Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Optimization Removal of Cd (II) from Aqueous Solution by Exhausted Kahwa Coffee Biochar under Various Carbonization Parameters

Author(s): Nika R. Yanti, Aninda T. Puari*, Rusnam Rusnam and Irriwad Putri

Volume 18, Issue 2, 2025

Published on: 08 January, 2025

Page: [132 - 146] Pages: 15

DOI: 10.2174/0124055204340243241230055026

Price: $65

Abstract

Introduction: Recently, abundant agricultural solid waste has been utilized as sustainable biosorbents for removing heavy metals from aqueous solutions. However, the influence of the carbonization parameters on the specified biosorbent performance has not been well discussed. In this study, we developed the removal efficiency (RE) of Exhausted Kahwa Coffee (EKC) as a low-cost and high-efficiency biosorbent for Cd (II) under various carbonization temperatures (300 – 600°C) and time (1- 4 h).

Methods: The batch biosorption test showed that the EKC biochar with a carbonization temperature of 500˚C and time of 4 h removed 97% of Cd (II) from the solution. The biosorption performance was further investigated by integrating the physicochemical changes in the surface and functional groups of the EKC biochar at different temperatures using BET, SEM, and FT-IR instruments.

Results: The FT-IR showed alterations in the functional groups, while the BET data and SEM images demonstrated that the porous surface of the biochar developed as the temperature increased. Furthermore, the biosorption test data was plotted in the Langmuir and Freundlich isotherm models, where the Langmuir isotherm model showed the better fit of EKC biochar. The maximum biosorption capacity of the EKC biochar on Cd (II) was calculated at 3.41 mg/g by fitting the equilibrium data to Langmuir isotherm equations.

Conclusion: It was found that the kinetic data fitted well with Pseudo-Second-Order (PSO) with a correlation coefficient of R2 = 0.99. These findings imply the influence of the carbonization parameter on the potential biosorption of the EKC biochar on Cd (II).

Keywords: Biosorption, exhausted kahwa coffee, heavy metal, carbonization parameters, Cd (II), pseudosecond- order (PSO).

Graphical Abstract
[1]
Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J Chem 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/6730305]
[2]
Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler FJ. Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 2018; 16(3): 919-46.
[http://dx.doi.org/10.1007/s10311-018-0737-4]
[3]
Vareda JP, Valente AJM, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J Environ Manage 2019; 246: 101-18.
[http://dx.doi.org/10.1016/j.jenvman.2019.05.126]
[4]
Fawzy MA, Darwish H, Alharthi S, Al-Zaban MI, Noureldeen A, Hassan SHA. Process optimization and modeling of Cd2+ biosorption onto the free and immobilized Turbinaria ornata using Box–Behnken experimental design. Sci Rep 2022; 12(1): 3256.
[http://dx.doi.org/10.1038/s41598-022-07288-z] [PMID: 35228594]
[5]
Jiang C, Sheng X, Qian M, Wang Q. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 2008; 72(2): 157-64.
[http://dx.doi.org/10.1016/j.chemosphere.2008.02.006] [PMID: 18348897]
[6]
McLaughlin MJ, Parker DR, Clarke JM. Metals and micronutrients – food safety issues. Field Crops Res 1999; 60(1-2): 143-63.
[http://dx.doi.org/10.1016/S0378-4290(98)00137-3]
[7]
Rahim HU, Akbar WA, Alatalo JM. A comprehensive literature review on cadmium (cd) status in the soil environment and its immobilization by biochar-based materials. Agronomy (Basel) 2022; 12(4): 877.
[http://dx.doi.org/10.3390/agronomy12040877]
[8]
Fadlillah LN, Utami S, Rachmawati AA, Jayanto GD, Widyastuti M. Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia. Heliyon 2023; 9(4): e15485.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15485] [PMID: 37151694]
[9]
World Health Organization (WHO) Guidelines for Drinking-water Quality 4th ed, incorporating the 1st and 2nd addenda Geneva: World Health Organization; 2024 Vol.
[10]
Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol 2021; 4(June): 100209.
[http://dx.doi.org/10.1016/j.clet.2021.100209]
[11]
Anggriawan R. Remediation of heavy metals polluted soils in Indonesia. In: Trialih R, Wardiani FE, Anggriawan R, Putra CD, Said A, editors Indonesia post-pandemic outlook: Environment and technology role for Indonesia development. Jakarta: BRIN Publishing 2022; pp. 49-67.
[http://dx.doi.org/10.55981/brin.538.c504]
[12]
Ahmadi H, Hafiz SS, Sharifi H, Rene NN, Habibi SS, Hussain S. Low cost biosorbent (Melon Peel) for effective removal of Cu (II), Cd (II), and Pb (II) ions from aqueous solution. Case Stu Chem Envir Eng 2022; 6(August): 100242.
[http://dx.doi.org/10.1016/j.cscee.2022.100242]
[13]
Choińska-Pulit A, Sobolczyk-Bednarek J, Łaba W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol Environ Saf 2018; 149: 275-83.
[http://dx.doi.org/10.1016/j.ecoenv.2017.12.008]
[14]
Zhou R, Zhang M, Zhou J, Wang J. Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+. Sci Rep 2019; 9(1): 17538.
[http://dx.doi.org/10.1038/s41598-019-54105-1] [PMID: 31772278]
[15]
Çelebi H, Gök G, Gök O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Sci Rep 2020; 10(1): 17570.
[http://dx.doi.org/10.1038/s41598-020-74553-4] [PMID: 33067532]
[16]
Simón D, Palet C, Costas A, Cristóbal A. Agro-industrial waste as potential heavy metal adsorbents and subsequent safe disposal of spent adsorbents. Water 2022; 14(20): 3298.
[http://dx.doi.org/10.3390/w14203298]
[17]
Nag S, Bar N, Das SK. Sustainable bioremadiation of Cd(II) in fixed bed column using green adsorbents: Application of Kinetic models and GA-ANN technique. Environ Technol Innov 2019; 13: 130-45.
[http://dx.doi.org/10.1016/j.eti.2018.11.007]
[18]
Yanti NR, Puari AT, Rusnam R, Stiyanto E. Potential of exhausted kahwa coffee as activated carbon to remove Cd 2+ and Zn 2+. IOP Conf Ser Earth Environ Sci 2022; 1059(1): 012041.
[http://dx.doi.org/10.1088/1755-1315/1059/1/012041]
[19]
Chen XM, Ma Z, Kitts DD. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chem 2018; 249: 143-53.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.073]
[20]
Klingel T, Kremer JI, Gottstein V, De Rezende TR. A review of coffee by-products including leaf. Foods 2020; 9: 1-20.
[21]
Ronsse F, van Hecke S, Dickinson D, Prins W. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Glob Change Biol Bioenergy 2013; 5(2): 104-15.
[http://dx.doi.org/10.1111/gcbb.12018]
[22]
Rusnam R, Puari AT, Yanti NR, Efrizal E. Utilisation of exhausted coffee husk as low-cost bio-sorbent for adsorption of Pb2+. Trop Life Sci Res 2022; 33(3): 229-52.
[http://dx.doi.org/10.21315/tlsr2022.33.3.12] [PMID: 36545053]
[23]
Xiao H, Peng H, Deng S, Yang X, Zhang Y, Li Y. Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation—Application in reactive black 5 adsorption from aqueous solution. Bioresour Technol 2012; 111: 127-33.
[http://dx.doi.org/10.1016/j.biortech.2012.02.054] [PMID: 22397825]
[24]
Yanti NR, Puari AT. Rusnam, Styanto E. Potential of exhausted kahwa coffee as activated carbon to remove Cd2+ and Zn2+. IOP Conf Ser Earth Environ Sci 2022; 1059.
[http://dx.doi.org/10.1088/1755-1315/1059/1/012041]
[25]
Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv Colloid Interface Sci 2008; 140(2): 114-31.
[http://dx.doi.org/10.1016/j.cis.2007.12.008] [PMID: 18319190]
[26]
Meroufel B, Benali O, Benyahia M, Zenasni MA, Merlin A, George B. Removal of Zn (II) from aqueous solution onto kaolin by batch design. J Water Resource Prot 2013; 5(7): 669-80.
[http://dx.doi.org/10.4236/jwarp.2013.57067]
[27]
Ayalew AA, Aragaw TA. Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue. Adsorpt Sci Technol 2020; 38(5-6): 205-22.
[http://dx.doi.org/10.1177/0263617420920516]
[28]
Lagergren S. About the theory of so-called adsorption of soluble substances Kungliga Svenska Vetenskapsakademiens Handlingar 1898; 24(4): 1-39.
[29]
Ho YS, McKay G, Wase DAJ, Forster CF. Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 2000; 18(7): 639-50.
[http://dx.doi.org/10.1260/0263617001493693]
[30]
Osman NB, Shamsuddin N, Uemura Y. Activated carbon of oil palm empty fruit bunch (EFB). Core and Shaggy Procedia Eng 2016; 148: 758-64.
[http://dx.doi.org/10.1016/j.proeng.2016.06.610]
[31]
Angın D, Altintig E, Köse TE. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 2013; 148: 542-9.
[http://dx.doi.org/10.1016/j.biortech.2013.08.164] [PMID: 24080293]
[32]
Üner O, Bayrak Y. The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater 2018; 268(March): 225-34.
[http://dx.doi.org/10.1016/j.micromeso.2018.04.037]
[33]
Nag S, Mondal A, Roy DN, Bar N, Das SK. Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling. Environ Technol Innov 2018; 11: 83-104.
[http://dx.doi.org/10.1016/j.eti.2018.04.009]
[34]
Sun S, Yu Q, Li M, Zhao H, Wang Y, Ji X. Effect of carbonization temperature on characterization and water vapor adsorption of coffee-shell activated carbon. Adsorpt Sci Technol 2020; 38(9-10): 377-92.
[http://dx.doi.org/10.1177/0263617420950994]
[35]
Li J, He F, Shen X, Hu D, Huang Q. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3PO4-pretreated coffee shells and appraisement for remedying aqueous Cr(VI) contaminants. Bioresour Technol 2020; 315(July): 123840.
[http://dx.doi.org/10.1016/j.biortech.2020.123840] [PMID: 32693347]
[36]
Lawtae P, Tangsathitkulchai C. The use of high surface area mesoporous-activated carbon from longan seed biomass for increasing capacity and kinetics of methylene blue adsorption from aqueous solution. Molecules 2021; 26(21): 6521.
[http://dx.doi.org/10.3390/molecules26216521] [PMID: 34770928]
[37]
ALOthman Z. A review: Fundamental aspects of silicate mesoporous materials. Materials (Basel) 2012; 5(12): 2874-902.
[http://dx.doi.org/10.3390/ma5122874]
[38]
Saasa V, Orasugh JT, Mwakikunga B, Ray SS. Electrospun rGO-PVDF/WO3 composite fibers for SO2 sensing. Mater Sci Semicond Process 2024; 181(October): 108631.
[http://dx.doi.org/10.1016/j.mssp.2024.108631]
[39]
Huang H, Reddy NG, Huang X, et al. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci Rep 2021; 11(1): 7419.
[http://dx.doi.org/10.1038/s41598-021-86701-5] [PMID: 33795757]
[40]
Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K. Physical and chemical characterization of waste wood derived biochars. Waste Manag 2015; 36: 256-68.
[http://dx.doi.org/10.1016/j.wasman.2014.10.029] [PMID: 25464942]
[41]
Niazi NK, Bibi I, Shahid M, et al. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environ Pollut 2018; 232: 31-41.
[http://dx.doi.org/10.1016/j.envpol.2017.09.051] [PMID: 28966026]
[42]
Abbas Z, Ali S, Rizwan M, et al. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar. Arab J Geosci 2018; 11(16): 448.
[http://dx.doi.org/10.1007/s12517-018-3790-1]
[43]
Fonseca GC, Oliveira MS, Martins CVC, de Souza JCP. How the carbonization time of sugarcane biomass affects the microstructure of biochar and the adsorption process? Sustainability (Basel) 2022; 14(3): 1571.
[http://dx.doi.org/10.3390/su14031571]
[44]
Ho Y, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 2000; 34(3): 735-42.
[http://dx.doi.org/10.1016/S0043-1354(99)00232-8]
[45]
Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J Hazard Mater 2010; 184(1-3): 126-34.
[http://dx.doi.org/10.1016/j.jhazmat.2010.08.014] [PMID: 20817346]
[46]
Minamisawa M, Minamisawa H, Yoshida S, Takai N. Adsorption behavior of heavy metals on biomaterials. J Agric Food Chem 2004; 52(18): 5606-11.
[http://dx.doi.org/10.1021/jf0496402] [PMID: 15373400]
[47]
Puari AT, Azora A, Rusnam R, Yanti NR, Arlius F, Shukor MY. Carbonization parameters optimization for the biosorption capacity of Cu2+ by a novel biosorbent from agroindustrial solid waste using response surface methodology. Chem Envir Engin 2024; 9: 100645.
[http://dx.doi.org/10.1016/j.cscee.2024.100645]
[48]
Oliveira WE, Franca AS, Oliveira LS, Rocha SD. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 2008; 152(3): 1073-81.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.085] [PMID: 17804159]
[49]
Singh K, Singh A, Hasan S. Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: Kinetic and equilibrium studies. Bioresour Technol 2006; 97(8): 994-1001.
[http://dx.doi.org/10.1016/j.biortech.2005.04.043] [PMID: 15993581]
[50]
Ghasemi S, Mafi Gholami R, Yazdanian M. Biosorption of heavy metal from cadmium rich aqueous solutions by tea waste as a low cost bio-adsorbent. Jundis. J Health Sci 2016; 9(1)
[http://dx.doi.org/10.17795/jjhs-37301]
[51]
Singh K, Rastogi R, Hasan S. Removal of cadmium from wastewater using agricultural waste ‘rice polish’. J Hazard Mater 2005; 121(1-3): 51-8.
[http://dx.doi.org/10.1016/j.jhazmat.2004.11.002] [PMID: 15885406]
[52]
Memon JR, Memon SQ, Bhanger MI, Memon GZ, El-Turki A, Allen GC. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surf B Biointerfaces 2008; 66(2): 260-5.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.001] [PMID: 18760572]
[53]
Saikaew W, Kaewsarn P, Saikaew W. Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad Sci Eng Technol 2009; 56: 287-91.
[54]
Minamisawa M, Nakajima S, Minamisawa H, Yoshida S, Takai N. Removal of copper(II) and cadmium(II) from water using roasted coffee beans.In: Lichtfouse E, Schwarzbauer J, Robert D, editors Environmental Chemistry: Green Chemistry and Pollutants in Ecosystems. Berlin: Springer-Verlag 2005; pp. 259-65.
[http://dx.doi.org/10.1007/3-540-26531-7_25]
[55]
Ho YS, Ofomaja AE. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem Eng J 2006; 30(2): 117-23.
[http://dx.doi.org/10.1016/j.bej.2006.02.012]
[56]
Das A, Bar N, Das SK. Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: Batch Experiments, statistical, and GA modeling. Int J Environ Sci Technol 2023; 20(1): 537-50.
[http://dx.doi.org/10.1007/s13762-021-03842-w]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy