Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

A Highly Efficient Chromium Functionalized, Imidazolium Di-Cationic Ionic Liquid Catalyst System for the Oxidation of Aromatic Primary Alcohols

Author(s): Yash Barot, Vivek Anand, Satyendra Mishra and Roli Mishra*

Volume 12, Issue 3, 2025

Published on: 16 January, 2025

Page: [213 - 223] Pages: 11

DOI: 10.2174/0122133372355628241209052903

Price: $65

Abstract

Background: The oxidation of aromatic primary alcohols is pivotal in organic synthesis, converting accessible starting materials into valuable intermediates. Traditional methods often rely on chromium-based reagents, which are hazardous and environmentally problematic. Ionic liquids, particularly those based on imidazolium cations, offer an attractive alternative due to their unique solvent properties and chemical stability. However, their application in oxidation reactions has been limited by challenges such as selectivity and efficiency. Recent advancements have focused on integrating chromium complexes into imidazolium ionic liquids to harness their catalytic potential. Understanding the catalytic efficiency and mechanistic insights of chromium-functionalized imidazolium di-cationic ionic liquids in alcohol oxidation is crucial for developing sustainable and efficient synthetic methodologies aiming to mitigate environmental impact and improve synthetic efficiency in organic chemistry.

Objectives: The aim of this study was to synthesize, characterize, and explore the catalytic efficiency and mechanism of chromium-functionalized imidazolium di-cationic ionic liquids in the oxidation of aromatic primary alcohols.

Methods: The oxidation of benzyl alcohol was optimized by varying solvent and temperature parameters. Initially, benzyl alcohol was subjected to oxidation in different solvents: water, DMF, ACN, chloroform, 1,2-dichloroethane, and DMSO at room temperature. Solvent effects were evaluated, with DMF, ACN, and DMSO yielding approximately 80% conversion to the desired aldehyde. Interestingly, DCE did not yield the desired aldehyde. CHCl3 emerged as the optimal solvent, achieving a high yield of 94% in minimal reaction time. Temperature optimization revealed that at room temperature, the reaction required 40 minutes to reach 94% yield. Increasing the temperature to 60°C reduced the reaction time to 10 minutes while maintaining a high yield of 98%. Thus, 60°C was identified as the optimal temperature for maximizing both yield and reaction speed. The methodological adjustments of solvent and temperature parameters provided crucial insights for optimizing the oxidation of benzyl alcohol using chromium-functionalized imidazolium di-cationic ionic liquid.

Results: Reactions at room temperature required longer times and yielded lower product amounts compared to reactions conducted at higher temperatures. Importantly, no over-oxidation to carboxylic acids was observed. Electron-donating groups on aromatic alcohol substrates led to higher yields of aldehydes in shorter times. Conversely, substrates with electron-withdrawing groups showed reduced yields (84% to 92%) over extended periods. Primary aliphatic alcohols exhibited lower yields even with prolonged reaction times, while secondary alcohols yielded fewer oxidation products. Recycling [DIL]2+[Cr2O7]2- for four cycles showed decreased yields over successive uses, highlighting its potential for continuous catalytic use in alcohol oxidation.

Conclusion: In this study, imidazolium-based Di-cationic ionic liquid [DIL]2+[Cr2O7]2- was synthesized, and its ionic liquid properties were demonstrated using TGA and DSC. Our developed catalyst efficiently converts primary aromatic alcohols to aldehydes using [DIL]2+[Cr2O7]2- or [DIL]2+[Cr2O7]2-/H5IO6, offering solvent-free rapid oxidation, catalyst recyclability for up to four cycles, and facile catalyst recovery. In comparison to other available oxidants, the developed protocol has a superior yield, ease of workup, ease of handling, and low hygroscopicity.

Keywords: Di-cationic ionic liquid, oxidation, thermal analyses, DFT, aromatic primary alcohols, electron-donating groups.

Graphical Abstract
[1]
Yang, B.; Qiu, Y.; Bäckvall, J.E. Control of selectivity in palladium(II)-catalyzed oxidative transformations of allenes. Acc. Chem. Res., 2018, 51(6), 1520-1531.
[http://dx.doi.org/10.1021/acs.accounts.8b00138] [PMID: 29792667]
[2]
Liang, Y.F.; Jiao, N. Oxygenation via C–H/C–C bond activation with molecular oxygen. Acc. Chem. Res., 2017, 50(7), 1640-1653.
[http://dx.doi.org/10.1021/acs.accounts.7b00108] [PMID: 28636366]
[3]
Li, J.; Li, M.; Sun, H.; Ao, Z.; Wang, S.; Liu, S. Understanding of the oxidation behavior of benzyl alcohol by peroxymonosulfate via carbon nanotubes activation. ACS Catal., 2020, 10(6), 3516-3525.
[http://dx.doi.org/10.1021/acscatal.9b05273]
[4]
Qiu, L.; Ma, Z.; Li, P.; Hu, X.; Chen, C.; Zhu, X.; Liu, M.; Zhang, Y.; Li, H.; Yao, S. Sensitive and selective detection of chromium (VI) based on two-dimensional luminescence metal organic framework nanosheets via the mechanism integrating chemical oxidation-reduction and inner filter effect. J. Hazard. Mater., 2021, 419, 126443.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126443] [PMID: 34175704]
[5]
Fawzy, A.; Ashour, S.S.; Musleh, M.A.; Hassan, R.M.; Asghar, B.H. Kinetics and mechanistic approach to the chromic acid oxidation of l-tryptophan with a spectral detection of chromium(III) product. J. Saudi Chem. Soc., 2016, 20(4), 450-458.
[http://dx.doi.org/10.1016/j.jscs.2014.10.003]
[6]
Kim, S.; Lhim, D.C. Imidazolium dichromate: A new reagent for the oxidation of alcohols to carbonyl compounds. Bull. Chem. Soc. Jpn., 1986, 59(10), 3297-3298.
[http://dx.doi.org/10.1246/bcsj.59.3297]
[7]
Martinez, Y.; de las Heras, M.A.; Vaquera, J.J.; Carcia-Navio, J.L.; Alvarez-Builla, J. 1-(Benzoylamino)-3-methylimidazolium chlorochromate (BAMICC), a new selective and mild reagent for the oxidation of allylic and benzylic alcohols. Tetrahedron Lett., 1995, 36(46), 8513-8516.
[http://dx.doi.org/10.1016/0040-4039(95)01784-F]
[8]
Guziec, F.S.; Guziec, L.F. Synthesis and alkylation of lithium salts of N-nitrosoamines. Synth., 1980, 1980(8), 691-694.
[9]
Tajbakhsh, M.; Hosseinzadeh, R.; Sadatshahabi, M. Synthesis and application of 2,6‐dicarboxy pyridinium fluorochromate as a new solid‐phase oxidant. Synth. Commun., 2005, 35(11), 1547-1554.
[http://dx.doi.org/10.1081/SCC-200058007]
[10]
Hosseinzadeh, R.; Tajbakhsh, M.; Shakoori, A.; Niaki, M.Y. 2,6-Dicarboxypyridinium chlorochromate. An efficient and selective reagent for the mild deprotection of acetals, thioacetals, and 1,1-diacetates to carbonyl compounds. Monatsh. Chem., 2004, 135(10), 1243-1249.
[http://dx.doi.org/10.1007/s00706-004-0193-7]
[11]
Corey, E.J.; Suggs, J.W. Pyridinium chlorochromate: An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett., 1975, 16(31), 2647-2650.
[http://dx.doi.org/10.1016/S0040-4039(00)75204-X]
[12]
Hunsen, M. Carboxylic acids from primary alcohols and aldehydes by a pyridinium chlorochromate catalyzed oxidation. Synthesis, 2005, 2005(15), 2487-2490.
[http://dx.doi.org/10.1055/s-2005-872085]
[13]
Hunsen, M. Pyridinium chlorochromate catalyzed oxidation of alcohols to aldehydes and ketones with periodic acid. Tetrahedron Lett., 2005, 46(10), 1651-1653.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.076]
[14]
Hunsen, M. Fluorochromate-catalyzed periodic acid oxidation of alcohols and aldehydes. J. Fluor. Chem., 2005, 126(9-10), 1356-1360.
[http://dx.doi.org/10.1016/j.jfluchem.2005.07.012]
[15]
Guo, H.; Qi, X.; Hiraga, Y.; Aida, T.M.; Smith, R.L. Jr Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chem. Eng. J., 2017, 314, 508-514.
[http://dx.doi.org/10.1016/j.cej.2016.12.008]
[16]
Dai, C.; Zhang, J.; Huang, C.; Lei, Z. Ionic liquids in selective oxidation: Catalysts and solvents. Chem. Rev., 2017, 117(10), 6929-6983.
[http://dx.doi.org/10.1021/acs.chemrev.7b00030] [PMID: 28459547]
[17]
Kaur, N. Green synthesis of three- to five-membered O -heterocycles using ionic liquids. Synth. Commun., 2018, 48(13), 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
[18]
Tao, Y.; Dong, R.; Pavlidis, I.V.; Chen, B.; Tan, T. Using imidazolium-based ionic liquids as dual solvent-catalysts for sustainable synthesis of vitamin esters: inspiration from bio- and organo-catalysis. Green Chem., 2016, 18(5), 1240-1248.
[http://dx.doi.org/10.1039/C5GC02557E]
[19]
Wang, J.; Zhang, L.; Sun, Y.; Jiang, B.; Chen, Y.; Gao, X.; Yang, H. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Process. Technol., 2018, 177, 81-88.
[http://dx.doi.org/10.1016/j.fuproc.2018.04.013]
[20]
Thomas, P.A.; Marvey, B.B. Room temperature ionic liquids as green solvent alternatives in the metathesis of oleochemical feedstocks. Molecules, 2016, 21(2), 184.
[http://dx.doi.org/10.3390/molecules21020184] [PMID: 26861282]
[21]
Ohno, H.; Yoshizawa-Fujita, M.; Kohno, Y. Functional design of ionic liquids: unprecedented liquids that contribute to energy technology, bioscience, and materials sciences. Bull. Chem. Soc. Jpn., 2019, 92(4), 852-868.
[http://dx.doi.org/10.1246/bcsj.20180401]
[22]
Pham-Truong, T.N.; Petenzi, T.; Ranjan, C.; Randriamahazaka, H.; Ghilane, J. Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide. Carbon, 2018, 130, 544-552.
[http://dx.doi.org/10.1016/j.carbon.2018.01.070]
[23]
Shahbaz, K.; Mjalli, F.S.; Vakili-Nezhaad, G.; AlNashef, I.M.; Asadov, A.; Farid, M.M. Thermogravimetric measurement of deep eutectic solvents vapor pressure. J. Mol. Liq., 2016, 222, 61-66.
[http://dx.doi.org/10.1016/j.molliq.2016.06.106]
[24]
Liu, M.; Liang, L.; Li, X.; Gao, X.; Sun, J. Novel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditions. Green Chem., 2016, 18(9), 2851-2863.
[http://dx.doi.org/10.1039/C5GC02605A]
[25]
Zeng, Q.; Mukherjee, A.; Müller, P.; Rogers, R.D.; Myerson, A.S. Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds. Chem. Sci., 2018, 9(6), 1510-1520.
[http://dx.doi.org/10.1039/C7SC04353H] [PMID: 29675194]
[26]
Bobbink, F.D.; Dyson, P.J. Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond. J. Catal., 2016, 343, 52-61.
[http://dx.doi.org/10.1016/j.jcat.2016.02.033]
[27]
Li, X.; Cao, R.; Lin, Q. Selective oxidation of alcohols with H2O2 catalyzed by long chain multi-SO3H functionalized heteropolyanion-based ionic liquids under solvent-free conditions. Catal. Commun., 2015, 69, 5-10.
[http://dx.doi.org/10.1016/j.catcom.2015.05.011]
[28]
Delorme, A.E.; Sans, V.; Licence, P.; Walsh, D.A. Tuning the reactivity of TEMPO during electrocatalytic alcohol oxidations in room-temperature ionic liquids. ACS Sustain. Chem.& Eng., 2019, 7(13), 11691-11699.
[http://dx.doi.org/10.1021/acssuschemeng.9b01823]
[29]
Maio, C.X.; Wang, J.Q.; Yu, B. Synthesis of bimagnetic ionic liquid and application for selective aerobic oxidation of aromatic alcohols under mild conditions. Chem. Commun., 2011, 47, 2697-2699.
[http://dx.doi.org/10.1039/c0cc04644b] [PMID: 21234480]
[30]
Wang, B.; Hu, Y.; Fang, D.; Wu, L.; Xing, R. Efficient and reusable Sn(II)‐containing imidazolium‐based ionic liquid as a catalyst for the oxidation of benzyl alcohol. J. Chin. Chem. Soc. (Taipei), 2016, 63(12), 991-999.
[http://dx.doi.org/10.1002/jccs.201600286]
[31]
Li, M.; Klunder, K.; Blumenthal, E.; Prater, M.B.; Lee, J.; Matthiesen, J.E.; Minteer, S.D. Ionic liquid stabilized 2,2,6,6-tetramethylpiperidine 1-oxyl catalysis for alcohol oxidation. ACS Sustain. Chem.& Eng., 2020, 8(11), 4489-4498.
[http://dx.doi.org/10.1021/acssuschemeng.9b07650]
[32]
Barot, Y.; Mishra, S.; Anand, V.; Mishra, R. Iron containing di-cationic ionic liquid [DIL]2+[2FeCl4]2− as a highly efficient catalyst for the acylation of alcohols, phenols and amines. Catal. Commun., 2023, 182, 106739.
[http://dx.doi.org/10.1016/j.catcom.2023.106739]
[33]
Hosseinzadeh, R.; Mohadjerani, M.; Tajbakhsh, M.; Nouzarian, M. Ionic liquid oxidant for efficient and selective oxidation of benzylic alcohols. Synth. Commun., 2011, 41(12), 1725-1732.
[http://dx.doi.org/10.1080/00397911.2010.492077]
[34]
Hosseinzadeh, R.; Tajbakhsh, M.; Khaledi, H. Ethylenebis(N ‐methylimidazolium) chlorochromate (EBMICC): A new selective and mild reagent for oxidation of alcohols, hydroquinones and trimethylsilyl ethers. J. Chin. Chem. Soc. (Taipei), 2008, 55(1), 239-243.
[http://dx.doi.org/10.1002/jccs.200800036]
[35]
Tajbakhsh, M.; Ghaemi, M.; Sarabi, S.; Ghassemzadeh, M.; Heravi, M.M. N-Methyl Piperidinium chlorochromate adsorbed on alumina: a new and selective reagent for the oxidation of benzylic alcohols to their corresponding carbonyl compounds. Monatsh. Chem., 2000, 131(11), 1213-1216.
[http://dx.doi.org/10.1007/s007060070030]
[36]
Kasmai, H.S.; Mischke, S.G.; Blake, T.J. 18-Crown-6 complexes of n-butylammonium and pyridinium chlorochromates: Mild and selective oxidizing agents for alcohols. J. Org. Chem., 1995, 60(7), 2267-2270.
[http://dx.doi.org/10.1021/jo00112a059]
[37]
Bhar, S.; Chaudhuri, S.K. Remarkable reactivity of pyridinium chlorochromate adsorbed on neutral alumina under solvent-free conditions. Tetrahedron, 2003, 59(19), 3493-3498.
[http://dx.doi.org/10.1016/S0040-4020(03)00471-X]
[38]
Sajadi, S.A.A.; Khaleghian, M. Study of thermal behavior of CrO3 using TG and DSC. J. Therm. Anal. Calorim., 2014, 116(2), 915-921.
[http://dx.doi.org/10.1007/s10973-013-3597-y]
[39]
Khilla, M.A.; Hanafi, Z.M.; Mohamed, A.K. Physico-chemical properties of chromium trioxide and its suboxides. Thermochim. Acta, 1982, 59(2), 139-147.
[http://dx.doi.org/10.1016/0040-6031(82)87121-9]
[40]
Sajadi, S.A.A.; Khorablou, Z.; Alavi, A.N. Thermal analysis of various chromium compounds using TGA and DSC methods: A comparative investigation. J. Therm. Anal. Calorim., 2024, 149(17), 9035-9043.
[http://dx.doi.org/10.1007/s10973-024-13401-3]
[41]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03, revision A.1; Pittsburgh (PA): Gaussian, Inc.; 2003.
[42]
Barot, Y.B.; Anand, V.; Mishra, R. Phenothiazine and triphenylamine-based fluorescent Schiff bases for the dual application of white light generation and H2O2 sensing. New J. Chem., 2022, 46(32), 15666-15677.
[http://dx.doi.org/10.1039/D2NJ02618J]
[43]
Barot, Y.B.; Anand, V.; Mishra, R. AIE-active phenothiazine based Schiff-base for the selective sensing of the explosive picric acid in real water samples and paper-based device. J. Photochem. Photobiol. Chem., 2023, 434, 114224.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114224]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy