Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Review Article

Harnessing the Potential of Metallic Nanoparticles for Modulating the Tumor Microenvironment and Immune Responses in Breast Cancer Immunotherapy

Author(s): Shatrudhan Prajapati and Shikha Yadav*

Volume 11, 2025

Published on: 20 January, 2025

Article ID: e2212697X334574 Pages: 22

DOI: 10.2174/012212697X334574250107090812

Price: $65

Abstract

Utilizing the body's immune system to combat cancer has become a viable tactic known as cancer immunotherapy. Metallic nanoparticles, or MNPs, have drawn a lot of interest because of their special qualities and their uses in cancer immunotherapy. The manufacturing processes of MNPs, their function in altering the tumor microenvironment (TME), and their capacity to control immune cells for potent anticancer effects are all thoroughly covered in this review. The review underscores the benefits of MNPs in surmounting obstacles linked to traditional cancer treatments, including toxicity, resistance, and off-target effects. It also goes over the different ways that MNPs modulate the immune system, For example, by generating reactive oxygen species (ROS), reducing glutathione (GSH) levels, and improving hypoxia. The research also examines the ability of MNPs to enhance the maturation of dendritic cells, shift macrophages towards an M1 phenotype, stimulate T-cell responses, and aid in the transportation of natural killer (NK) cells. The investigation is focused on understanding the synergistic effects of MNPsIn conjunction with other immunotherapeutic approaches, such as checkpoint inhibitors and cell-based treatments, in order to generate potent immune responses against cancer.

Keywords: Metallic nanoparticles, cancer immunotherapy, tumor microenvironment, immune cell modulation, dendritic cells, macrophages, T cells, natural killer cells, reactive oxygen species, hypoxia.

[1]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy.Nano-Enabled Medical Applications; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2020, pp. 61-91.
[http://dx.doi.org/10.1201/9780429399039-2]
[2]
Sawyers, C. Targeted cancer therapy. Nature, 2004, 432(7015), 294-297.
[http://dx.doi.org/10.1038/nature03095] [PMID: 15549090]
[3]
Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Viñals, F.; Capellá, G. Recent advances in cancer therapy: An overview. Curr. Pharm. Des., 2010, 16(1), 3-10.
[http://dx.doi.org/10.2174/138161210789941847] [PMID: 20214614]
[4]
Valizadeh, A.; Khaleghi, A.A.; Alipanah, H.; Zarenezhad, E.; Osanloo, M. Anticarcinogenic effect of chitosan nanoparticles containing syzygium aromaticum essential oil or eugenol toward breast and skin cancer cell lines. Bionanoscience, 2021, 11(3), 678-686.
[http://dx.doi.org/10.1007/s12668-021-00880-z]
[5]
Alipanah, H.; Abdollahi, A.; Firooziyan, S.; Zarenezhad, E.; Jafari, M.; Osanloo, M. Nanoemulsion and nanogel containing Eucalyptus globulus essential oil; larvicidal activity and antibacterial properties. Interdiscip. Perspect. Infect. Dis., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/1616149] [PMID: 36092391]
[6]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[7]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med., 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[8]
Bahmanyar, M.; Vakil, M.K.; Al-Awsi, G.R.L. Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: A literature review. Mol. Biol. Rep., 2022, 49(11), 10627-10633.
[http://dx.doi.org/10.1007/s11033-022-07633-5] [PMID: 35715610]
[9]
Sochacka-Ćwikła, A.; Mączyński, M.; Regiec, A. FDA-Approved drugs for hematological malignancies: The last decade review. Cancers, 2021, 14(1), 87.
[http://dx.doi.org/10.3390/cancers14010087] [PMID: 35008250]
[10]
Kiyotani, K.; Toyoshima, Y.; Nakamura, Y. Personalized immunotherapy in cancer precision medicine. Cancer Biol. Med., 2021, 18(4), 955-965.
[PMID: 34369137]
[11]
Mulder, W.J.M.; Ochando, J.; Joosten, L.A.B.; Fayad, Z.A.; Netea, M.G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov., 2019, 18(7), 553-566.
[http://dx.doi.org/10.1038/s41573-019-0025-4] [PMID: 30967658]
[12]
van Puffelen, J.H.; Keating, S.T.; Oosterwijk, E. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol., 2020, 17(9), 513-525.
[http://dx.doi.org/10.1038/s41585-020-0346-4] [PMID: 32678343]
[13]
Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.B.; Schultze, J.L. Innate and adaptive immune memory: An evolutionary continuum in the host’s response to pathogens. Cell Host Microbe, 2019, 25(1), 13-26.
[http://dx.doi.org/10.1016/j.chom.2018.12.006] [PMID: 30629914]
[14]
Netea, M.G.; Quintin, J.; van der Meer, J.W.M. Trained immunity: A memory for innate host defense. Cell Host Microbe, 2011, 9(5), 355-361.
[http://dx.doi.org/10.1016/j.chom.2011.04.006] [PMID: 21575907]
[15]
Quintin, J.; Saeed, S.; Martens, J.H.A. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe, 2012, 12(2), 223-232.
[http://dx.doi.org/10.1016/j.chom.2012.06.006] [PMID: 22901542]
[16]
Kong, L.; Moorlag, S.J.C.F.M.; Lefkovith, A. Single-cell transcriptomic profiles reveal changes associated with BCG-induced trained immunity and protective effects in circulating monocytes. Cell Rep., 2021, 37(7), 110028.
[http://dx.doi.org/10.1016/j.celrep.2021.110028] [PMID: 34788625]
[17]
Casbon, A.J.; Reynaud, D.; Park, C. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl. Acad. Sci. USA, 2015, 112(6), E566-E575.
[http://dx.doi.org/10.1073/pnas.1424927112] [PMID: 25624500]
[18]
Miao, L.; Huang, L. Exploring the tumor microenvironment with nanoparticles.Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer; Springer: Cham, Switzerland, 2015, pp. 193-226.
[http://dx.doi.org/10.1007/978-3-319-16555-4_9]
[19]
Uthaman, S.; Huh, K.M.; Park, I.K. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater. Res., 2018, 22(1), 22.
[http://dx.doi.org/10.1186/s40824-018-0132-z] [PMID: 30155269]
[20]
Chen, Y.; Liu, X.; Yuan, H. Therapeutic remodeling of the tumor microenvironment enhances nanoparticle delivery. Adv. Sci., 2019, 6(5), 1802070.
[http://dx.doi.org/10.1002/advs.201802070] [PMID: 30886813]
[21]
Marzi, M.; Rostami Chijan, M.; Zarenezhad, E. Hydrogels as promising therapeutic strategy for the treatment of skin cancer. J. Mol. Struct., 2022, 1262, 133014.
[http://dx.doi.org/10.1016/j.molstruc.2022.133014]
[22]
Redelman-Sidi, G.; Glickman, M.S.; Bochner, B.H. The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat. Rev. Urol., 2014, 11(3), 153-162.
[http://dx.doi.org/10.1038/nrurol.2014.15] [PMID: 24492433]
[23]
Magadán, S.; Mikelez-Alonso, I.; Borrego, F.; González-Fernández, Á. Nanoparticles and trained immunity: Glimpse into the future. Adv. Drug Deliv. Rev., 2021, 175, 113821.
[http://dx.doi.org/10.1016/j.addr.2021.05.031] [PMID: 34087325]
[24]
Lee, L.; Gupta, M.; Sahasranaman, S. Immune Checkpoint inhibitors: An introduction to the next‐generation cancer immunotherapy. J. Clin. Pharmacol., 2016, 56(2), 157-169.
[http://dx.doi.org/10.1002/jcph.591] [PMID: 26183909]
[25]
Geller, A.; Shrestha, R.; Yan, J. Yeast-derived β-glucan in cancer: Novel uses of a traditional therapeutic. Int. J. Mol. Sci., 2019, 20(15), 3618.
[http://dx.doi.org/10.3390/ijms20153618] [PMID: 31344853]
[26]
Upreti, M.; Jyoti, A.; Sethi, P. Tumor microenvironment and nanotherapeutics. Transl. Cancer Res., 2013, 2(4), 309-319.
[PMID: 24634853]
[27]
Wang, H.; Yu, J.; Lu, X.; He, X. Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine, 2016, 11(2), 103-106.
[http://dx.doi.org/10.2217/nnm.15.166] [PMID: 26653177]
[28]
Zhang, J.; Lan, C.Q.; Post, M.; Simard, B.; Deslandes, Y.; Hsieh, T.H. Design of nanoparticles as drug carriers for cancer therapy. Can Geno Prote, 2006, 3(3-4), 147-157.
[PMID: 31394693]
[29]
Dadwal, A; Baldi, A; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol, 2018, 46((sup2)(Suppl. S2)), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039] [PMID: 30043651]
[30]
Mikelez-Alonso, I.; Magadán, S.; González-Fernández, Á.; Borrego, F. Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity. Adv. Drug Deliv. Rev., 2021, 176, 113860.
[http://dx.doi.org/10.1016/j.addr.2021.113860] [PMID: 34237404]
[31]
Cronin, J.G.; Jones, N.; Thornton, C.A.; Jenkins, G.J.S.; Doak, S.H.; Clift, M.J.D. Nanomaterials and innate immunity: A perspective of the current status in nanosafety. Chem. Res. Toxicol., 2020, 33(5), 1061-1073.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00051] [PMID: 32307980]
[32]
Kang, M.; Hong, J.; Jung, M. T‐Cell‐mimicking nanoparticles for cancer immunotherapy. Adv. Mater., 2020, 32(39), 2003368.
[http://dx.doi.org/10.1002/adma.202003368] [PMID: 32812291]
[33]
Sun, L.; Liu, W.; Zhang, L. The role of toll-like receptors in skin host defense, psoriasis, and atopic dermatitis. J. Immunol. Res., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/1824624] [PMID: 31815151]
[34]
Villiers, C.; Chevallet, M.; Diemer, H. From secretome analysis to immunology: Chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism. Mol. Cell. Proteomics, 2009, 8(6), 1252-1264.
[http://dx.doi.org/10.1074/mcp.M800589-MCP200] [PMID: 19279042]
[35]
Hamasaki, T.; Uto, T.; Akagi, T.; Akashi, M.; Baba, M. Modulation of gene expression related to Toll-like receptor signaling in dendritic cells by poly(γ-glutamic acid) nanoparticles. Clin. Vaccine Immunol., 2010, 17(5), 748-756.
[http://dx.doi.org/10.1128/CVI.00505-09] [PMID: 20219877]
[36]
Uto, T.; Akagi, T.; Yoshinaga, K.; Toyama, M.; Akashi, M.; Baba, M. The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. Biomaterials, 2011, 32(22), 5206-5212.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.052] [PMID: 21492934]
[37]
Ramos, R.N.; Rodriguez, C.; Hubert, M. CD163 + tumor‐associated macrophage accumulation in breast cancer patients reflects both local differentiation signals and systemic skewing of monocytes. Clin. Transl. Immunology, 2020, 9(2), e1108.
[http://dx.doi.org/10.1002/cti2.1108] [PMID: 32082570]
[38]
Zanganeh, S.; Hutter, G.; Spitler, R. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016, 11(11), 986-994.
[http://dx.doi.org/10.1038/nnano.2016.168] [PMID: 27668795]
[39]
Covarrubias, G.; Moon, T.J.; Loutrianakis, G. Comparison of the uptake of untargeted and targeted immunostimulatory nanoparticles by immune cells in the microenvironment of metastatic breast cancer. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(2), 224-235.
[http://dx.doi.org/10.1039/D1TB02256C] [PMID: 34846443]
[40]
Zuo, T.; Fang, T.; Zhang, J. pH‐sensitive molecular‐switch‐containing polymer nanoparticle for breast cancer therapy with ferritinophagy‐cascade ferroptosis and tumor immune activation. Adv. Healthc. Mater., 2021, 10(21), 2100683.
[http://dx.doi.org/10.1002/adhm.202100683] [PMID: 34535975]
[41]
Hodge, D.R.; Hurt, E.M.; Farrar, W.L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer, 2005, 41(16), 2502-2512.
[http://dx.doi.org/10.1016/j.ejca.2005.08.016] [PMID: 16199153]
[42]
DePeaux, K.; Delgoffe, G.M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol., 2021, 21(12), 785-797.
[http://dx.doi.org/10.1038/s41577-021-00541-y] [PMID: 33927375]
[43]
Park, W.; Heo, Y.J.; Han, D.K. New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res., 2018, 22(1), 24.
[http://dx.doi.org/10.1186/s40824-018-0133-y] [PMID: 30275967]
[44]
Kumari, Y.; Kaur, G.; Kumar, R. Gold nanoparticles: New routes across old boundaries. Adv. Colloid Interface Sci., 2019, 274, 102037.
[http://dx.doi.org/10.1016/j.cis.2019.102037] [PMID: 31655366]
[45]
Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol., 2013, 31(4), 240-248.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[46]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[47]
Hühn, J.; Carrillo-Carrion, C.; Soliman, M.G. Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem. Mater., 2017, 29(1), 399-461.
[http://dx.doi.org/10.1021/acs.chemmater.6b04738]
[48]
Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci, 1973, 241(105), 20-22.
[http://dx.doi.org/10.1038/physci241020a0]
[49]
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun., 1994, 0(7), 801-802.
[http://dx.doi.org/10.1039/C39940000801]
[50]
Perala, S.R.K.; Kumar, S. On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method. Langmuir, 2013, 29(31), 9863-9873.
[http://dx.doi.org/10.1021/la401604q] [PMID: 23848382]
[51]
Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev., 2012, 41(6), 2256-2282.
[http://dx.doi.org/10.1039/C1CS15166E] [PMID: 22130549]
[52]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13(10), 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[53]
Vaseghi, Z.; Nematollahzadeh, A.; Tavakoli, O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review. Rev. Chem. Eng., 2018, 34(4), 529-559.
[http://dx.doi.org/10.1515/revce-2017-0005]
[54]
Mukherjee, S.; Nethi, S.K.; Patra, C.R. Green synthesized gold nanoparticles for future biomedical applications.Particulate Technology for Delivery of Therapeutics; Jana, S.; Jana, S., Eds.; Springer Singapore: Singapore, 2017, pp. 359-393.
[http://dx.doi.org/10.1007/978-981-10-3647-7_11]
[55]
Zarenezhad, E.; Abdulabbas, H.T.; Marzi, M. Nickel nanoparticles: Applications and antimicrobial role against methicillin-resistant Staphylococcus aureus infections. Antibiotics, 2022, 11(9), 1208.
[http://dx.doi.org/10.3390/antibiotics11091208] [PMID: 36139986]
[56]
Nisar, P.; Ali, N.; Rahman, L.; Ali, M.; Shinwari, Z.K. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. J. Biol. Inorg. Chem., 2019, 24(7), 929-941.
[http://dx.doi.org/10.1007/s00775-019-01717-7] [PMID: 31515623]
[57]
Evans, E.R.; Bugga, P.; Asthana, V.; Drezek, R. Metallic nanoparticles for cancer immunotherapy. Mater. Today, 2018, 21(6), 673-685.
[http://dx.doi.org/10.1016/j.mattod.2017.11.022] [PMID: 30197553]
[58]
Desai, N.; Momin, M.; Khan, T.; Gharat, S.; Ningthoujam, R.S.; Omri, A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin. Drug Deliv., 2021, 18(9), 1261-1290.
[http://dx.doi.org/10.1080/17425247.2021.1912008] [PMID: 33793359]
[59]
Briolay, T.; Petithomme, T.; Fouet, M.; Nguyen-Pham, N.; Blanquart, C.; Boisgerault, N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol. Cancer, 2021, 20(1), 55.
[http://dx.doi.org/10.1186/s12943-021-01346-2] [PMID: 33761944]
[60]
Jayasinghe, M.K.; Tan, M.; Peng, B. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Semin. Cancer Biol., 2021, 74, 62-78.
[http://dx.doi.org/10.1016/j.semcancer.2021.02.010] [PMID: 33609665]
[61]
Zhu, G.; Zhang, F.; Ni, Q.; Niu, G.; Chen, X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano, 2017, 11(3), 2387-2392.
[http://dx.doi.org/10.1021/acsnano.7b00978] [PMID: 28277646]
[62]
Foged, C.; Brodin, B.; Frokjaer, S.; Sundblad, A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm., 2005, 298(2), 315-322.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.035] [PMID: 15961266]
[63]
Yoon, H.Y.; Selvan, S.T.; Yang, Y. Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials, 2018, 178, 597-607.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.036] [PMID: 29576282]
[64]
Liu, J.; Zhang, R.; Xu, Z.P. Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions. Small, 2019, 15(32), 1900262.
[http://dx.doi.org/10.1002/smll.201900262] [PMID: 30908864]
[65]
Cruz, L.J.; Tacken, P.J.; Fokkink, R. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control. Release, 2010, 144(2), 118-126.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.013] [PMID: 20156497]
[66]
Luo, L.; Zhu, C.; Yin, H. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors. ACS Nano, 2018, 12(8), 7647-7662.
[http://dx.doi.org/10.1021/acsnano.8b00204] [PMID: 30020768]
[67]
Poilil Surendran, S.; Moon, M.J.; Park, R.; Jeong, Y.Y. Bioactive nanoparticles for cancer immunotherapy. Int. J. Mol. Sci., 2018, 19(12), 3877.
[http://dx.doi.org/10.3390/ijms19123877] [PMID: 30518139]
[68]
He, J.; Liu, S.; Zhang, Y. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front. Pharmacol., 2021, 12, 687399.
[http://dx.doi.org/10.3389/fphar.2021.687399] [PMID: 34163367]
[69]
Li, Y.; Ayala-Orozco, C.; Rauta, P.R.; Krishnan, S. The application of nanotechnology in enhancing immunotherapy for cancer treatment: Current effects and perspective. Nanoscale, 2019, 11(37), 17157-17178.
[http://dx.doi.org/10.1039/C9NR05371A] [PMID: 31531445]
[70]
Patil, M.P.; Kim, G.D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf. B Biointerfaces, 2018, 172, 487-495.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.007] [PMID: 30205339]
[71]
Vinluan, R.D., III; Zheng, J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine, 2015, 10(17), 2781-2794.
[http://dx.doi.org/10.2217/nnm.15.97] [PMID: 26377047]
[72]
Muddapur, U.M.; Alshehri, S.; Ghoneim, M.M. Plant-based synthesis of gold nanoparticles and theranostic applications: A review. Molecules, 2022, 27(4), 1391.
[http://dx.doi.org/10.3390/molecules27041391] [PMID: 35209180]
[73]
Nicosia, A.; Abbadessa, A.; Vento, F.; Mazzaglia, A.; Mineo, P.G. Silver nanoparticles decorated with pegylated porphyrins as potential theranostic and sensing agents. Materials, 2021, 14(11), 2764.
[http://dx.doi.org/10.3390/ma14112764] [PMID: 34071106]
[74]
Peng, G.; Keshavan, S.; Delogu, L.; Shin, Y.; Casiraghi, C.; Fadeel, B. Two‐dimensional transition metal dichalcogenides trigger trained immunity in human macrophages through epigenetic and metabolic pathways. Small, 2022, 18(20), 2107816.
[http://dx.doi.org/10.1002/smll.202107816] [PMID: 35434920]
[75]
Lebre, F.; Boland, J.B.; Gouveia, P. Pristine graphene induces innate immune training. Nanoscale, 2020, 12(20), 11192-11200.
[http://dx.doi.org/10.1039/C9NR09661B] [PMID: 32407430]
[76]
Shao, Y.; Gan, Z.; Epifanovsky, E. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys., 2015, 113(2), 184-215.
[http://dx.doi.org/10.1080/00268976.2014.952696]
[77]
Chen, J.; Jiang, C.C.; Jin, L.; Zhang, X.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol., 2016, 27(3), 409-416.
[http://dx.doi.org/10.1093/annonc/mdv615] [PMID: 26681673]
[78]
Shi, X.; Cheng, Q.; Hou, T. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy. Mol. Ther., 2020, 28(2), 536-547.
[http://dx.doi.org/10.1016/j.ymthe.2019.11.020] [PMID: 31843452]
[79]
Liu, Y.; Qiao, L.; Zhang, S. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater., 2018, 66, 310-324.
[http://dx.doi.org/10.1016/j.actbio.2017.11.010] [PMID: 29129789]
[80]
Nguyen, N.T.T.; Nguyen, T.T.T.; Ge, S.; Liew, R.K.; Nguyen, D.T.C.; Tran, T.V. Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery. Nanoscale Adv., 2024, 6(7), 1800-1821.
[http://dx.doi.org/10.1039/D3NA01075A] [PMID: 38545292]
[81]
Babaei, M.; Abrishami, A.; Iranpour, S.; Saljooghi, A.S.; Matin, M.M. Harnessing curcumin in a multifunctional biodegradable metal-organic framework (bio-MOF) for targeted colorectal cancer theranostics. Drug Deliv. Transl. Res., 2024, 24, 1-20.
[http://dx.doi.org/10.1007/s13346-024-01707-6] [PMID: 39302530]
[82]
Korangath, P.; Jin, L.; Yang, C.T. Iron oxide nanoparticles inhibit tumor progression and suppress lung metastases in mouse models of breast cancer. ACS Nano, 2024, 18(15), 10509-10526.
[http://dx.doi.org/10.1021/acsnano.3c12064] [PMID: 38564478]
[83]
Li, F.R.; Li, Q.; Zhou, H.X.; Qi, H.; Deng, C.Y. Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR. Nanomedicine, 2013, 9(7), 1106-1113.
[http://dx.doi.org/10.1016/j.nano.2013.03.002] [PMID: 23506951]
[84]
Paholak, H.J.; Stevers, N.O.; Chen, H. Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy. Biomaterials, 2016, 104, 145-157.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.045] [PMID: 27450902]
[85]
Duan, X.; Chan, C.; Guo, N.; Han, W.; Weichselbaum, R.R.; Lin, W. Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc., 2016, 138(51), 16686-16695.
[http://dx.doi.org/10.1021/jacs.6b09538] [PMID: 27976881]
[86]
Shi, L; Lin, S; Zhou, F; Jiang, H; Zhang, J Recent advances in engineering prodrug-based nanomedicines for cancer therapy Mater Adv, 2024.
[87]
Ishizuka, M.; Kaibori, M.; Sumiyama, F. Photodynamic therapy with paclitaxel-encapsulated indocyanine green-modified liposomes for breast cancer. Front. Oncol., 2024, 14, 1365305.
[http://dx.doi.org/10.3389/fonc.2024.1365305] [PMID: 38515576]
[88]
Lecot, N.; Fernández-Lomónaco, M.; Cerecetto, H.; Gambini, J.P.; Cabral, P.; Glisoni, R. Indocyanine green within glycosylated polymeric micelles as potential image agents to map sentinel lymph nodes and breast cancer. RSC Pharmaceutics, 2024, 1(1), 57-67.
[http://dx.doi.org/10.1039/D3PM00053B]
[89]
Liu, F.; Chen, Y.; Li, Y. Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. Int. J. Nanomedicine, 2018, 13, 5139-5158.
[http://dx.doi.org/10.2147/IJN.S167043] [PMID: 30233177]
[90]
Yang, X.; Hu, C.; Tong, F. Tumor microenvironment-responsive dual drug dimer-loaded pegylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer. Adv. Funct. Mater., 2019, 29(32), 1901896.
[http://dx.doi.org/10.1002/adfm.201901896]
[91]
Molanouri Shamsi, M.; Chekachak, S.; Soudi, S. Effects of exercise training and supplementation with selenium nanoparticle on T-helper 1 and 2 and cytokine levels in tumor tissue of mice bearing the 4 T1 mammary carcinoma. Nutrition, 2019, 57, 141-147.
[http://dx.doi.org/10.1016/j.nut.2018.05.022] [PMID: 30170303]
[92]
Xu, C.; Yu, Y.; Sun, Y. Transformable nanoparticle‐enabled synergistic elicitation and promotion of immunogenic cell death for triple‐negative breast cancer immunotherapy. Adv. Funct. Mater., 2019, 29(45), 1905213.
[http://dx.doi.org/10.1002/adfm.201905213]
[93]
Atukorale, P.U.; Raghunathan, S.P.; Raguveer, V. Nanoparticle encapsulation of synergistic immune agonists enables systemic codelivery to tumor sites and IFNβ-driven antitumor immunity. Cancer Res., 2019, 79(20), 5394-5406.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0381] [PMID: 31431457]
[94]
Castro, F.; Pinto, M.L.; Pereira, C.L. Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 2020, 257, 120218.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120218] [PMID: 32736253]
[95]
Feng, B.; Niu, Z.; Hou, B.; Zhou, L.; Li, Y.; Yu, H. Enhancing triple negative breast cancer immunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles. Adv. Funct. Mater., 2020, 30(6), 1906605.
[http://dx.doi.org/10.1002/adfm.201906605]
[96]
Jia, Y.P.; Shi, K.; Yang, F. Multifunctional nanoparticle loaded injectable thermoresponsive hydrogel as NIR controlled release platform for local photothermal immunotherapy to prevent breast cancer postoperative recurrence and metastases. Adv. Funct. Mater., 2020, 30(25), 2001059.
[http://dx.doi.org/10.1002/adfm.202001059]
[97]
Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA‐MB‐231 human breast cancer cells. BioMed Res. Int., 2013, 2013(1), 535796.
[98]
Iqbal, H.; Razzaq, A.; Uzair, B. Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice. Materials, 2021, 14(12), 3155.
[99]
Umar, H.; Kavaz, D.; Rizaner, N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomedicine, 2019, 14, 87-100.
[100]
Surya, C.; Lakshminarayana, A.B.; Ramesh, S.H. Advancements in breast cancer therapy: The promise of copper nanoparticles. J. Trace Elem. Med. Biol., 2024, 86, 127526.
[101]
Hullo, M.; Grall, R.; Perrot, Y. Radiation enhancer effect of platinum nanoparticles in breast cancer cell lines: In vitro and in silico analyses. Int. J. Mol. Sci., 2021, 22(9), 4436.
[102]
Hathout, AS; Aljawish, A; Sabry, BA Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. J Appl Pharma Sci., 2017, 7(1), 086-92.
[103]
Zhu, D.; Zhu, X.H.; Ren, S.Z.; Lu, Y.D.; Zhu, H.L. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J. Drug Target., 2021, 29(9), 911-924.
[104]
Medina-Cruz, D; Saleh, B; Vernet-Crua, A Bimetallic nanoparticles for biomedical applications: A review. Racing for the Surface: Antimicrobial and Interface Tissue Engineering., 2020, 397-434.
[105]
Wang, W.; Liu, X.; Ding, L.; Jin, H.J.; Li, X. Rna hydrogel combined with MnO2 nanoparticles as a nano-vaccine to treat triple negative breast cancer. Front Chem., 2021, 24(9), 797094.
[106]
Shao, L.; Liu, D.; Liu, X. Glucose oxidase and MnO2 functionalized liposome for catalytic radiosensitization enhanced synergistic breast cancer therapy. Biomed. Pharmacother., 2024, 179, 117402.
[107]
Yang, G.; Ji, J.; Liu, Z. Multifunctional MnO 2 nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(6), e1720.
[http://dx.doi.org/10.1002/wnan.1720] [PMID: 33908171]
[108]
Pan, W.; Ge, Y.; Yu, Z. A cancer cell membrane-encapsulated MnO 2 nanoreactor for combined photodynamic-starvation therapy. Chem. Commun. (Camb.), 2019, 55(35), 5115-5118.
[http://dx.doi.org/10.1039/C9CC01386E] [PMID: 30969287]
[109]
Zhao, M.; Xie, M.; Guo, J. Facile phototherapeutic nanoplatform by integrating a multifunctional polymer and MnO2 for enhancing tumor synergistic therapy. Adv. Healthc. Mater., 2019, 8(15), 1900414.
[http://dx.doi.org/10.1002/adhm.201900414] [PMID: 31168955]
[110]
Yang, G.; Zhang, R.; Liang, C. Manganese dioxide coated WS 2 @Fe 3 O 4/sSiO 2 nanocomposites for ph‐responsive MR imaging and oxygen‐elevated synergetic therapy. Small, 2018, 14(2), 1702664.
[http://dx.doi.org/10.1002/smll.201702664]
[111]
Wang, X.S.; Zeng, J.Y.; Zhang, M.K.; Zeng, X.; Zhang, X.Z. A versatile pt‐based core–shell nanoplatform as a nanofactory for enhanced tumor therapy. Adv. Funct. Mater., 2018, 28(36), 1801783.
[http://dx.doi.org/10.1002/adfm.201801783]
[112]
Liang, S.; Deng, X.; Chang, Y. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett., 2019, 19(6), 4134-4145.
[http://dx.doi.org/10.1021/acs.nanolett.9b01595] [PMID: 31084016]
[113]
Xu, S.; Zhu, X.; Zhang, C.; Huang, W.; Zhou, Y.; Yan, D. Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat. Commun., 2018, 9(1), 2053.
[http://dx.doi.org/10.1038/s41467-018-04318-1] [PMID: 29795534]
[114]
Zhang, Z.; Niu, N.; Gao, X. A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids Surf. B Biointerfaces, 2019, 173, 335-345.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.008] [PMID: 30316080]
[115]
Chen, Z.; Niu, M.; Chen, G. Oxygen production of modified core–shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy. ACS Nano, 2018, 12(12), 12721-12732.
[http://dx.doi.org/10.1021/acsnano.8b07749] [PMID: 30512923]
[116]
Kalambur, V.S.; Longmire, E.K.; Bischof, J.C. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir, 2007, 23(24), 12329-12336.
[http://dx.doi.org/10.1021/la701100r] [PMID: 17960940]
[117]
Samanta, B.; Yan, H.; Fischer, N.O.; Shi, J.; Jerry, D.J.; Rotello, V.M. Protein-passivated Fe3O4 nanoparticles: Low toxicity and rapid heating for thermal therapy. J. Mater. Chem., 2008, 18(11), 1204-1208.
[http://dx.doi.org/10.1039/b718745a] [PMID: 19122852]
[118]
Gannon, C.J.; Patra, C.R.; Bhattacharya, R.; Mukherjee, P.; Curley, S.A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnology, 2008, 6(1), 2.
[http://dx.doi.org/10.1186/1477-3155-6-2] [PMID: 18234109]
[119]
Curley, S.A.; Cherukuri, P.; Briggs, K. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Ther. Oncol., 2008, 7(4), 313-326.
[PMID: 19227011]
[120]
Buonerba, A.; Lapenta, R.; Donniacuo, A. NIR multiphoton ablation of cancer cells, fluorescence quenching and cellular uptake of dansyl-glutathione-coated gold nanoparticles. Sci. Rep., 2020, 10(1), 11380.
[http://dx.doi.org/10.1038/s41598-020-68397-1] [PMID: 32647291]
[121]
Espinosa, A.; Silva, A.K.A.; Sánchez-Iglesias, A. Photothermal therapy: Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: Toward a plasmonic thermal fingerprint in tumoral environment. Adv. Healthc. Mater., 2016, 5(9), 1112.
[http://dx.doi.org/10.1002/adhm.201670046]
[122]
Huang, Z.; Gao, L.; Kong, L.; Zhang, H.H.; Yang, J.X.; Li, L. In vivo two-photon imaging/excited photothermal therapy strategy of a silver-nanohybrid. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(46), 7377-7386.
[http://dx.doi.org/10.1039/C9TB01769K] [PMID: 31696197]
[123]
Zhao, Z.; Shi, S.; Huang, Y.; Tang, S.; Chen, X. Simultaneous photodynamic and photothermal therapy using photosensitizer-functionalized Pd nanosheets by single continuous wave laser. ACS Appl. Mater. Interfaces, 2014, 6(11), 8878-8885.
[http://dx.doi.org/10.1021/am501608c] [PMID: 24801639]
[124]
Wang, Y.; Wan, J.; Miron, R.J.; Zhao, Y.; Zhang, Y. Antibacterial properties and mechanisms of gold–silver nanocages. Nanoscale, 2016, 8(21), 11143-11152.
[http://dx.doi.org/10.1039/C6NR01114D] [PMID: 27180869]
[125]
Al-Fahdawi, M.Q.; Al-Doghachi, F.A.J.; Abdullah, Q.K. Oxidative stress cytotoxicity induced by platinum-doped magnesia nanoparticles in cancer cells. Biomed. Pharmacother., 2021, 138, 111483.
[http://dx.doi.org/10.1016/j.biopha.2021.111483] [PMID: 33744756]
[126]
Dey, A.; Manna, S.; Kumar, S.; Chattopadhyay, S.; Saha, B.; Roy, S. Immunostimulatory effect of chitosan conjugated green copper oxide nanoparticles in tumor immunotherapy. Cytokine, 2020, 127, 154958.
[http://dx.doi.org/10.1016/j.cyto.2019.154958] [PMID: 31923815]
[127]
Wahab, R.; Kaushik, N.K.; Kaushik, N. ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J. Biomed. Nanotechnol., 2013, 9(7), 1181-1189.
[http://dx.doi.org/10.1166/jbn.2013.1652] [PMID: 23909132]
[128]
Wahab, R.; Siddiqui, M.A.; Saquib, Q. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B Biointerfaces, 2014, 117, 267-276.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.038] [PMID: 24657613]
[129]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alrokayan, S.A. MgO nanoparticles cytotoxicity caused primarily by GSH depletion in human lung epithelial cells. J. Trace Elem. Med. Biol., 2018, 50, 283-290.
[http://dx.doi.org/10.1016/j.jtemb.2018.07.016] [PMID: 30262293]
[130]
Lin, L.S.; Song, J.; Song, L. Simultaneous fenton‐like ion delivery and glutathione depletion by MnO 2 ‐based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed., 2018, 57(18), 4902-4906.
[http://dx.doi.org/10.1002/anie.201712027] [PMID: 29488312]
[131]
Wang, C.; Cao, F.; Ruan, Y.; Jia, X.; Zhen, W.; Jiang, X. Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by CU‐TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed., 2019, 58(29), 9846-9850.
[http://dx.doi.org/10.1002/anie.201903981] [PMID: 31077533]
[132]
Gu, H.; Huang, T.; Shen, Y. Reactive oxygen species‐mediated tumor microenvironment transformation: The mechanism of radioresistant gastric cancer. Oxid. Med. Cell. Longev., 2018, 2018(1), 5801209.
[http://dx.doi.org/10.1155/2018/5801209] [PMID: 29770167]
[133]
Yu, Z.; Li, Q.; Wang, J. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett., 2020, 15(1), 115.
[http://dx.doi.org/10.1186/s11671-020-03344-7] [PMID: 32436107]
[134]
Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6(5), 446-465.
[http://dx.doi.org/10.1016/j.nantod.2011.08.001]
[135]
Guo, S.; Yao, X.; Jiang, Q. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced chemodynamic therapy. Front. Pharmacol., 2020, 11, 226.
[http://dx.doi.org/10.3389/fphar.2020.00226] [PMID: 32210814]
[136]
Ranji-Burachaloo, H.; Gurr, P.A.; Dunstan, D.E.; Qiao, G.G. Cancer treatment through nanoparticle-facilitated fenton reaction. ACS Nano, 2018, 12(12), 11819-11837.
[http://dx.doi.org/10.1021/acsnano.8b07635] [PMID: 30457834]
[137]
Yao, X.; Yang, B.; Wang, S. A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemo] dynamic cancer therapies and photothermally-enhanced immuno] therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(35), 8010-8021.
[http://dx.doi.org/10.1039/D0TB00411A] [PMID: 32766612]
[138]
Ding, B.; Shao, S.; Jiang, F. MnO 2 -disguised upconversion hybrid nanocomposite: An ideal architecture for tumor microenvironment-triggered UCL/MR bioimaging and enhanced chemodynamic therapy. Chem. Mater., 2019, 31(7), 2651-2660.
[http://dx.doi.org/10.1021/acs.chemmater.9b00893]
[139]
Wu, S.; Liu, X.; Ren, J.; Qu, X. Glutathione depletion in a benign manner by MoS 2 ‐based nanoflowers for enhanced hypoxia‐irrelevant free‐radical‐based cancer therapy. Small, 2019, 15(51), 1904870.
[http://dx.doi.org/10.1002/smll.201904870] [PMID: 31750615]
[140]
Vito, A.; El-Sayes, N.; Mossman, K. Hypoxia-driven immune escape in the tumor microenvironment. Cells, 2020, 9(4), 992.
[http://dx.doi.org/10.3390/cells9040992] [PMID: 32316260]
[141]
Lin, T.; Zhao, X.; Zhao, S. O2 -generating MnO 2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics, 2018, 8(4), 990-1004.
[http://dx.doi.org/10.7150/thno.22465] [PMID: 29463995]
[142]
Sweeney, E.E.; Cano-Mejia, J.; Fernandes, R. Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma. Small, 2018, 14(20), 1800678.
[http://dx.doi.org/10.1002/smll.201800678] [PMID: 29665282]
[143]
Mohapatra, A.; Uthaman, S.; Park, I.K. External and internal stimuli-responsive metallic nanotherapeutics for enhanced anticancer therapy. Front. Mol. Biosci., 2021, 7, 597634.
[http://dx.doi.org/10.3389/fmolb.2020.597634] [PMID: 33505987]
[144]
Shen, Z.; Xia, J.; Ma, Q. Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy. Theranostics, 2020, 10(20), 9132-9152.
[http://dx.doi.org/10.7150/thno.46076] [PMID: 32802183]
[145]
Song, M.; Liu, T.; Shi, C.; Zhang, X.; Chen, X. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano, 2016, 10(1), 633-647.
[http://dx.doi.org/10.1021/acsnano.5b06779] [PMID: 26650065]
[146]
Lv, M.; Chen, M.; Zhang, R. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res., 2020, 30(11), 966-979.
[http://dx.doi.org/10.1038/s41422-020-00395-4] [PMID: 32839553]
[147]
Sun, X.; Zhang, Y.; Li, J. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol., 2021, 16(11), 1260-1270.
[http://dx.doi.org/10.1038/s41565-021-00962-9] [PMID: 34594005]
[148]
Schmidt, M.; Raghavan, B.; Müller, V. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol., 2010, 11(9), 814-819.
[http://dx.doi.org/10.1038/ni.1919] [PMID: 20711192]
[149]
Cui, Y.; Liu, H.; Zhou, M. Signaling pathway of inflammatory responses in the mouse liver caused by TiO 2 nanoparticles. J. Biomed. Mater. Res. A, 2011, 96A(1), 221-229.
[http://dx.doi.org/10.1002/jbm.a.32976] [PMID: 21105171]
[150]
Jang, E.S.; Shin, J.H.; Ren, G. The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles. Biomaterials, 2012, 33(22), 5584-5592.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.041] [PMID: 22575830]
[151]
Zhao, Y.; Zhao, X.; Cheng, Y.; Guo, X.; Yuan, W. Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol. Pharm., 2018, 15(5), 1791-1799.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01103] [PMID: 29570298]
[152]
Chakraborty, B.; Pal, R.; Ali, M. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma. Cell. Mol. Immunol., 2016, 13(2), 191-205.
[http://dx.doi.org/10.1038/cmi.2015.05] [PMID: 25938978]
[153]
Pillarisetti, S.; Uthaman, S.; Huh, K.M.; Koh, Y.S.; Lee, S.; Park, I.K. Multimodal composite iron oxide nanoparticles for biomedical applications. Tissue Eng. Regen. Med., 2019, 16(5), 451-465.
[http://dx.doi.org/10.1007/s13770-019-00218-7] [PMID: 31624701]
[154]
Toraya-Brown, S.; Sheen, M.R.; Zhang, P. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors. Nanomedicine, 2014, 10(6), 1273-1285.
[http://dx.doi.org/10.1016/j.nano.2014.01.011] [PMID: 24566274]
[155]
Gardner, A.; de Mingo Pulido, Á.; Ruffell, B. Dendritic cells and their role in immunotherapy. Front. Immunol., 2020, 11, 924.
[http://dx.doi.org/10.3389/fimmu.2020.00924] [PMID: 32508825]
[156]
Shortman, K.; Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol., 2002, 2(3), 151-161.
[http://dx.doi.org/10.1038/nri746] [PMID: 11913066]
[157]
Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol., 2016, 37(12), 855-865.
[http://dx.doi.org/10.1016/j.it.2016.09.006] [PMID: 27793569]
[158]
Jia, J.; Zhang, Y.; Xin, Y.; Jiang, C.; Yan, B.; Zhai, S. Interactions between nanoparticles and dendritic cells: From the perspective of cancer immunotherapy. Front. Oncol., 2018, 8, 404.
[http://dx.doi.org/10.3389/fonc.2018.00404] [PMID: 30319969]
[159]
Kang, S.; Ahn, S.; Lee, J. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J. Control. Release, 2017, 256, 56-67.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.024] [PMID: 28428066]
[160]
Zhou, Q.; Zhang, Y.; Du, J. Different-sized gold nanoparticle activator/antigen increases dendritic cells accumulation in liver-draining lymph nodes and CD8+ T Cell responses. ACS Nano, 2016, 10(2), 2678-2692.
[http://dx.doi.org/10.1021/acsnano.5b07716] [PMID: 26771692]
[161]
Vang, K.B.; Safina, I.; Darrigues, E. Modifying dendritic cell activation with plasmonic nano vectors. Sci. Rep., 2017, 7(1), 5513.
[http://dx.doi.org/10.1038/s41598-017-04459-1] [PMID: 28710434]
[162]
Schanen, B.C.; Das, S.; Reilly, C.M. Immunomodulation and T helper TH1/TH2 response polarization by CeO2 and TiO2 nanoparticles. PLoS One, 2013, 8(5), e62816.
[http://dx.doi.org/10.1371/journal.pone.0062816] [PMID: 23667525]
[163]
Cheng, H.W.; Tsao, H.Y.; Chiang, C.S.; Chen, S.Y. Advances in magnetic nanoparticle‐mediated cancer immune‐theranostics. Adv. Healthc. Mater., 2021, 10(1), 2001451.
[http://dx.doi.org/10.1002/adhm.202001451] [PMID: 33135398]
[164]
Robinson, B.D.; Sica, G.L.; Liu, Y.F. Tumor microenvironment of metastasis in human breast carcinoma: A potential prognostic marker linked to hematogenous dissemination. Clin. Cancer Res., 2009, 15(7), 2433-2441.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2179] [PMID: 19318480]
[165]
Varney, M.L.; Johansson, S.L.; Singh, R.K. Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: Role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A. Melanoma Res., 2005, 15(5), 417-425.
[http://dx.doi.org/10.1097/00008390-200510000-00010] [PMID: 16179869]
[166]
Kawamura, K.; Komohara, Y.; Takaishi, K.; Katabuchi, H.; Takeya, M. Detection of M2 macrophages and colony‐stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol. Int., 2009, 59(5), 300-305.
[http://dx.doi.org/10.1111/j.1440-1827.2009.02369.x] [PMID: 19432671]
[167]
Kang, J.C.; Chen, J.S.; Lee, C.H.; Chang, J.J.; Shieh, Y.S. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J. Surg. Oncol., 2010, 102(3), 242-248.
[http://dx.doi.org/10.1002/jso.21617] [PMID: 20740582]
[168]
Yang, S.; Liu, Q.; Liao, Q. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: Origin, polarization, function, and reprogramming. Front. Cell Dev. Biol., 2021, 8, 607209.
[http://dx.doi.org/10.3389/fcell.2020.607209] [PMID: 33505964]
[169]
Chattopadhyay, S.; Dash, S.K.; Mandal, D. Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine. Vaccine, 2016, 34(7), 957-967.
[http://dx.doi.org/10.1016/j.vaccine.2015.12.053] [PMID: 26772632]
[170]
Tomić, S.; Đokić, J.; Vasilijić, S. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS One, 2014, 9(5), e96584.
[http://dx.doi.org/10.1371/journal.pone.0096584] [PMID: 24802102]
[171]
Mo, Y.; Mo, Y.; Zhu, X. Cytokine and NO release from peripheral blood neutrophils after exposure to metal nanoparticles: in vitro and ex vivo studies. Nanotoxicology, 2008, 2(2), 79-87.
[http://dx.doi.org/10.1080/17435390802112874]
[172]
Shariatzadeh, S.; Moghimi, N.; Khalafi, F. Metallic nanoparticles for the modulation of tumor microenvironment; a new horizon. Front. Bioeng. Biotechnol., 2022, 10, 847433.
[http://dx.doi.org/10.3389/fbioe.2022.847433] [PMID: 35252155]
[173]
Choi, B.; Choi, H.; Yu, B.; Kim, D.H. Synergistic local combination of radiation and anti-programmed death ligand 1 immunotherapy using radiation-responsive splintery metallic nanocarriers. ACS Nano, 2020, 14(10), 13115-13126.
[http://dx.doi.org/10.1021/acsnano.0c04701] [PMID: 32885958]
[174]
Korangath, P; Barnett, JD; Sharma, A Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer. Sci Adv, 2020, 6(13), eaay1601.
[http://dx.doi.org/10.1126/sciadv.aay1601]
[175]
Zhu, J.; Zhi, Q.; Zhou, B.P.; Tao, M.; Liu, J.; Li, W. The role of tumor associated macrophages in the tumor microenvironment: Mechanism and functions. Anti Ccancer Agents Med Chem (Former Curr Med Chem Anti Cancer Agents), 2016, 16, 1133-1141.
[http://dx.doi.org/10.2174/1871520616666160520112622] [PMID: 27198986]
[176]
Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol., 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[177]
Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer, 2006, 42(6), 717-727.
[http://dx.doi.org/10.1016/j.ejca.2006.01.003] [PMID: 16520032]
[178]
Heath, W.R.; Kato, Y.; Steiner, T.M.; Caminschi, I. Antigen presentation by dendritic cells for B cell activation. Curr. Opin. Immunol., 2019, 58, 44-52.
[http://dx.doi.org/10.1016/j.coi.2019.04.003] [PMID: 31071588]
[179]
Bezu, L.; Gomes-de-Silva, L.C.; Dewitte, H. Combinatorial strategies for the induction of immunogenic cell death. Front. Immunol., 2015, 6, 187.
[http://dx.doi.org/10.3389/fimmu.2015.00187] [PMID: 25964783]
[180]
Shao, D.; Li, J.; Zheng, X. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials, 2016, 100, 118-133.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.030] [PMID: 27258482]
[181]
Greppi, M.; Tabellini, G.; Patrizi, O. Strengthening the antitumor NK cell function for the treatment of ovarian cancer. Int. J. Mol. Sci., 2019, 20(4), 890.
[http://dx.doi.org/10.3390/ijms20040890] [PMID: 30791364]
[182]
Chen, L.; Ma, X.; Dang, M. Simultaneous T cell activation and macrophage polarization to promote potent tumor suppression by iron oxide‐embedded large‐pore mesoporous organosilica core–shell nanospheres. Adv. Healthc. Mater., 2019, 8(9), 1900039.
[http://dx.doi.org/10.1002/adhm.201900039] [PMID: 30838801]
[183]
Yu, G.T.; Rao, L.; Wu, H. Myeloid‐derived suppressor cell membrane‐coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv. Funct. Mater., 2018, 28(37), 1801389.
[http://dx.doi.org/10.1002/adfm.201801389]
[184]
Zhang, W.; Cao, S.; Liang, S. Differently charged super-paramagnetic iron oxide nanoparticles preferentially induced m1-like phenotype of macrophages. Front. Bioeng. Biotechnol., 2020, 8, 537.
[http://dx.doi.org/10.3389/fbioe.2020.00537] [PMID: 32548111]
[185]
Gu, Z.; Liu, T.; Tang, J. Mechanism of iron oxide-induced macrophage activation: The impact of composition and the underlying signaling pathway. J. Am. Chem. Soc., 2019, 141(15), 6122-6126.
[http://dx.doi.org/10.1021/jacs.8b10904] [PMID: 30933483]
[186]
Schanen, B.C.; Karakoti, A.S.; Seal, S.; Drake, D.R., III; Warren, W.L.; Self, W.T. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano, 2009, 3(9), 2523-2532.
[http://dx.doi.org/10.1021/nn900403h] [PMID: 19769402]
[187]
Shen, C.C.; Liang, H.J.; Wang, C.C.; Liao, M.H.; Jan, T.R. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. Int. J. Nanomedicine, 2011, 6, 2791-2798.
[PMID: 22114506]
[188]
Zhou, B.; Wu, Q.; Wang, M. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. Chem. Eng. J., 2020, 396, 125239.
[http://dx.doi.org/10.1016/j.cej.2020.125239] [PMID: 32523422]
[189]
Zhou, B.; Song, J.; Wang, M. BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy. Nanoscale, 2018, 10(46), 21640-21647.
[http://dx.doi.org/10.1039/C8NR05323E] [PMID: 30232481]
[190]
Liu, X.; Zheng, J.; Sun, W. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. ACS Nano, 2019, 13(8), 8811-8825.
[http://dx.doi.org/10.1021/acsnano.9b01979] [PMID: 31328922]
[191]
Ishigami, S.; Natsugoe, S.; Tokuda, K. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer, 2000, 88(3), 577-583.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000201)88:3<577:AID-CNCR13>3.0.CO;2-V] [PMID: 10649250]
[192]
Wu, L.; Zhang, F.; Wei, Z. Magnetic delivery of Fe 3 O 4 @polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment. Biomater. Sci., 2018, 6(10), 2714-2725.
[http://dx.doi.org/10.1039/C8BM00588E] [PMID: 30151523]
[193]
le Guével, X.; Palomares, F.; Torres, M.J.; Blanca, M.; Fernandez, T.D.; Mayorga, C. Nanoparticle size influences the proliferative responses of lymphocyte subpopulations. RSC Advances, 2015, 5(104), 85305-85309.
[http://dx.doi.org/10.1039/C5RA16164A]
[194]
Haghighat, F.; Kim, Y.; Sourinejad, I.; Yu, I.J.; Johari, S.A. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere, 2021, 262, 127805.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127805] [PMID: 32750593]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy