an excellent prospective source of antibiotic drugs based on both experimental and computational analyses.

Keywords: Multicomponent reactions, one-pot synthesis, thioamidoalkyl, aromatic aldehydes, antibacterial activity, fluorescein analogs, molecular docking.

Next »
Graphical Abstract
[1]
Coppola, G.A.; Pillitteri, S.; Van der Eycken, E.V.; You, S.L.; Sharma, U.K. Multicomponent reactions and photo/electrochemistry join forces: Atom economy meets energy efficiency. Chem. Soc. Rev., 2022, 51(6), 2313-2382.
[http://dx.doi.org/10.1039/D1CS00510C] [PMID: 35244107]
[2]
Faizan, S.; Roohi, T.F.; Raju, R.M.; Sivamani, Y.; Br, P.K. A century-old one-pot multicomponent Biginelli reaction products still finds a niche in drug discoveries: Synthesis, mechanistic studies and diverse biological activities of dihydropyrimidines. J. Mol. Struct., 2023, 1291, 136020.
[http://dx.doi.org/10.1016/j.molstruc.2023.136020]
[3]
Grazia, M.M.; Giannessi, L.; Radi, M. Multicomponent synthesis of purines and pyrimidines: From the origin of life to new sustainable approaches for drug‐discovery applications. Eur. J. Org. Chem., 2023, 26(2), e202201288.
[http://dx.doi.org/10.1002/ejoc.202201288]
[4]
Russo, C.; Brunelli, F.; Cesare Tron, G.; Giustiniano, M. Isocyanide‐based multicomponent reactions promoted by visible light photoredox catalysis. Chemistry, 2023, 29(15), e202203150.
[http://dx.doi.org/10.1002/chem.202203150] [PMID: 36458647]
[5]
dos Santos, J.A.; de Castro, P.P.; de Oliveira, K.T.; Brocksom, T.J.; Amarante, G.W. Multicomponent reactions applied to total synthesis of biologically active molecules: A short review. Curr. Top. Med. Chem., 2023, 23(11), 990-1003.
[http://dx.doi.org/10.2174/1568026623666230403102437] [PMID: 37016527]
[6]
Afza, N.; Fatma, S.; Ghous, F.; Shukla, S.; Rai, S.; Srivastava, K.; Bishnoi, A. An efficient multicomponent synthesis, characterization, SAR, In-silico ADME prediction and molecular docking studies of 2-Amino-7-(substituted-phenyl)-3-cyano-4-phenyl-4,5,6,7-tetrahydropyrano[2,3-b] pyrrole-5-carboxylic acid derivatives and their in-vitro antimicrobial activity. J. Mol. Struct., 2023, 1276, 134721.
[http://dx.doi.org/10.1016/j.molstruc.2022.134721]
[7]
Messire, G.; Caillet, E.; Berteina-Raboin, S. Green catalysts and/or green solvents for sustainable multi-component reactions. Catalysts, 2024, 14(9), 593.
[http://dx.doi.org/10.3390/catal14090593]
[8]
Patel, S.G.; Patel, P.J.; Upadhyay, D.B.; Puerta, A.; Malik, A.; Kandukuri, N.K.; Sharma, R.K.; Padrón, J.M.; Patel, H.M. Insights into microwave assisted synthesis of spiro-chromeno[2,3-d]pyrimidines using PEG-OSO3H catalyst: DFT study and their antiproliferative activity. J. Mol. Struct., 2023, 1292, 136174.
[http://dx.doi.org/10.1016/j.molstruc.2023.136174]
[9]
Goswami, U.J.; Xalxo, A.; Khan, A.T. Catalyst‐and solvent‐free synthesis of pentacyclic‐dione derivatives from 4‐hydroxythiocoumarin and aldehyde using pseudo‐three‐component reaction. ChemistrySelect, 2023, 8(35), e202302520.
[http://dx.doi.org/10.1002/slct.202302520]
[10]
Toorbaf, M.; Moradi, L.; Dehghani, A. Preparation of GO/Cys-Cu(II) as a novel, effective and recoverable catalyst for the multi component synthesis of spirooxindoles under mild conditions. J. Mol. Struct., 2023, 1294, 136335.
[http://dx.doi.org/10.1016/j.molstruc.2023.136335]
[11]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[12]
Monika; Chander; Ram, S.; Sharma, P.K. A review on molecular iodine catalyzed/mediated multicomponent reactions. Asian J. Org. Chem., 2023, 12(1), e202200616.
[http://dx.doi.org/10.1002/ajoc.202200616]
[13]
Gomes, C.; Costa, M.; Lopes, S.M.M.; Nogueira, B.A.; Fausto, R.; Paixão, J.A.; Pinho e Melo, T.M.V.D.; Martins, L.M.D.R.S.; Pineiro, M. On the mechanochemical synthesis of C-scorpionates with an oxime moiety and their application in the copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. New J. Chem., 2024, 48(2), 874-886.
[http://dx.doi.org/10.1039/D3NJ05017C]
[14]
Lakhani, P.; Kane, S.; Srivastava, H.; Goutam, U.K.; Modi, C.K. Sustainable approach for the synthesis of chiral β-aminoketones using an encapsulated chiral Zn(II)–salen complex. RSC Sustainability, 2023, 1(7), 1773-1782.
[http://dx.doi.org/10.1039/D3SU00210A]
[15]
Salami, S.A.; Safari, J.B.; Smith, V.J.; Krause, R.W.M. Mechanochemically‐assisted Passerini reactions: A practical and convenient method for the synthesis of novel α‐acyloxycarboxamide derivatives. ChemistryOpen, 2023, 12(5), e202200268.
[http://dx.doi.org/10.1002/open.202200268] [PMID: 37198143]
[16]
Kumar, S.; Arora, A.; Kumar, S.; Kumar, R.; Maity, J.; Singh, B.K. Passerini reaction: Synthesis and applications in polymer chemistry. Eur. Polym. J., 2023, 190, 112004.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112004]
[17]
Wolfs, J.; Ribca, I.; Meier, M.A.R.; Johansson, M. Polythionourethane thermoset synthesis via activation of elemental sulfur in an efficient multicomponent reaction approach. ACS Sustain. Chem.& Eng., 2023, 11(9), 3952-3962.
[http://dx.doi.org/10.1021/acssuschemeng.3c00143]
[18]
Cores, Á.; Clerigué, J.; Orocio-Rodríguez, E.; Menéndez, J.C. Multicomponent reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals (Basel), 2022, 15(8), 1009.
[http://dx.doi.org/10.3390/ph15081009] [PMID: 36015157]
[19]
Buskes, M.J.; Coffin, A.; Troast, D.M.; Stein, R.; Blanco, M.J. Accelerating drug discovery: Synthesis of complex chemotypes via multicomponent reactions. ACS Med. Chem. Lett., 2023, 14(4), 376-385.
[http://dx.doi.org/10.1021/acsmedchemlett.3c00012] [PMID: 37077380]
[20]
Wang, F.; Langley, R.; Gulten, G.; Dover, L.G.; Besra, G.S.; Jacobs, W.R., Jr; Sacchettini, J.C. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med., 2007, 204(1), 73-78.
[http://dx.doi.org/10.1084/jem.20062100] [PMID: 17227913]
[21]
Damodiran, M.; Panneer Selvam, N.; Perumal, P.T. Synthesis of highly functionalized oxazines by Vilsmeier cyclization of amidoalkyl naphthols. Tetrahedron Lett., 2009, 50(39), 5474-5478.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.051]
[22]
Maleki, B.; Sheikh, E.; Seresht, E.R.; Eshghi, H.; Ashrafi, S.S.; Khojastehnezhad, A.; Veisi, H. One-pot synthesis of 1-amidoalkyl-2-naphthols catalyzed by polyphosphoric acid supported on silica-coated NiFe2O4 nanoparticles. Org. Prep. Proced. Int., 2016, 48(1), 37-44.
[http://dx.doi.org/10.1080/00304948.2016.1127098]
[23]
Petkov, H.; Simeonov, S.P. Amidoalkyl naphthols as important bioactive substances and building blocks: A review on the current catalytic Mannich-type synthetic approaches. Appl. Sci. (Basel), 2023, 13(11), 6616.
[http://dx.doi.org/10.3390/app13116616]
[24]
Kusakabe, Y.; Nagatsu, J.; Shibuya, M.; Kawaguchi, O.; Hirose, C.; Shirato, S. Minimycin, a new antibiotic. J. Antibiot. (Tokyo), 1972, 25(1), 44-47.
[http://dx.doi.org/10.7164/antibiotics.25.44] [PMID: 5010645]
[25]
Lesher, G.Y.; Surrey, A.R. A new method for the preparation of 3-substituted-2-oxazolidones. J. Am. Chem. Soc., 1955, 77(3), 636-641.
[http://dx.doi.org/10.1021/ja01608a032]
[26]
Ren, H.; Grady, S.; Gamenara, D.; Heinzen, H.; Moyna, P.; Croft, S.L.; Kendrick, H.; Yardley, V.; Moyna, G. Design, synthesis, and biological evaluation of a series of simple and novel potential antimalarial compounds. Bioorg. Med. Chem. Lett., 2001, 11(14), 1851-1854.
[http://dx.doi.org/10.1016/S0960-894X(01)00308-0] [PMID: 11459645]
[27]
Clark, R.D.; Caroon, J.M.; Kluge, A.F.; Repke, D.B.; Roszkowski, A.P.; Strosberg, A.M.; Baker, S.; Bitter, S.M.; Okada, M.D. Synthesis and antihypertensive activity of 4′-substituted spiro[4H-3,1-benzoxazine-4,4′-piperidin]-2(1H)-ones. J. Med. Chem., 1983, 26(5), 657-661.
[http://dx.doi.org/10.1021/jm00359a007] [PMID: 6842505]
[28]
Benedini, F.; Bertolini, G.; Cereda, R.; Donà, G.; Gromo, G.; Levi, S.; Mizrahi, J.; Sala, A. New antianginal nitro esters with reduced hypotensive activity. Synthesis and pharmacological evaluation of 3-[(nitrooxy)alkyl]-2H-1,3-benzoxazin-4(3H)-ones. J. Med. Chem., 1995, 38(1), 130-136.
[http://dx.doi.org/10.1021/jm00001a018] [PMID: 7837224]
[29]
Matsuoka, H.; Ohi, N.; Mihara, M.; Suzuki, H.; Miyamoto, K.; Maruyama, N.; Tsuji, K.; Kato, N.; Akimoto, T.; Takeda, Y.; Yano, K.; Kuroki, T. Antirheumatic agents: Novel methotrexate derivatives bearing a benzoxazine or benzothiazine moiety. J. Med. Chem., 1997, 40(1), 105-111.
[http://dx.doi.org/10.1021/jm9605288] [PMID: 9016334]
[30]
Mosher, H.S.; Frankel, M.B.; Gregory, M. Heterocyclic diphenylmethane derivatives. J. Am. Chem. Soc., 1953, 75(21), 5326-5328.
[http://dx.doi.org/10.1021/ja01117a054]
[31]
Remillard, S.; Rebhun, L.I.; Howie, G.A.; Kupchan, S.M. Antimitotic activity of the potent tumor inhibitor maytansine. Science, 1975, 189(4207), 1002-1005.
[http://dx.doi.org/10.1126/science.1241159] [PMID: 1241159]
[32]
Kundu, T.; Mitra, B.; Ghosh, P. Humic acid: An unexplored organocatalyst toward the synthesis of 1-amidoalkyl-2-naphthols and 1-thioamidoalkyl-2-naphthols through one-pot multi-component system. Synth. Commun., 2023, 53(19), 1588-1600.
[http://dx.doi.org/10.1080/00397911.2023.2236737]
[33]
Shen, A.; Tsai, C.; Chen, C. Synthesis and cardiovascular evaluation of N-substituted 1-aminomethyl-2-naphthols. Eur. J. Med. Chem., 1999, 34(10), 877-882.
[http://dx.doi.org/10.1016/S0223-5234(99)00204-4]
[34]
Gyémánt, N.; Engi, H.; Schelz, Z.; Szatmári, I.; Tóth, D.; Fülöp, F.; Molnár, J.; de Witte, P.A.M. In vitro and in vivo multidrug resistance reversal activity by a Betti-base derivative of tylosin. Br. J. Cancer, 2010, 103(2), 178-185.
[http://dx.doi.org/10.1038/sj.bjc.6605716] [PMID: 20551959]
[35]
Kidwai, M.; Chauhan, R. Catalyst‐free synthesis of Betti bases in a Mannich‐type reaction. Asian J. Org. Chem., 2013, 2(5), 395-398.
[http://dx.doi.org/10.1002/ajoc.201300039]
[36]
Khazaei, A.; Abbasi, F.; Moosavi-Zare, A.R.; Khazaei, M.; Beyzavi, M.H. Condensation of aryl aldehydes, 2‐naphthol, and thioacetamide catalyzed by n‐halo reagents in neutral media. J. Chin. Chem. Soc. (Taipei), 2015, 62(10), 850-854.
[http://dx.doi.org/10.1002/jccs.201500125]
[37]
Wei, H.X.; Lu, D.; Sun, V.; Zhang, J.; Gu, Y.; Osenkowski, P.; Ye, W.; Selkoe, D.J.; Wolfe, M.S.; Augelli-Szafran, C.E. Part 2. Notch-sparing γ-secretase inhibitors: The study of novel γ-amino naphthyl alcohols. Bioorg. Med. Chem. Lett., 2016, 26(9), 2133-2137.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.042] [PMID: 27020305]
[38]
Saadon, K.E.; Taha, N.M.H.; Mahmoud, N.A.; Elhagali, G.A.M.; Ragab, A. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. J. Indian Chem. Soc., 2022, 19(9), 3899-3917.
[http://dx.doi.org/10.1007/s13738-022-02575-y]
[39]
Hassanzadeh, F.; Jafari, E.; Mohammadi, T.; Jahanian-Najafabadi, A. Synthesis and antimicrobial evaluation of some 2,5 disubstituted 1,3,4-oxadiazole derivatives. Res. Pharm. Sci., 2017, 12(4), 330-336.
[http://dx.doi.org/10.4103/1735-5362.212051] [PMID: 28855945]
[40]
Chawla, P.; Singh, R.; Saraf, S.K. Effect of chloro and fluoro groups on the antimicrobial activity of 2,5-disubstituted 4-thiazolidinones: A comparative study. Med. Chem. Res., 2012, 21(10), 3263-3271.
[http://dx.doi.org/10.1007/s00044-011-9864-1]
[41]
Krammer, E.M.; De Ruyck, J.; Roos, G.; Bouckaert, J.; Lensink, M.F. Targeting dynamical binding processes in the design of non-antibiotic anti-adhesives by molecular simulation—The example of FimH. Molecules, 2018, 23(7), 1641.
[http://dx.doi.org/10.3390/molecules23071641] [PMID: 29976867]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy