Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Preparation, Computational and Spectroscopic Analysis of a n Efficient Medicinal Molecule: 4-Bromoquinoline-2-carboxaldehyde

Author(s): M. Amin Mir*

Volume 12, Issue 3, 2025

Published on: 07 January, 2025

Page: [224 - 232] Pages: 9

DOI: 10.2174/0122133372362996241228014644

Price: $65

Abstract

Introduction: This paper presents the synthesis, spectroscopic characterization, and computational modeling of 4-Bromoquinoline-2-carboxaldehyde (4-BQCA), an effective therapeutic compound. 4-BQCA, a quinoline derivative, has drawn interest because of its distinct chemical structure and its medical uses.

Method: The chemical was produced with excellent yield and purity using a simple, repeatable reaction route. Density functional theory (DFT) studies were carried out to learn more about the compound's molecular characteristics, including its electronic structure, bonding, and stability. The structure and functional groups found in 4-BQCA were verified by spectroscopic investigation, which included UV-Vis, FT-IR, NMR, and mass spectrometry.

Result: The compound's stability and advantageous electrical characteristics are highlighted by the results of both computational and experimental methods, indicating that it may find application in medication design and development.

Conclusion: These results offer a starting point for further investigations into the biological activity and therapeutic effectiveness of 4-BQCA, indicating that it is a viable option for more study in pharmaceutical applications.

Keywords: Computational modelling, polarizability, B3LYP, medicinal chemistry, molecular efficiency, 4-BQCA.

Graphical Abstract
[1]
Morimoto, Y.; Matsuda, F.; Shirahama, H. Total synthesis of virantmycin and determination of its stereochemistry. Synlett, 1991, 1991(3), 202-203.
[http://dx.doi.org/10.1055/s-1991-20680]
[2]
Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 1997, 14(1), 11-20.
[http://dx.doi.org/10.1039/np9971400011] [PMID: 9121729]
[3]
Markees, D.G.; Dewey, V.C.; Kidder, G.W. Antiprotozoal 4-aryloxy-2-aminoquinolines and related compounds. J. Med. Chem., 1970, 13(2), 324-326.
[http://dx.doi.org/10.1021/jm00296a048] [PMID: 5418519]
[4]
Campbell, S.F.; Hardstone, J.D.; Palmer, M.J.; Michael, J. 2,4-Diamino-6,7-dimethoxyquinoline derivatives as. alpha.1-adrenoceptor antagonists and antihypertensive agents. J. Med. Chem., 1988, 31(5), 1031-1035.
[http://dx.doi.org/10.1021/jm00400a025] [PMID: 2896245]
[5]
Samson, A.; Jenekhe, L.; Maksudul, M. New conjugated polymers with donor-acceptor architectures: Synthesis and photo physics of carbazole-quinoline and phenothiazine-quinoline copolymer and oligomers exhibiting large intramolecular charge transfer. Macromolecules, 2001, 34, 7315-7324.
[http://dx.doi.org/10.1021/ma0100448]
[6]
Agrawal, A.K.; Jenekhe, S.A. Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 3. New conjugated polyquinolines with electron-donor or -acceptor side groups. Chem. Mater., 1993, 5(5), 633-640.
[http://dx.doi.org/10.1021/cm00029a010]
[7]
Hayat, F.; Moseley, E.; Salahuddin, A.; Van Zyl, R.L.; Azam, A. Antiprotozoal activity of chloroquinoline based chalcones. Eur. J. Med. Chem., 2011, 46(5), 1897-1905.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.004] [PMID: 21377771]
[8]
Bekhit, A.A.; El-Sayed, O.A.; Aboulmagd, E.; Park, J.Y. Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur. J. Med. Chem., 2004, 39(3), 249-255.
[http://dx.doi.org/10.1016/j.ejmech.2003.12.005] [PMID: 15051173]
[9]
Amin Mir, M.; Manzer, M. F.; Andrews, K.; Hasnain, S.M.; Iqbal, A.; Sehar, S.; Younis, A. Molecular dynamic, Hirshfeld surface, molecular docking and drug likeness studies of a potent anti-oxidant, anti-malaria and anti-Inflammatory medicine. Pyrogallol. Results Chem., 2023, 5, 100763.
[http://dx.doi.org/10.1016/j.rechem.2023.100763]
[10]
Khalili, H.B.; Mollaamin, F.; Monajjemi, M. Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russ. Chem. Bull., 2011, 60(2), 238-241.
[http://dx.doi.org/10.1007/s11172-011-0039-5]
[11]
Raja, M.; Raj, M. R.; Muthu, S.; Suresh, M. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide. J. Mol. Struct., 2017, 1141, 284-298.
[http://dx.doi.org/10.1016/j.molstruc.2017.03.117]
[12]
Chocholousova, J.; Vladimir, S.V.; Hobza, P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H…O and improper blue-shifted C-H…O hydrogen bonds. Phys. Chem., 2004, 6, 37-41.
[13]
Mollaamin, F.; Monajjemi, M. Carbon nanotubes as biosensors for releasing conjugated bisphosphonates: Metal ions in bone tissue: Targeted drug delivery through the DFT method. C-J. Carbon Res, 2023, 9(2), 61.
[http://dx.doi.org/10.3390/c9020061]
[14]
Prasad, M.V.S.; Udaya Sri, N.; Veeraiah, V. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV–vis spectra of 2-chloro-3-quinolinecarboxaldehyde. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 148, 163-174.
[http://dx.doi.org/10.1016/j.saa.2015.03.105] [PMID: 25879986]
[15]
Mollaamin, F.; Monajjemi, M. Delivery of cations (Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+) into the cells by anthocyanins through physico-chemical assessment: A molecular simulation study. Mol. Cell. Biomech., 2024, 21(2), 206.
[http://dx.doi.org/10.62617/mcb.v21i2.206]
[16]
Boo, B.H. Infrared and raman spectrocopic studies of Tris(trimethylsilyl) silane derivatives of ((CH3)3Si-X)3Si)3Si-X [X 1/4 H, Cl, OH, CH3, OCH3, Si(CH3)3]: Vibrational asignments by Hartree-Fock and density-functional theory calculations. J. Korean Phys. Soc., 2011, 59(5(1)), 3192-3200.
[http://dx.doi.org/10.3938/jkps.59.3192]
[17]
Tintu, K. Prasana1, J.C.; Muthu, S.; George1, J. Quantum mechanical calculations and spectroscopic (FT-IR, FT-Raman) investigation on 1- cyclohexyl-1-phenyl-3-(piperidin-1-yl) propan-1-ol, by density functional method. J. Mater. Sci., 2017, 12, 282-301.
[18]
Sureshkumar, B.; Mary, Y.S.; Resmi, K.S.; Panicker, C.Y.; Armaković, S.; Armaković, S.J.; Van Alsenoy, C.; Narayana, B.; Suma, S. Spectroscopic analysis of 8-hydroxyquinoline derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. J. Mol. Struct., 2018, 1156, 336-347.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.120]
[19]
Daisy, M. J.; Chithambarabanu, T. Vibrational spectra (FT-IR, FTRaman), NBO and HOMO, LUMO studies of 2-Thiophene carboxylic acid based on density functional method. J. Appl. Chem., 2015, 8, 6-14.
[20]
Amin Mir, M.; et al.The molecular structural analysis of biologically important catechol molecule: An integrative perspective from experiments and futuristic tools. Curr. Org. Cat., 2023, 12, 17-27.
[21]
Sundar, G.N.; Dominie, J.B.; Radjakoumar, T. Molecular structure and vibrational spectra of 2-chlorobenzoic acid by density functional theory and abinitio Hartree-Fock calculations. Indian J. Pure Appl. Phy., 2009, 47, 248-258.
[22]
Mir, M.A. DFT, hirshfeld surface, molecular docking and drug likeness studies of medicinally important coumarin molecule. Arab. J. Sci. Eng., 2023, 48(6), 7445-7462.
[http://dx.doi.org/10.1007/s13369-022-07476-z]
[23]
Rajagopalan, N.R.; Krishnamoorthy, P.; Jayamoorthy, K.; Austeria, M. Bis (thiourea) strontium chloride as promising NLO material: An experimental and theoretical study. Karbala Int. J. Mod. Sci., 2016, 2(4), 219-225.
[http://dx.doi.org/10.1016/j.kijoms.2016.08.001]
[24]
Al-Zaqri, N.; Pooventhiran, T.; Rao, D.J.; Alsalme, A.; Warad, I.; Thomas, R. Structure, conformational dynamics, quantum mechanical studies and potential biological activity analysis of multiple sclerosis medicine ozanimod. J. Mol. Struct., 2021, 1227, 129685.
[http://dx.doi.org/10.1016/j.molstruc.2020.129685]
[25]
Politzer, P.; Lane, P. A computational study of some nitrofluoromethanes. Struct. Chem., 1990, 1(2-3), 159-164.
[http://dx.doi.org/10.1007/BF00674257]
[26]
Karunanidhi, M.; Balachandran, V.; Narayana, B.; Karnan, M. Analyses of quantum chemical parameters, fukui functions, magnetic susceptibility, hyperpolarizability, frontier molecular orbitals, NBO, vibrational and NMR studies of 1(4-Aminophenyl) ethanone. Int. J. Sci. Res., 2015, 6, 155-172.
[27]
Al-Zaqri, N.; Pooventhiran, T.; Alharthi, F.A.; Bhattacharyya, U.; Thomas, R. Structural investigations, quantum mechanical studies on proton and metal affinity and biological activity predictions of selpercatinib. J. Mol. Liq., 2021, 325, 114765.
[http://dx.doi.org/10.1016/j.molliq.2020.114765] [PMID: 33746318]
[28]
Subramanian, N.; Sundaraganesan, N.; Jayabharathi, J. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(2), 259-269.
[http://dx.doi.org/10.1016/j.saa.2010.03.033] [PMID: 20413344]
[29]
Fathima, R. B.; Johanan C.P., S. Muthu, spectroscopic investigation (FT-IR, FT-Raman, UV, NMR), computational analysis (DFT method) and molecular docking studies on 2-[(acetyloxy) methyl]-4-(2-amino-9h-purin-9-yl) butyl acetate. Int. J. Mater. Sci., 2017, 12, 196-210.
[30]
Christiansen, O.; Gauss, J.; Stanton, J.F. Frequency-dependent polarizabilities and first hyperpolarizabilities of CO and H2O from coupled cluster calculations. Chem. Phys. Lett., 1999, 305(1-2), 147-155.
[http://dx.doi.org/10.1016/S0009-2614(99)00358-9]
[31]
Khanapure, S.; Jagadale, M.; Bansode, P.; Choudhari, P.; Rashinkar, G. Anticancer activity of ruthenocenyl chalcones and their molecular docking studies. J. Mol. Struct., 2018, 1173, 142-147.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.091]
[32]
Thomas, R.; Mary, Y.S.; Resmi, K.S.; Narayana, B.; Sarojini, S.B.K.; Armaković, S.; Armaković, S.J.; Vijayakumar, G.; Alsenoy, C.V.; Mohan, B.J. Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J. Mol. Struct., 2019, 1181, 599-612.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.014]
[33]
Larik, F.A.; Saeed, A.; Faisal, M.; Channar, P.A.; Azam, S.S.; Ismail, H.; Dilshad, E.; Mirza, B. Synthesis, molecular docking and comparative efficacy of various alkyl/aryl thioureas as antibacterial, antifungal and α-amylase inhibitors. Comput. Biol. Chem., 2018, 77, 193-198.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.10.007] [PMID: 30340081]
[34]
Dinesh, R. M.; Arulmozhi, S.; Madhavan, J. UV-vis HOMO-LUMO and hyperpolarizability of I-phenylalanine, 1-phenylalaninium benzoic acid. Int. J. Sci. Eng. Res., 2014, 5(3), 15-17.
[35]
Mulliken, R.S. Electronic population analysis on LCAOMO molecular wave functions. J. Chem. Phys., 1955, 23(10), 1833-1840.
[http://dx.doi.org/10.1063/1.1740588]
[36]
Ayers, P.W.; Parr, R.G. Variational principles for describing chemical reactions: The fukui function and chemical hardness revisited. J. Am. Chem. Soc., 2000, 122(9), 2010-2018.
[http://dx.doi.org/10.1021/ja9924039]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy