Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Impact of Green Synthesis of Ag-nanoparticle Using Extracellular Manganese Peroxidase on Different Dye Degradation

Author(s): Rohida Amin Hoque and Meera Yadav*

Volume 12, Issue 3, 2025

Published on: 21 January, 2025

Page: [233 - 246] Pages: 14

DOI: 10.2174/0122133372366582250115002303

Price: $65

Abstract

Introduction: The study explores the biosynthesis of silver nanoparticles (AgNPs) using extracellular manganese peroxidase enzyme from Trichoderma parestonica. The synthesis was optimized at a 1:1 enzyme and silver nitrate ratio, pH 12, shaking process, and 48-hour synthesis period. The AgNPs were characterized using spectroscopic and microscopic techniques, showing absorbance in UV-spectroscopy between 410-450 nm due to Surface Plasmon Resonance (SPR).

Methods: The stabilization of extracellular manganese peroxidase with the nanoparticles through capping was observed by Fourier Transform Infrared Spectroscopy (FT-IR). The spherical shape of the AgNPs, with an average size of 69.09 nm, is confirmed by the Field Emission Scanning Electron Microscopy (FESEM) study. The size of the nanoparticles was also determined by Dynamic Light Scattering (DLS) to be 75.99 nm. When synthesized AgNPs were used to decolorize Alizarin red S (ARS), Methylene Blue (MB), and Methyl Orange (MO) in the presence of sodium borohydride reducing agent, the results showed that, within 20 minutes, 90% of 0.1 mM ARS, MB, and 75% 0.1 mM MO were degraded.

Results: This study demonstrated the potential of AgNPs synthesized from MnP enzyme in nanoremediation projects, offering a sustainable solution to the problems and issues of dye-induced wastewater pollution and fostering environmental conservation.

Conclusion: Enzymes are being studied in nanotechnology, leading to the development of enzyme nanoparticles, which can be utilized in various fields like biosensors agriculture, drug delivery, and bioremediation.

Keywords: Manganese peroxidase, silver nanoparticles, dye decolorization, alizarin red S, methylene blue, methyl orange.

« Previous
Graphical Abstract
[1]
Luo, Y.; Zhao, J.; Zhang, X.; Wang, C.; Wang, T.; Jiang, M.; Zhu, Q.; Xie, T.; Chen, D. Size controlled fabrication of enzyme encapsulated amorphous calcium phosphate nanoparticle and its intracellular biosensing application. Colloids Surf. B Biointerfaces, 2021, 201, 111638.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111638] [PMID: 33639505]
[2]
Bhat, M.A.; Nayak, B.K.; Nanda, A. Evaluation of bactericidal activity of biologically synthesised silver nanoparticles from Candida albicans in combination with ciprofloxacin. Mater. Today Proc., 2015, 2(9), 4395-4401.
[http://dx.doi.org/10.1016/j.matpr.2015.10.036]
[3]
Guilger-Casagrande, M.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Fraceto, L.F.; Lima, R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci. Rep., 2019, 9(1), 14351.
[http://dx.doi.org/10.1038/s41598-019-50871-0] [PMID: 31586116]
[4]
Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control, 2018, 28(1), 28.
[http://dx.doi.org/10.1186/s41938-018-0028-1]
[5]
Ma, L.; Su, W.; Liu, J.X.; Zeng, X.X.; Huang, Z.; Li, W.; Liu, Z.C.; Tang, J.X. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater. Sci. Eng. C, 2017, 77, 963-971.
[http://dx.doi.org/10.1016/j.msec.2017.03.294] [PMID: 28532117]
[6]
Guilger, M.; Pasquoto-Stigliani, T.; Bilesky-Jose, N.; Grillo, R.; Abhilash, P.C.; Fraceto, L.F.; Lima, R. Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci. Rep., 2017, 7(1), 44421.
[http://dx.doi.org/10.1038/srep44421] [PMID: 28300141]
[7]
Hoque, R.A.; Yadav, M.; Yadav, H.S.; Boruah, R. Purification and characterization of novel manganese peroxidase from Trichoderma parestonica and its bio-conversion study of toxic arylamine. Anal. Chem. Lett., 2023, 13(6), 641-659.
[http://dx.doi.org/10.1080/22297928.2023.2299257]
[8]
Sanghi, R.; Verma, P.; Puri, S. Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv. Chem. Enginee. Sci., 2011, 1(3), 154-162.
[http://dx.doi.org/10.4236/aces.2011.13023]
[9]
Vijay Kumar, P.P.N.; Pammi, S.V.N.; Kollu, P.; Satyanarayana, K.V.V.; Shameem, U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[10]
Jayaprakash, N.; Judith Vijaya, J.; John Kennedy, L.; Priadharsini, K.; Palani, P. Antibacterial activity of silver nanoparticles synthesized from serine. Mater. Sci. Eng. C, 2015, 49, 316-322.
[http://dx.doi.org/10.1016/j.msec.2015.01.012] [PMID: 25686955]
[11]
Suleiman, M.; Al Ali, A.; Hussein, A.; Hammouti, B.; Hadda, T.B.; Warad, I. Sulfur nanoparticles: Synthesis, characterizations and their applications. J. Mater. Environ. Sci., 2013, 4, 1029-1033.
[12]
Hoque, R.A.; Yadav, M.; Hazarika, A. Sulfur and magnesium-based nanofertilizer: synthesis, characterization, and applications. In: Nanofertilizer Synth; Elsevier: New York, 2024; pp. 195-212.
[http://dx.doi.org/10.1016/B978-0-443-13535-4.00013-4]
[13]
Tavan, M.; Hanachi, P.; Mirjalili, M.H.; Dashtbani-Roozbehani, A. Comparative assessment of the biological activity of the green synthesized silver nanoparticles and aqueous leaf extract of Perilla frutescens (L.). Sci. Rep., 2023, 13(1), 6391.
[http://dx.doi.org/10.1038/s41598-023-33625-x] [PMID: 37076588]
[14]
Gontijo, L.A.P.; Raphael, E.; Ferrari, D.P.S.; Ferrari, J.L.; Lyon, J.P.; Schiavon, M.A. pH effect on the synthesis of different size silver nanoparticles evaluated by DLS and their size-dependent antimicrobial activity. Materia (Rio J.), 2020, 25(4), e-12845.
[http://dx.doi.org/10.1590/s1517-707620200004.1145]
[15]
Jarmelo, S.; Reva, I.; Carey, P.R.; Fausto, R. Infrared and raman spectroscopic characterization of the hydrogen-bonding network in l-serine crystal. Vib. Spectrosc., 2007, 43(2), 395-404.
[http://dx.doi.org/10.1016/j.vibspec.2006.04.025]
[16]
Alwhibi, M.S.; Soliman, D.A.; Awad, M.A.; Alangery, A.B.; Al Dehaish, H.; Alwasel, Y.A. Green synthesis of silver nanoparticles: Characterization and its potential biomedical applications. Green Processing and Synthesis, 2021, 10(1), 412-420.
[http://dx.doi.org/10.1515/gps-2021-0039]
[17]
Zhang, J.; Chi, Y.; Feng, L. The mechanism of degradation of alizarin red by a white-rot fungus Trametes gibbosa. BMC Biotechnol., 2021, 21(1), 64.
[http://dx.doi.org/10.1186/s12896-021-00720-8] [PMID: 34740358]
[18]
Kofidis, T.; Strüber, M.; Wilhelmi, M.; Anssar, M.; Simon, A.; Harringer, W.; Haverich, A. Reversal of severe vasoplegia with single-dose methylene blue after heart transplantation. J. Thorac. Cardiovasc. Surg., 2001, 122(4), 823-824.
[http://dx.doi.org/10.1067/mtc.2001.115153] [PMID: 11581623]
[19]
Meissner, P.E.; Mandi, G.; Coulibaly, B.; Witte, S.; Tapsoba, T.; Mansmann, U.; Rengelshausen, J.; Schiek, W.; Jahn, A.; Walter-Sack, I.; Mikus, G.; Burhenne, J.; Riedel, K.D.; Schirmer, R.H.; Kouyaté, B.; Müller, O. Methylene blue for malaria in Africa: results from a dose-finding study in combination with chloroquine. Malar. J., 2006, 5(1), 84.
[http://dx.doi.org/10.1186/1475-2875-5-84] [PMID: 17026773]
[20]
Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng., 2022, 16, 100678.
[http://dx.doi.org/10.1016/j.rineng.2022.100678]
[21]
Lv, Y.; Zhang, J.; Asgodom, M.E.; Liu, D.; Xie, H.; Qu, H. Study on the degradation of accumulated bisphenol S and regeneration of magnetic sludge-derived biochar upon microwave irritation in the presence of hydrogen peroxide for application in integrated process. Bioresour. Technol., 2019, 293, 122072.
[http://dx.doi.org/10.1016/j.biortech.2019.122072] [PMID: 31484102]
[22]
Wang, F.; Tian, F.; Deng, Y.; Yang, L.; Zhang, H.; Zhao, D.; Li, B.; Zhang, X.; Fan, L. Cluster-based multifunctional copper (II) organic framework as a photocatalyst in the degradation of organic dye and as an electrocatalyst for overall water splitting. Cryst. Growth Des., 2021, 21(7), 4242-4248.
[http://dx.doi.org/10.1021/acs.cgd.1c00479]
[23]
Guo, X.Z.; Lin, B.; Xiong, G.Z.; Krishna, R.; Zhang, Z.R.; Liu, Q.Z.; Zhang, Z.X.; Fan, L.; Zhang, J.; Li, B. Construction of negative electrostatic sugared gourd pore within nickel-based metal-organic framework for one-step purification acetylene from ethylene and carbon dioxide mixture. Chem. Eng. J., 2024, 498, 154734.
[http://dx.doi.org/10.1016/j.cej.2024.154734]
[24]
Bhankhar, A.; Giri, M.; Yadav, K.; Jaggi, N. Study on degradation of methyl orange-an azo dye by silver nanoparticles using UV–Visible spectroscopy. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 2014, 88(11), 1191-1196.
[http://dx.doi.org/10.1007/s12648-014-0555-x]
[25]
Jabeen, U.; Shah, S.M.; Khan, S.U. Photo catalytic degradation of Alizarin red S using ZnS and cadmium doped ZnS nanoparticles under unfiltered sunlight. Surf. Interfaces, 2017, 6, 40-49.
[http://dx.doi.org/10.1016/j.surfin.2016.11.002]
[26]
Sood, S.; Mehta, S.K.; Umar, A.; Kansal, S.K. The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO 2 nanoparticles. New J. Chem., 2014, 38(7), 3127-3136.
[http://dx.doi.org/10.1039/C4NJ00179F]
[27]
Santhi, K.; Rani, C.; Karuppuchamy, S. Degradation of Alizarin Red S dye using Ni doped WO3 photocatalyst. J. Mater. Sci. Mater. Electron., 2016, 27(5), 5033-5038.
[http://dx.doi.org/10.1007/s10854-016-4390-z]
[28]
Siva Kumar, S.; Rao, V.R.; Rao, G.N. Efficient photocatalytic degradation of Alizarin red S by silver-impregnated zinc oxide. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 2013, 83(4), 309-315.
[http://dx.doi.org/10.1007/s40010-013-0097-1]
[29]
Columbus, S.; Hammouche, J.; Ramachandran, K.; Daoudi, K.; Gaidi, M. Assessing the efficiency of photocatalytic removal of alizarin red using copper doped zinc oxide nanostructures by combining SERS optical detection. J. Photochem. Photobiol. Chem., 2022, 432, 114123.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114123]
[30]
Nazari, N.; Jookar Kashi, F. A novel microbial synthesis of silver nanoparticles: Its bioactivity, Ag/Ca-Alg beads as an effective catalyst for decolorization Disperse Blue 183 from textile industry effluent. Separ. Purif. Tech., 2021, 259, 118117.
[http://dx.doi.org/10.1016/j.seppur.2020.118117]
[31]
Sharma, S.C. ZnO nano-flowers from Carica papaya milk: Degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Optik (Stuttg.), 2016, 127(16), 6498-6512.
[http://dx.doi.org/10.1016/j.ijleo.2016.04.036]
[32]
Eswaran, G.S.; Afridi, S.P.; Vasimalai, N. Effective multi toxic dyes degradation using bio-fabricated silver nanoparticles as a green catalyst. Appl. Biochem. Biotechnol., 2023, 195(6), 3872-3887.
[http://dx.doi.org/10.1007/s12010-022-03902-y] [PMID: 35435586]
[33]
Gola, D.; Tyagi, P.K.; Arya, A.; Gupta, D.; Raghav, J.; Kaushik, A.; Agarwal, M.; Chauhan, N.; Srivastava, S.K. Antimicrobial and dye degradation application of fungi‐assisted silver nanoparticles and utilization of fungal retentate biomass for dye removal. Water Environ. Res., 2021, 93(11), 2727-2739.
[http://dx.doi.org/10.1002/wer.1629] [PMID: 34415655]
[34]
Gupta, S.; Tejavath, K.K. Catalytic reduction of organic dyes with green synthesized silver nanoparticles using aloe vera leaf extract. J. Nanosci. Nanoenginee. Applica., 2019, 9, 9-21.
[http://dx.doi.org/10.37591/jonsnea.v9i2.661]
[35]
Rajkumar, R.; Ezhumalai, G.; Gnanadesigan, M. A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environ. Technol. Innov., 2021, 21, 101282.
[http://dx.doi.org/10.1016/j.eti.2020.101282]
[36]
Githala, C.K.; Raj, S.; Dhaka, A.; Mali, S.C.; Trivedi, R. Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front Chem., 2022, 10, 994721.
[http://dx.doi.org/10.3389/fchem.2022.994721] [PMID: 36226117]
[37]
Al-Zaban, M.I.; Mahmoud, M.A.; AlHarbi, M.A. Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi J. Biol. Sci., 2021, 28(3), 2007-2013.
[http://dx.doi.org/10.1016/j.sjbs.2021.01.003] [PMID: 33732087]
[38]
Fairuzi, A.A.; Bonnia, N.N.; Akhir, R.M.; Abrani, M.A.; Akil, H.M. Degradation of methylene blue using silver nanoparticles synthesized from imperata cylindrica aqueous extract. IOP Conf. Ser. Earth Environ. Sci., 2018, 105, 012018.
[http://dx.doi.org/10.1088/1755-1315/105/1/012018]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy