Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Review Article

Biomaterials used to Deliver Drugs for Colon Cancer Management

Author(s): Namita Badoniya and Manu Sharma*

Volume 11, 2025

Published on: 24 December, 2024

Article ID: e2212697X299780 Pages: 21

DOI: 10.2174/012212697X299780240905141609

Price: $65

Abstract

Despite the major advancements in cancer treatment, colon cancer (CC) is still one of the most lethal malignancies worldwide. Among various type of cancer, it is the third largest prevailing kind of cancer affecting both men and women equally. Metastatic development is particularly common in individuals with advanced stages and frequently associated with subpar response of chemotherapy and severe morbidity. The unfavorable effects of intense chemotherapy on normal cells and emergence of multidrug resistance are the two main reasons for treatment failure. Recent research in nanotechnology enables the use of advanced natural and synthetic biomaterials alone or in combination to target cancer cells with anticancer medications without affecting healthy cells. Anticancer drug laden nanocarriers improve the drug distribution, bioavailability and accumulation of cytotoxic therapeutic concentration at tumor site along with reduced side effects. Additionally, upon oral administration, polymeric vehicles shield the medication from premature release, degradation in upper gastrointestinal tract and facilitate controlled release at cancerous site of colon. Here, we primarily focus on the present situation and possible advantages of polymeric biomaterials either owned or in conjunction with other therapeutics to develop ideal drug carrier systems to treat colon carcinoma.

Keywords: Colon cancer, biomaterials, drug carrier, nanocarriers, chemotherapy, nanotechnology.

[1]
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[2]
Pacal, I.; Karaboga, D.; Basturk, A.; Akay, B.; Nalbantoglu, U. A comprehensive review of deep learning in colon cancer. Comput. Biol. Med., 2020, 126, 104003-104036.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104003] [PMID: 32987202]
[3]
Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers, 2021, 13(9), 2025-2048.
[http://dx.doi.org/10.3390/cancers13092025] [PMID: 33922197]
[4]
Labianca, R.; Beretta, G.D.; Kildani, B.; Milesi, L.; Merlin, F.; Mosconi, S.; Pessi, M.A.; Prochilo, T.; Quadri, A.; Gatta, G.; de Braud, F.; Wils, J. Colon cancer. Crit. Rev. Oncol. Hematol., 2010, 74(2), 106-133.
[http://dx.doi.org/10.1016/j.critrevonc.2010.01.010] [PMID: 20138539]
[5]
Ulanja, M.B.; Rishi, M.; Beutler, B.D.; Sharma, M.; Patterson, D.R.; Gullapalli, N.; Ambika, S. Colon cancer sidedness, presentation, and survival at different stages. J. Oncol., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/4315032] [PMID: 30915121]
[6]
Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology, 2010, 138(6), 2101-2114.e5.
[http://dx.doi.org/10.1053/j.gastro.2010.01.058] [PMID: 20420949]
[7]
Kow, A.W.C. Hepatic metastasis from colorectal cancer. J. Gastrointest. Oncol., 2019, 10(6), 1274-1298.
[http://dx.doi.org/10.21037/jgo.2019.08.06] [PMID: 31949948]
[8]
Lakemeyer, L.; Sander, S.; Wittau, M.; Henne-Bruns, D.; Kornmann, M.; Lemke, J. Diagnostic and prognostic value of CEA and CA19-9 in colorectal cancer. Diseases, 2021, 9(1), 21-29.
[http://dx.doi.org/10.3390/diseases9010021] [PMID: 33802962]
[9]
Zhao, Y.; Hu, X.; Zuo, X.; Wang, M. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct., 2018, 9(9), 4548-4568.
[http://dx.doi.org/10.1039/C8FO00850G] [PMID: 30118121]
[10]
Saddik, M.S.; Elsayed, M.M.A.; Abdelkader, M.S.A.; El-Mokhtar, M.A.; Abdel-Aleem, J.A.; Abu-Dief, A.M.; Al-Hakkani, M.F.; Farghaly, H.S.; Abou-Taleb, H.A. Novel green biosynthesis of 5-fluorouracil chromium nanoparticles using harpullia pendula extract for treatment of colorectal cancer. Pharmaceutics, 2021, 13(2), 226-243.
[http://dx.doi.org/10.3390/pharmaceutics13020226] [PMID: 33562032]
[11]
Hong, Y.; Rao, Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed. Pharmacother., 2019, 114, 108764-108774.
[http://dx.doi.org/10.1016/j.biopha.2019.108764] [PMID: 30901717]
[12]
Wang, C.P.J.; Byun, M.J.; Kim, S.N.; Park, W.; Park, H.H.; Kim, T.H.; Lee, J.S.; Park, C.G. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J. Control. Release, 2022, 345, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2022.02.028] [PMID: 35227764]
[13]
Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.H.; Manivasagam, G. A critical review on polymeric biomaterials for biomedical applications. Polymers, 2021, 13(17), 3015-3041.
[http://dx.doi.org/10.3390/polym13173015] [PMID: 34503054]
[14]
Zhang, L.; Sang, Y.; Feng, J.; Li, Z.; Zhao, A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target., 2016, 24(7), 579-589.
[http://dx.doi.org/10.3109/1061186X.2015.1128941] [PMID: 26766303]
[15]
Aminabhavi, T.M.; Nadagouda, M.N.; Joshi, S.D.; More, U.A. Guar gum as platform for the oral controlled release of therapeutics. Expert Opin. Drug Deliv., 2014, 11(5), 753-766.
[http://dx.doi.org/10.1517/17425247.2014.897326] [PMID: 24650099]
[16]
Garg, S.S.; Gupta, J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int. J. Biol. Macromol., 2023, 229, 476-485.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.271] [PMID: 36603711]
[17]
Verma, D.; Sharma, S.K. Recent advances in guar gum based drug delivery systems and their administrative routes. Int. J. Biol. Macromol., 2021, 181, 653-671.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.087] [PMID: 33766594]
[18]
George, A.; Shah, P.A.; Shrivastav, P.S. Guar gum: Versatile natural polymer for drug delivery applications. Eur. Polym. J., 2019, 112, 722-735.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.042]
[19]
Dodi, G.; Pala, A.; Barbu, E.; Peptanariu, D.; Hritcu, D.; Popa, M.I.; Tamba, B.I. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. Mater. Sci. Eng. C, 2016, 63, 628-636.
[http://dx.doi.org/10.1016/j.msec.2016.03.032] [PMID: 27040258]
[20]
Praphakar, R.A.; Jeyaraj, M.; Mehnath, S.; Higuchi, A.; Ponnamma, D.; Sadasivuni, K.K.; Rajan, M. A pH-sensitive guar gum- grafted -lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(10), 1519-1530.
[http://dx.doi.org/10.1039/C7TB02551C] [PMID: 32254216]
[21]
Kang, R.K.; Mishr, N.; Rai, V.K. Guar gum micro-particles for targeted co-delivery of doxorubicin and metformin HCL for improved specificity and efficacy against colon cancer: in vitro and in vivo studies. AAPS PharmSciTech, 2020, 21(2), 48.
[http://dx.doi.org/10.1208/s12249-019-1589-3] [PMID: 31900731]
[22]
Noreen, A.; Nazli, Z.H.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol., 2017, 101, 254-272.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.029] [PMID: 28300586]
[23]
De Anda-Flores, Y.; Carvajal-Millan, E.; Campa-Mada, A.; Lizardi-Mendoza, J.; Rascon-Chu, A.; Tanori-Cordova, J.; Martínez-López, A.L. Polysaccharide-based nanoparticles for colon-targeted drug delivery systems. Polysaccharides, 2021, 2(3), 626-647.
[http://dx.doi.org/10.3390/polysaccharides2030038]
[24]
Zhang, W.; Mahuta, K.M.; Mikulski, B.A.; Harvestine, J.N.; Crouse, J.Z.; Lee, J.C.; Kaltchev, M.G.; Tritt, C.S. Novel pectin-based carriers for colonic drug delivery. Pharm. Dev. Technol., 2016, 21(1), 127-130.
[http://dx.doi.org/10.3109/10837450.2014.965327] [PMID: 25255173]
[25]
Gadalla, H.H.; El-Gibaly, I.; Soliman, G.M.; Mohamed, F.A.; El-Sayed, A.M. Amidated pectin/sodium carboxymethylcellulose microspheres as a new carrier for colonic drug targeting: Development and optimization by factorial design. Carbohydr. Polym., 2016, 153, 526-534.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.018] [PMID: 27561525]
[26]
Cheewatanakornkool, K.; Niratisai, S.; Manchun, S.; Dass, C.R.; Sriamornsak, P. Thiolated pectin–doxorubicin conjugates: Synthesis, characterization and anticancer activity studies. Carbohydr. Polym., 2017, 174, 493-506.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.115] [PMID: 28821097]
[27]
Mohamed, J.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym., 2021, 252, 117180-117195.
[http://dx.doi.org/10.1016/j.carbpol.2020.117180] [PMID: 33183627]
[28]
Giri, S.; Dutta, P.; Giri, T.K. Inulin-based carriers for colon drug targeting. J. Drug Deliv. Sci. Technol., 2021, 64, 102595-102609.
[http://dx.doi.org/10.1016/j.jddst.2021.102595]
[29]
Walz, M.; Hirth, T.; Weber, A. Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying in colloids and surfaces a: physicochemical and engineering aspects. Elsevier B.V, 2018, 536, 47-52.
[30]
Shivhare, K.; Garg, C.; Priyam, A.; Gupta, A.; Sharma, A.K.; Kumar, P. Enzyme sensitive smart inulin-dehydropeptide conjugate self-assembles into nanostructures useful for targeted delivery of ornidazole. Int. J. Biol. Macromol., 2018, 106, 775-783.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.071] [PMID: 28818724]
[31]
Walz, M.; Hagemann, D.; Trentzsch, M.; Weber, A.; Henle, T. Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine. Carbohydr. Polym., 2018, 199, 102-108.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.015] [PMID: 30143109]
[32]
Jangid, A.K.; Solanki, R.; Patel, S.; Pooja, D.; Kulhari, H. Genistein encapsulated inulin-stearic acid bioconjugate nanoparticles: Formulation development, characterization and anticancer activity. Int. J. Biol. Macromol., 2022, 206, 213-221.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.031] [PMID: 35181329]
[33]
Shahdadi Sardou, H.; Akhgari, A.; Mohammadpour, A.H.; Beheshti Namdar, A.; Kamali, H.; Jafarian, A.H.; Afrasiabi Garekani, H.; Sadeghi, F. Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis. Eur. J. Pharm. Sci., 2022, 168, 106072.
[http://dx.doi.org/10.1016/j.ejps.2021.106072] [PMID: 34774715]
[34]
Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater., 2015, 6(1), 33-49.
[http://dx.doi.org/10.3390/jfb6010033] [PMID: 25594943]
[35]
Smitha, K.T.; Anitha, A.; Furuike, T.; Tamura, H.; Nair, S.V.; Jayakumar, R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf. B Biointerfaces, 2013, 104, 245-253.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.031] [PMID: 23337120]
[36]
Satitsri, S.; Muanprasat, C. Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules, 2020, 25(24), 5961-5986.
[http://dx.doi.org/10.3390/molecules25245961] [PMID: 33339290]
[37]
Shanmuganathan, R.; Edison, T.N.J.I.; LewisOscar, F.; Kumar, P.; Shanmugam, S.; Pugazhendhi, A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int. J. Biol. Macromol., 2019, 130, 727-736.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.060] [PMID: 30771392]
[38]
Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm., 2012, 81(3), 463-469.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.007] [PMID: 22561955]
[39]
Mittal, H.; Ray, S.S.; Kaith, B.S.; Bhatia, J.K.; Sukriti; Sharma, J.; Alhassan, S.M. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur. Polym. J., 2018, 109, 402-434.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.013]
[40]
Bashal, A.H.; Khalil, K.D.; Abu-Dief, A.M.; El-Atawy, M.A. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications. Int. J. Biol. Macromol., 2023, 253(Pt 4), 126856.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126856] [PMID: 37714231]
[41]
Negm, N.A.; Hefni, H.H.H.; Abd-Elaal, A.A.A.; Badr, E.A.; Abou Kana, M.T.H. Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol., 2020, 152, 681-702.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.196] [PMID: 32084486]
[42]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 487-513.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[43]
Liu, W.; Wang, F.; Zhu, Y.; Li, X.; Liu, X.; Pang, J.; Pan, W. Galactosylated chitosan-functionalized mesoporous silica nanoparticle loading by calcium leucovorin for colon cancer cell-targeted drug delivery. Molecules, 2018, 23(12), 3082-3100.
[http://dx.doi.org/10.3390/molecules23123082] [PMID: 30486276]
[44]
Anitha, A.; Sreeranganathan, M.; Chennazhi, K.P.; Lakshmanan, V.K.; Jayakumar, R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur. J. Pharm. Biopharm., 2014, 88(1), 238-251.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.017] [PMID: 24815764]
[45]
Iqbal, O.; Shah, S.; Abbas, G.; Rasul, A.; Hanif, M.; Ashfaq, M.; Afzal, Z. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery. Int. J. Biol. Macromol., 2021, 182, 2087-2096.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.199] [PMID: 34087298]
[46]
Le-Vinh, B.; Le, N.M.N.; Nazir, I.; Matuszczak, B.; Bernkop-Schnürch, A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int. J. Biol. Macromol., 2019, 133, 647-655.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.081] [PMID: 30986465]
[47]
Jiang, X.; Du, Z.; Zhang, X.; Zaman, F.; Song, Z.; Guan, Y.; Yu, T.; Huang, Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front. Bioeng. Biotechnol., 2023, 11, 1158749-1158756.
[http://dx.doi.org/10.3389/fbioe.2023.1158749] [PMID: 37025360]
[48]
Lin, L.; Regenstein, J.M.; Lv, S.; Lu, J.; Jiang, S. An overview of gelatin derived from aquatic animals: Properties and modification. Trends Food Sci. Technol., 2017, 68, 102-112.
[http://dx.doi.org/10.1016/j.tifs.2017.08.012]
[49]
Campiglio, C.E.; Contessi Negrini, N.; Farè, S.; Draghi, L. Cross-linking strategies for electrospun gelatin scaffolds. Materials, 2019, 12(15), 2476-2499.
[http://dx.doi.org/10.3390/ma12152476] [PMID: 31382665]
[50]
Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control. Release, 2013, 172(3), 1075-1091.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.019] [PMID: 24096021]
[51]
Xie, L.; Shen, M.; Hong, Y.; Ye, H.; Huang, L.; Xie, J. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr. Polym., 2020, 229, 115436-115448.
[http://dx.doi.org/10.1016/j.carbpol.2019.115436] [PMID: 31826393]
[52]
Foox, M.; Zilberman, M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv., 2015, 12(9), 1547-1563.
[http://dx.doi.org/10.1517/17425247.2015.1037272] [PMID: 25943722]
[53]
Anirudhan, T.S.; Mohan, A.M. Novel pH switchable gelatin based hydrogel for the controlled delivery of the anti cancer drug 5-fluorouracil. RSC Adv., 2014, 4(24), 12109-12118.
[http://dx.doi.org/10.1039/c3ra47991a]
[54]
Pooresmaeil, M.; Namazi, H. pH-sensitive carboxymethyl starch-gelatin coated COF/5-Fu for colon cancer therapy. Ind. Crops Prod., 2023, 202, 117102-117119.
[http://dx.doi.org/10.1016/j.indcrop.2023.117102]
[55]
Padhi, J.R.; Nayak, D.; Nanda, A.; Rauta, P.R.; Ashe, S.; Nayak, B. Development of highly biocompatible Gelatin i-Carrageenan based composite hydrogels: In depth physiochemical analysis for biomedical applications. Carbohydr. Polym., 2016, 153, 292-301.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.098] [PMID: 27561499]
[56]
Sharma, R.; Kuche, K.; Thakor, P.; Bhavana, V.; Srivastava, S.; Mehra, N.K.; Jain, S. Chondroitin sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr. Polym., 2022, 286, 119305-119320.
[http://dx.doi.org/10.1016/j.carbpol.2022.119305] [PMID: 35337491]
[57]
Zhao, L.; Liu, M.; Wang, J.; Zhai, G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr. Polym., 2015, 133, 391-399.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.063] [PMID: 26344295]
[58]
Yang, J.; Shen, M.; Wen, H.; Luo, Y.; Huang, R.; Rong, L.; Xie, J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr. Polym., 2020, 230, 115650-115659.
[http://dx.doi.org/10.1016/j.carbpol.2019.115650] [PMID: 31887904]
[59]
Volpi, N. Chondroitin sulfate safety and quality. Molecules, 2019, 24(8), 1447-1458.
[http://dx.doi.org/10.3390/molecules24081447] [PMID: 31013685]
[60]
Khan, A.R.; Yang, X.; Du, X.; Yang, H.; Liu, Y.; Khan, A.Q.; Zhai, G. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydr. Polym., 2020, 233, 115837-115855.
[http://dx.doi.org/10.1016/j.carbpol.2020.115837] [PMID: 32059890]
[61]
Xie, Y.; Xu, W.; Jin, Z.; Zhao, K. Chondroitin sulfate functionalized palmitic acid and cysteine cografted-quaternized chitosan for CD44 and gut microbiota dual-targeted delivery of curcumin. Mater. Today Bio, 2023, 20, 100617-100636.
[http://dx.doi.org/10.1016/j.mtbio.2023.100617] [PMID: 37441137]
[62]
Campea, M.A.; Lofts, A.; Xu, F.; Yeganeh, M.; Kostashuk, M.; Hoare, T. Disulfide-cross-linked nanogel-based nanoassemblies for chemotherapeutic drug delivery. ACS Appl. Mater. Interfaces, 2023, 15(21), 25324-25338.
[http://dx.doi.org/10.1021/acsami.3c02575] [PMID: 37192117]
[63]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[64]
Naya, A.K.; Ara, T.J.; Hasnain, M.S.; Hoda, N. Okra gum–alginate composites for controlled releasing drug delivery in applications of nanocomposite materials in drug delivery; Woodhead publishing series in biomaterials; Elsevier: U.K., 2018, pp. 761-785.
[65]
Hasnain, M.S.; Nayak, A.K.; Kurakula, M.; Hoda, M.N. Alginate nanoparticles in drug delivery in alginates in drug delivery; Academic Press, 2020, pp. 129-152.
[66]
Chiu, H.I.; Lim, V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int. J. Nanomed, 2021, 16, 2995-3020.
[67]
Shanmugapriya, K.; Kim, H.; Kang, H.W. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int. J. Biol. Macromol., 2020, 158, 1163-1174.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.008] [PMID: 32387601]
[68]
Varshosaz, J. Dextran conjugates in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 509-523.
[http://dx.doi.org/10.1517/17425247.2012.673580] [PMID: 22432550]
[69]
Chen, F.; Huang, G.; Huang, H. Preparation and application of dextran and its derivatives as carriers. Int. J. Biol. Macromol., 2020, 145, 827-834.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.151] [PMID: 31756474]
[70]
Hu, Q.; Lu, Y.; Luo, Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym., 2021, 264, 117999.
[http://dx.doi.org/10.1016/j.carbpol.2021.117999] [PMID: 33910733]
[71]
Wasiak, I.; Kulikowska, A.; Janczewska, M.; Michalak, M.; Cymerman, I.A.; Nagalski, A.; Kallinger, P.; Szymanski, W.W.; Ciach, T. Dextran nanoparticle synthesis and properties. PLoS One, 2016, 11(1), e0146237.
[http://dx.doi.org/10.1371/journal.pone.0146237] [PMID: 26752182]
[72]
Zahiri, M.; Babaei, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Hybrid nanoreservoirs based on dextran‐capped dendritic mesoporous silica nanoparticles for CD133‐targeted drug delivery. J. Cell. Physiol., 2020, 235(2), 1036-1050.
[http://dx.doi.org/10.1002/jcp.29019] [PMID: 31276199]
[73]
Abid, M.; Naveed, M.; Azeem, I.; Faisal, A.; Faizan Nazar, M.; Yameen, B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int. J. Pharm., 2020, 586, 119605-119628.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119605] [PMID: 32650112]
[74]
Tiryaki, E.; Başaran Elalmış, Y.; Karakuzu İkizler, B.; Yücel, S. Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels. J. Drug Deliv. Sci. Technol., 2020, 56, 101517.
[http://dx.doi.org/10.1016/j.jddst.2020.101517]
[75]
Kiani, M.; Tekie, F.S.; Dinarvand, M.; Soleimani, M.; Dinarvand, R.; Atyabi, F. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study. J. mater. sci. eng., 2016, 62, 771-778.
[76]
Yahoum, M.M.; Toumi, S.; Hentabli, S.; Tahraoui, H.; Lefnaoui, S.; Hadjsadok, A.; Amrane, A.; Kebir, M.; Moula, N.; Assadi, A.A.; Zhang, J.; Mouni, L. Experimental analysis and neural network modeling of the rheological behavior of xanthan gum and its derivatives. Materials, 2023, 16(7), 2565-2589.
[http://dx.doi.org/10.3390/ma16072565] [PMID: 37048859]
[77]
Jadav, M.; Pooja, D.; Adams, D.J.; Kulhari, H. Advances in xanthan gum-based systems for the delivery of therapeutic agents. Pharmaceutics, 2023, 15(2), 402-418.
[http://dx.doi.org/10.3390/pharmaceutics15020402] [PMID: 36839724]
[78]
Abu Elella, M.H.; Goda, E.S.; Gab-Allah, M.A.; Hong, S.E.; Pandit, B.; Lee, S.; Gamal, H.; Rehman, A.; Yoon, K.R. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. J. Environ. Chem. Eng., 2021, 9(1), 104702-104729.
[http://dx.doi.org/10.1016/j.jece.2020.104702]
[79]
Patel, J.; Maji, B.; Moorthy, N.S.H.N.; Maiti, S. Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Advances, 2020, 10(45), 27103-27136.
[http://dx.doi.org/10.1039/D0RA04366D] [PMID: 35515783]
[80]
Singhvi, G.; Hans, N.; Shiva, N.; Dubey, S.K. Xanthan gum in drug delivery applications.Natural polysaccharides in drug delivery and biomedical applications; Academic Press, 2019, pp. 121-144.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00005-4]
[81]
Riaz, T.; Iqbal, M.W.; Jiang, B.; Chen, J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int. J. Biol. Macromol., 2021, 186, 472-489.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.196] [PMID: 34217744]
[82]
Sara, H.; Yahoum, M.M.; Lefnaoui, S.; Abdelkader, H.; Moulai-Mostefa, N. New alkylated xanthan gum as amphiphilic derivatives: Synthesis, physicochemical and rheological studies. J. Mol. Struct., 2020, 1207, 127768.
[http://dx.doi.org/10.1016/j.molstruc.2020.127768]
[83]
Anwar, M.; Pervaiz, F.; Shoukat, H.; Noreen, S.; Shabbir, K.; Majeed, A.; Ijaz, S. Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system. Polym. Bull., 2021, 78(1), 59-80.
[http://dx.doi.org/10.1007/s00289-019-03092-4]
[84]
Anjum, F.; Bukhari, S.A.; Siddique, M.; Shahid, M.; Potgieter, J.H.; Jaafar, H.Z.E.; Ercisli, S.; Zia-Ul-Haq, M. Microwave irradiated copolymerization of xanthan gum with acrylamide for colonic drug delivery. BioResources, 2015, 10(1), 1434-1451.
[http://dx.doi.org/10.15376/biores.10.1.1434-1451]
[85]
Tian, B.; Hua, S.; Liu, J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym., 2020, 232, 115805.
[http://dx.doi.org/10.1016/j.carbpol.2019.115805] [PMID: 31952603]
[86]
Chu, H.M.; Zhang, R.X.; Huang, Q.; Bai, C.C.; Wang, Z.Z. Chemical conjugation with cyclodextrins as a versatile tool for drug delivery. J. Incl. Phenom. Macrocycl. Chem., 2017, 89(1-2), 29-38.
[http://dx.doi.org/10.1007/s10847-017-0743-3]
[87]
Haimhoffer, Á.; Rusznyák, Á.; Réti-Nagy, K.; Vasvári, G.; Váradi, J.; Vecsernyés, M.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Fenyvesi, F. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci. Pharm., 2019, 87(4), 33-57.
[http://dx.doi.org/10.3390/scipharm87040033]
[88]
Ameli, H.; Alizadeh, N. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Advances, 2022, 12(8), 4681-4691.
[http://dx.doi.org/10.1039/D1RA07791K] [PMID: 35425510]
[89]
Coban, O.; Aytac, Z.; Yildiz, Z.I.; Uyar, T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf. B Biointerfaces, 2021, 197, 111391-111398.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111391] [PMID: 33129100]
[90]
Chandel, D.; Uppal, S.; Mehta, S.K.; Shukla, G. Preparation and characterization of celecoxib entrapped guar gum nanoparticles targeted for oral drug delivery against colon cancer: an in-vitro study. J. Drug Deliv. Ther., 2020, 10(2-s), 14-21.
[http://dx.doi.org/10.22270/jddt.v10i2-s.3951]
[91]
S Kumar, V.; Rijo, J.; M, S. Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery. Int. J. Biol. Macromol., 2018, 110, 318-327.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.082] [PMID: 29378277]
[92]
Zarbab, A.; Sajjad, A.; Rasul, A.; Jabeen, F.; Javaid Iqbal, M. Synthesis and characterization of Guar gum based biopolymeric hydrogels as carrier materials for controlled delivery of methotrexate to treat colon cancer. Saudi J. Biol. Sci., 2023, 30(8), 103731-103742.
[http://dx.doi.org/10.1016/j.sjbs.2023.103731] [PMID: 37483836]
[93]
Zhu, H.; Zhang, L.; Kou, F.; Zhao, J.; Lei, J.; He, J. Targeted therapeutic effects of oral magnetically driven pectin nanoparticles containing chlorogenic acid on colon cancer. Particuology, 2024, 84, 53-59.
[http://dx.doi.org/10.1016/j.partic.2023.02.021]
[94]
Abbas, N.; Rasul, A.; Abbas, G.; Shah, S.; Hanif, M. Targeted delivery of aspirin and metformin to colorectal cancer using disulfide bridged nanoparticles of thiolated pectin and thiolated Eudragit RL100. Mater. Today Commun., 2023, 35, 105586-105596.
[http://dx.doi.org/10.1016/j.mtcomm.2023.105586]
[95]
Sabra, R.; Billa, N.; Roberts, C.J. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int. J. Pharm., 2019, 572, 118775.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118775] [PMID: 31678385]
[96]
Hou, Y.; Jin, J.; Duan, H.; Liu, C.; Chen, L.; Huang, W.; Gao, Z.; Jin, M. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials, 2022, 283, 121440-121459.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121440] [PMID: 35245731]
[97]
Afinjuomo, F.; Fouladian, P.; Parikh, A.; Barclay, T.G.; Song, Y.; Garg, S. Preparation and characterization of oxidized inulin hydrogel for controlled drug delivery. Pharmaceutics, 2019, 11(7), 356-377.
[http://dx.doi.org/10.3390/pharmaceutics11070356] [PMID: 31336580]
[98]
Jangid, A.K.; Patel, K.; Jain, P.; Patel, S.; Gupta, N.; Pooja, D.; Kulhari, H. Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol. Carbohydr. Polym., 2020, 247, 116730-116741.
[http://dx.doi.org/10.1016/j.carbpol.2020.116730] [PMID: 32829852]
[99]
Woraphatphadung, T.; Sajomsang, W.; Rojanarata, T.; Ngawhirunpat, T.; Tonglairoum, P.; Opanasopit, P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech, 2018, 19(3), 991-1000.
[http://dx.doi.org/10.1208/s12249-017-0906-y] [PMID: 29110292]
[100]
Feng, C.; Li, J.; Kong, M.; Liu, Y.; Cheng, X.J.; Li, Y.; Park, H.J.; Chen, X.G. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf. B Biointerfaces, 2015, 128, 439-447.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.042] [PMID: 25769283]
[101]
Zheng, X.F.; Lian, Q.; Yang, H.; Wang, X. Surface molecularly imprinted polymer of chitosan grafted poly (methyl methacrylate) for 5-fluorouracil and controlled release. Sci. Rep., 2016, 6(1), 21409-21420.
[http://dx.doi.org/10.1038/srep21409] [PMID: 26892676]
[102]
Yusefi, M.; Shameli, K.; Lee-Kiun, M.S.; Teow, S.Y.; Moeini, H.; Ali, R.R.; Kia, P.; Jie, C.J.; Abdullah, N.H. Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment. Int. J. Biol. Macromol., 2023, 233, 123388-123401.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123388] [PMID: 36706873]
[103]
Anirudhan, T.S.; Sekhar V, C.; Nair, S.S. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug. J. Drug Deliv. Sci. Technol., 2019, 51, 569-582.
[http://dx.doi.org/10.1016/j.jddst.2019.03.036]
[104]
Xu, L.; Su, T.; Xu, X.; Zhu, L.; Shi, L. Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy. J. Drug Deliv. Sci. Technol., 2019, 53, 101190-101204.
[http://dx.doi.org/10.1016/j.jddst.2019.101190]
[105]
Nazeri, M.T.; Javanbakht, S.; Shaabani, A.; Ghorbani, M. 5-aminopyrazole-conjugated gelatin hydrogel: A controlled 5-fluorouracil delivery system for rectal administration. J. Drug Deliv. Sci. Technol., 2020, 57, 101669.
[http://dx.doi.org/10.1016/j.jddst.2020.101669]
[106]
Tramontano, C.; Martins, J.P.; De Stefano, L.; Kemell, M.; Correia, A.; Terracciano, M.; Borbone, N.; Rea, I.; Santos, H.A. Microfluidic‐assisted production of gastro‐resistant active‐targeted diatomite nanoparticles for the local release of galunisertib in metastatic colorectal cancer cells. Adv. Healthc. Mater., 2023, 12(6), 2202672.
[http://dx.doi.org/10.1002/adhm.202202672] [PMID: 36459471]
[107]
Gunji, S.; Obama, K.; Matsui, M.; Tabata, Y.; Sakai, Y. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery, 2013, 154(5), 991-999.
[http://dx.doi.org/10.1016/j.surg.2013.04.054] [PMID: 24008088]
[108]
Zu, M.; Ma, L.; Zhang, X.; Xie, D.; Kang, Y.; Xiao, B. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids Surf. B Biointerf., 2019, 177, 399-406.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.031] [PMID: 30785037]
[109]
Soe, Z.C.; Poudel, B.K.; Nguyen, H.T.; Thapa, R.K.; Ou, W.; Gautam, M.; Poudel, K.; Jin, S.G.; Jeong, J.H.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J. Pharmaceu. Sci., 2019, 14(1), 40-51.
[http://dx.doi.org/10.1016/j.ajps.2018.09.004] [PMID: 32104437]
[110]
Oommen, O.P.; Duehrkop, C.; Nilsson, B.; Hilborn, J.; Varghese, O.P. Multifunctional hyaluronic acid and chondroitin sulfate nanoparticles: impact of glycosaminoglycan presentation on receptor mediated cellular uptake and immune activation. ACS Appl. Mater. Interfaces, 2016, 8(32), 20614-20624.
[http://dx.doi.org/10.1021/acsami.6b06823] [PMID: 27468113]
[111]
Park, W.; Bae, B.; Na, K. A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment. Biomaterials, 2016, 77, 227-234.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.014] [PMID: 26606448]
[112]
Ayub, A.D.; Chiu, H.I.; Mat Yusuf, S.N.A.; Abd Kadir, E.; Ngalim, S.H.; Lim, V. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 353-369.
[http://dx.doi.org/10.1080/21691401.2018.1557672] [PMID: 30691309]
[113]
Hosseinifar, T.; Sheybani, S.; Abdouss, M.; Hassani Najafabadi, S.A.; Shafiee Ardestani, M. Pressure responsive nanogel base on Alginate‐Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J. Biomed. Mater. Res. A, 2018, 106(2), 349-359.
[http://dx.doi.org/10.1002/jbm.a.36242] [PMID: 28940736]
[114]
Upadhyay, M.; Adena, S.K.R.; Vardhan, H.; Yadav, S.K.; Mishra, B. Locust bean gum and sodium alginate based interpenetrating polymeric network microbeads encapsulating Capecitabine: Improved pharmacokinetics, cytotoxicity in vivo antitumor activity. Mater. Sci. Eng. C, 2019, 104, 109958.
[http://dx.doi.org/10.1016/j.msec.2019.109958] [PMID: 31500043]
[115]
Rajpoot, K.; Jain, S.K. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. Int. J. Biol. Macromol., 2020, 151, 830-844.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.132] [PMID: 32061847]
[116]
Sheng, Y.; Gao, J.; Yin, Z.Z.; Kang, J.; Kong, Y. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydr. Polym., 2021, 269, 118325.
[http://dx.doi.org/10.1016/j.carbpol.2021.118325] [PMID: 34294337]
[117]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi-Aliabadi, H.; Firozian, F. Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles. Biomed Res Int., 2014, 2014, 708593.
[http://dx.doi.org/10.1155/2014/708593]
[118]
Zhang, X.; Zhang, R.; Huang, J.; Luo, M.; Chen, X.; Kang, Y.; Wu, J. Albumin enhances dextran NP’s delivery and therapeutic efficacy of PTX for colorectal cancer. J. Mater. Chem. B Mater. Biol. Med., 2019, 7, 3537-3545.
[http://dx.doi.org/10.1039/C9TB00181F]
[119]
Singh, S.; Kotla, N.G.; Tomar, S.; Maddiboyina, B.; Webster, T.J.; Sharma, D.; Sunnapu, O. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil. Int. J. Nanomed., 2015, 10, 7175-7182.
[PMID: 26648721]
[120]
Keramati, Z.; Motalleb, G.; Rahdar, A.; Kerachian, M.A. Anticancer effect of fluorouracil and gum-based cerium oxide nanoparticles on human malignant colon carcinoma cell line (Caco2). Cell J., 2023, 25(3), 194-202.
[PMID: 37038699]
[121]
Trombino, S.; Serini, S.; Cassano, R.; Calviello, G. Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation. Carbohydr. Polym., 2019, 208, 431-440.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.001] [PMID: 30658821]
[122]
Sun, D.; Zou, Y.; Song, L.; Han, S.; Yang, H.; Chu, D.; Dai, Y.; Ma, J.; O’Driscoll, C.M.; Yu, Z.; Guo, J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm. Sin. B, 2022, 12(1), 378-393.
[http://dx.doi.org/10.1016/j.apsb.2021.06.005] [PMID: 35127393]
[123]
Bai, H.; Wang, J.; Phan, C.U.; Chen, Q.; Hu, X.; Shao, G.; Zhou, J.; Lai, L.; Tang, G. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun., 2021, 12(1), 759-782.
[http://dx.doi.org/10.1038/s41467-021-21071-0] [PMID: 33536421]
[124]
Sohail, M.; Mudassir; Minhas, M.U.; Khan, S.; Hussain, Z.; de Matas, M.; Shah, S.A.; Khan, S.; Kousar, M.; Ullah, K. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv. Transl. Res., 2019, 9(2), 595-614.
[http://dx.doi.org/10.1007/s13346-018-0512-x] [PMID: 29611113]
[125]
Sharma, M.; Sharma, V.; Panda, A.K.; Majumdar, D.K. Development of enteric submicron particles formulation of α-amylase for oral delivery. Pharm. Dev. Technol., 2013, 18(3), 560-569.
[http://dx.doi.org/10.3109/10837450.2011.604782] [PMID: 21870905]
[126]
Silva, A.T.; Cardoso, B.C.; Silva, M.E.; Freitas, R.F.; Sousa, R.G. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J. Biomater. Nanobiotechnol., 2015, 6(1), 8-19.
[http://dx.doi.org/10.4236/jbnb.2015.61002]
[127]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9, 1260-1279.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[128]
Wu, P.; Zhou, Q.; Zhu, H.; Zhuang, Y.; Bao, J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer, 2020, 20(1), 354.
[http://dx.doi.org/10.1186/s12885-020-06803-7] [PMID: 32345258]
[129]
El-Hammadi, M.M.; Delgado, Á.V.; Melguizo, C.; Prados, J.C.; Arias, J.L. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int. J. Pharm., 2017, 516(1-2), 61-70.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.012] [PMID: 27825867]
[130]
Mostafa, M.M.; Amin, M.M.; Zakaria, M.Y.; Hussein, M.A.; Shamaa, M.M.; Abd El-Halim, S.M. Chitosan surface-modified PLAnanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells. Pharmaceutics, 2023, 15(2), 606-628.
[http://dx.doi.org/10.3390/pharmaceutics15020606] [PMID: 36839928]
[131]
Cruz-Nova, P.; Ancira-Cortez, A.; Ferro-Flores, G.; Ocampo-García, B.; Gibbens-Bandala, B. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer. Pharmaceutics, 2022, 14(5), 1095-1119.
[http://dx.doi.org/10.3390/pharmaceutics14051095] [PMID: 35631681]
[132]
Gigmes, D.; Trimaille, T. Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Adv. Colloid Interface Sci., 2021, 294, 102483-102418.
[http://dx.doi.org/10.1016/j.cis.2021.102483] [PMID: 34274723]
[133]
Afsharzadeh, M.; Abnous, K.; Yazdian-Robati, R.; Ataranzadeh, A.; Ramezani, M.; Hashemi, M. Formulation and evaluation of anticancer and antiangiogenesis efficiency of PLA–PEG nanoparticles loaded with galbanic acid in C26 colon carcinoma, in vitro and in vivo. J. Cell. Physiol., 2019, 234(5), 6099-6107.
[http://dx.doi.org/10.1002/jcp.27346] [PMID: 30378118]
[134]
Shen, K.; Li, D.; Guan, J.; Ding, J.; Wang, Z.; Gu, J.; Liu, T.; Chen, X. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. Nanomedicine, 2017, 13(3), 1279-1288.
[http://dx.doi.org/10.1016/j.nano.2016.12.022] [PMID: 28064009]
[135]
Park, S.B.; Sung, M.H.; Uyama, H.; Han, D.K. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog. Polym. Sci., 2021, 113, 101341.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101341]
[136]
Li, G.; Wu, J.; Wang, B.; Yan, S.; Zhang, K.; Ding, J.; Yin, J. Self-healing supramolecular self-assembled hydrogels based on poly (L-glutamic acid). Biomacromolecules, 2015, 16(11), 3508-3518.
[http://dx.doi.org/10.1021/acs.biomac.5b01287] [PMID: 26414083]
[137]
Salmanpour, M.; Yousefi, G.; Samani, S.M.; Mohammadi, S.; Anbardar, M.H.; Tamaddon, A. Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer. Eur. J. Pharm. Sci., 2019, 136, 104941.
[http://dx.doi.org/10.1016/j.ejps.2019.05.019] [PMID: 31136788]
[138]
Qiu, R.; Qian, F.; Wang, X.; Li, H.; Wang, L. Targeted delivery of 20(S)-ginsenoside Rg3-based polypeptide nanoparticles to treat colon cancer. Biomed. Microdevices, 2019, 21(1), 18.
[http://dx.doi.org/10.1007/s10544-019-0374-0] [PMID: 30783757]
[139]
Ahangaran, F.; Navarchian, A.H.; Picchioni, F. Material encapsulation in poly(methyl methacrylate) shell: A review. J. Appl. Polym. Sci., 2019, 136(41), 48039.
[http://dx.doi.org/10.1002/app.48039]
[140]
Khan, F.A.; Akhtar, S.; Almohazey, D.; Alomari, M.; Almofty, S.A.; Badr, I.; Elaissari, A. Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1533-1542.
[http://dx.doi.org/10.1080/21691401.2019.1577886] [PMID: 31007071]
[141]
Chang, T.; Gosain, P.; Stenzel, M.H.; Lord, M.S. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)—based micelles and mechanisms of uptake in colon carcinoma cells. Colloids Surf. B Biointerfaces, 2016, 144, 257-264.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.019] [PMID: 27100852]
[142]
Brough, C.; Miller, D.A.; Keen, J.M.; Kucera, S.A.; Lubda, D.; Williams, R.O., III Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1). AAPS PharmSciTech, 2016, 17(1), 167-179.
[http://dx.doi.org/10.1208/s12249-015-0458-y] [PMID: 26637232]
[143]
Rivera-Hernández, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; Sánchez, M.L. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int. J. Pharm., 2021, 600, 120478.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120478] [PMID: 33722756]
[144]
Akhlaq, M.; Azad, A.K.; Ullah, I.; Nawaz, A.; Safdar, M.; Bhattacharya, T.; Uddin, A.B.M.H.; Abbas, S.A.; Mathews, A.; Kundu, S.K.; Miret, M.M.; Murthy, H.C.A.; Nagaswarupa, H.P. Methotrexate-loaded gelatin and polyvinyl alcohol (Gel/PVA) hydrogel as a pH-sensitive matrix. Polymers, 2021, 13(14), 2300-2317.
[http://dx.doi.org/10.3390/polym13142300] [PMID: 34301057]
[145]
Ramnandan, D.; Mokhosi, S.; Daniels, A.; Singh, M. Chitosan.; Polyethylene glycol and Polyvinyl alcohol modified MgFe2O4 ferrite magnetic nanoparticles in Doxorubicin delivery: A comparative study in vitro. Molecules, 2021, 26(13), 3893-3916.
[http://dx.doi.org/10.3390/molecules26133893] [PMID: 34202245]
[146]
Mondal, D.; Griffith, M.; Venkatraman, S.S. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int. J. Polym. Mater., 2016, 65(5), 255-265.
[http://dx.doi.org/10.1080/00914037.2015.1103241]
[147]
Daşkın, D.; Erdoğar, N.; İskit, A.B.; Bilensoy, E. Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2023, 80, 104163.
[http://dx.doi.org/10.1016/j.jddst.2023.104163]
[148]
Sultana, T.; Fahad, M.A.; Park, M.; Kwon, S.H.; Lee, B.T. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL‐mPEG and PDGF loaded PCL‐Chitosan dual layered vascular grafts. Biomaterials, 2023, 112(1), e3532.
[149]
Chang, S.H.; Lee, H.J.; Park, S.; Kim, Y.; Jeong, B. Fast degradable polycaprolactone for drug delivery. Biomacromolecules, 2018, 19(6), 2302-2307.
[http://dx.doi.org/10.1021/acs.biomac.8b00266] [PMID: 29742350]
[150]
Hu, Y.; He, Y.; Ji, J.; Zheng, S.; Cheng, Y. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int. J. Nanomed., 2020, 15, 1239-1252.
[http://dx.doi.org/10.2147/IJN.S232777] [PMID: 32110020]
[151]
Hoang, T. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. J. Polym., 2020, 12(2), 298-315.
[152]
Zhao, X.; Si, J.; Huang, D.; Li, K.; Xin, Y.; Sui, M. Application of star poly(ethylene glycol) derivatives in drug delivery and controlled release. J. Control. Release, 2020, 323, 565-577.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.039] [PMID: 32343992]
[153]
Wei, Y.; Gu, X.; Sun, Y.; Meng, F.; Storm, G.; Zhong, Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control. Release, 2020, 319, 407-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.012] [PMID: 31923538]
[154]
Askarizadeh, A.; Mashreghi, M.; Mirhadi, E.; Mehrabian, A.; Heravi Shargh, V.; Badiee, A.; Alavizadeh, S.H.; Arabi, L.; Kamali, H.; Jaafari, M.R. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer. J. Liposome Res., 2023, 34(2), 221-238.
[PMID: 37647288]
[155]
Sharma, M.; Sharma, R. Implications of designing a bromelain loaded enteric nanoformulation on its stability and anti-inflammatory potential upon oral administration. RSC Advances, 2018, 8(5), 2541-2551.
[http://dx.doi.org/10.1039/C7RA13555F] [PMID: 35541457]
[156]
Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: a technology evaluation. Expert Opin. Drug Deliv., 2013, 10(1), 131-149.
[http://dx.doi.org/10.1517/17425247.2013.736962] [PMID: 23102011]
[157]
Sharma, M.; Sharma, V.; Panda, A.K.; Majumdar, D.K. Development of enteric submicron particle formulation of papain for oral delivery. Int. J. Nanomed., 2011, 6, 2097-2111.
[158]
Sharma, M.; Gupta, N. Mucoadhesive cationic bromelain laden nanocarriers restore patency of airway hyperresponsive remodeling via nasal route. Adv. Ther., 2023, 6(6), 2200302.
[http://dx.doi.org/10.1002/adtp.202200302]
[159]
She, X.; Chen, L.; Velleman, L.; Li, C.; Zhu, H.; He, C.; Wang, T.; Shigdar, S.; Duan, W.; Kong, L. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery. J. Colloid Interfa. Sci., 2015, 445, 151-160.
[http://dx.doi.org/10.1016/j.jcis.2014.12.053] [PMID: 25617610]
[160]
Aisha, A.F.; Abdulmajid, A.M.; Ismail, Z.; Alrokayan, S.A.; Abu-Salah, K.M. Development of polymeric nanoparticles of Garcinia mangostana xanthones in Eudragit RL100/RS100 for anti-colon cancer drug delivery. J. Nanomater., 2016, 16(1), 385-394.
[161]
Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.; Hendawy, O.M.; Abdelgawad, M.A.; Ali, H.M.; Ahmed, Y.M.; El-Say, K.M. Exploring the potential of quercetin/aspirin-loaded chitosan nanoparticles coated with Eudragit L100 in the treatment of induced-colorectal cancer in rats. Drug Deliv. Transl. Res., 2023, 13(10), 2568-2588.
[http://dx.doi.org/10.1007/s13346-023-01338-3] [PMID: 37000409]
[162]
Li, L.; Xiang, D.; Shigdar, S.; Yang, W.; Li, Q.; Lin, J.; Liu, K.; Duan, W. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int. J. Nanomedicine, 2014, 9, 1083-1096.
[PMID: 24591829]
[163]
Li, L.; Li, C.; Zhou, J. Effective sustained release of 5-FU-loaded PLGA implant for improving therapeutic index of 5-FU in colon tumor. Int. J. Pharm., 2018, 550(1-2), 380-387.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.045] [PMID: 30040972]
[164]
Rahmati, A.; Homayouni Tabrizi, M.; Karimi, E.; Zarei, B. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. J. Biomater. Sci. Polym. Ed., 2022, 33(10), 1289-1307.
[http://dx.doi.org/10.1080/09205063.2022.2051693] [PMID: 35260045]
[165]
Zhang, R.; Jiang, Y.; Hao, L.; Yang, Y.; Gao, Y.; Zhang, N.; Zhang, X.; Song, Y. CD44/folate dual targeting receptor reductive response PLGA-based micelles for cancer therapy. Front. Pharmacol., 2022, 13, 829590.
[http://dx.doi.org/10.3389/fphar.2022.829590] [PMID: 35359873]
[166]
Ren, Y.; Mu, Y.; Song, Y.; Xie, J.; Yu, H.; Gao, S.; Li, S.; Peng, H.; Zhou, Y.; Lu, W. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv., 2016, 23(5), 1763-1772.
[http://dx.doi.org/10.3109/10717544.2015.1077293] [PMID: 26289214]
[167]
Wu, P.; Zhu, H.; Zhuang, Y.; Sun, X.; Gu, N. Combined therapeutic effects of 131I-labeled and 5Fu-loaded multifunctional nanoparticles in colorectal cancer. Int. J. Nanomedicine, 2020, 15, 2777-2787.
[http://dx.doi.org/10.2147/IJN.S215137] [PMID: 32368054]
[168]
Maya, S.; Sarmento, B.; Lakshmanan, V.K.; Menon, D.; Jayakumar, R. Actively targeted cetuximab conjugated γ-poly(glutamic acid)-docetaxel nanomedicines for epidermal growth factor receptor over expressing colon cancer cells. J. Biomed. Nanotechnol., 2014, 10(8), 1416-1428.
[http://dx.doi.org/10.1166/jbn.2014.1841] [PMID: 25016642]
[169]
Bazylińska, U.; Pietkiewicz, J.; Rossowska, J.; Chodaczek, G.; Gamian, A.; Wilk, K.A. Polyelectrolyte oil-core nanocarriers for localized and sustained delivery of daunorubicin to colon carcinoma MC38 cells: the case of polysaccharide multilayer film in relation to PEG‐ylated shell. Macromol. Biosci., 2017, 17(5), 1600356.
[http://dx.doi.org/10.1002/mabi.201600356] [PMID: 28094898]
[170]
Ballestri, M.; Caruso, E.; Guerrini, A.; Ferroni, C.; Banfi, S.; Gariboldi, M.; Monti, E.; Sotgiu, G.; Varchi, G. Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. J. Photochem. Photobiol. B, 2018, 186, 169-177.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.07.013] [PMID: 30064063]
[171]
Abedanzadeh, M.; Salmanpour, M.; Farjadian, F.; Mohammadi, S.; Tamaddon, A.M. Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: Preparation and in-vitro characterization. J. Drug Deliv. Sci. Technol., 2020, 58, 101793.
[http://dx.doi.org/10.1016/j.jddst.2020.101793]
[172]
Alnaim, A.S. Formulation, characterization, and cytotoxic effect of pva incorporated iron oxide nanoparticles of gramine Using HCT-116 Cell Line in vitro. Indian J. Pharmacal. Edu. Resea., 2023, 57(4), 1021-1028.
[http://dx.doi.org/10.5530/ijper.57.4.123]
[173]
Bhusnure, O.G.; Gholve, S.B.; Giram, P.S.; Gaikwad, A.V.; Udumansha, U.; Mani, G.; Tae, J.H. Novel 5-flurouracil-Embedded non-woven PVA - PVP electrospun nanofibers with enhanced anti-cancer efficacy: Formulation, evaluation and in vitro anti-cancer activity. J. Drug Deliv. Sci. Technol., 2021, 64, 102654.
[http://dx.doi.org/10.1016/j.jddst.2021.102654]
[174]
Smruthi, M.R.; Nallamuthu, I.; Singsit, D.; Anand, T. Toxicological evaluation of PLA/PVA-naringenin nanoparticles: In vitro and in vivo studies. Open Nano, 2022, 7, 100061.
[175]
Öztürk, K.; Mashal, A.R.; Yegin, B.A.; Çalış, S. Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment. Pharm. Dev. Technol., 2017, 22(5), 635-641.
[http://dx.doi.org/10.3109/10837450.2015.1116565] [PMID: 26616273]
[176]
Bhattacharya, S.; Singh, D.; Aich, J.; Ajazuddin; Shete, M.B. Development and characterization of hyaluronic acid surface scaffolds Encorafenib loaded polymeric nanoparticles for colorectal cancer targeting. Mater. Today Commun., 2022, 31, 103757.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103757]
[177]
Ni, R.; Duan, D.; Li, B.; Li, Z.; Li, L.; Ming, Y.; Wang, X.; Chen, J. Dual-modified PCL-PEG nanoparticles for improved targeting and therapeutic efficacy of docetaxel against colorectal cancer. Pharm. Dev. Technol., 2021, 26(8), 910-921.
[http://dx.doi.org/10.1080/10837450.2021.1957930] [PMID: 34280065]
[178]
Szczepanowicz, K.; Bzowska, M.; Kruk, T.; Karabasz, A.; Bereta, J.; Warszynski, P. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting. Colloids Surf. B Biointerfa., 2016, 143, 463-471.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.064] [PMID: 27037784]
[179]
Duan, X.; Wang, P.; Men, K.; Gao, X.; Huang, M.; Gou, M.; Chen, L.; Qian, Z.; Wei, Y. Treating colon cancer with a suicide gene delivered by self-assembled cationic MPEG–PCL micelles. Nanoscale, 2012, 4(7), 2400-2407.
[http://dx.doi.org/10.1039/c2nr30079f] [PMID: 22388488]
[180]
Emami, J.; Maghzi, P.; Hasanzadeh, F.; Sadeghi, H.; Mirian, M.; Rostami, M. PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan. Pharm. Dev. Technol., 2018, 23(1), 41-54.
[http://dx.doi.org/10.1080/10837450.2017.1340950] [PMID: 28608760]
[181]
Sunoqrot, S.; Abujamous, L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676.
[http://dx.doi.org/10.1016/j.jddst.2019.05.035]
[182]
Ibrahim, B.; Mady, O.Y.; Tambuwala, M.M.; Haggag, Y.A. pH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer. Nanomedicine, 2022, 17(6), 367-381.
[http://dx.doi.org/10.2217/nnm-2021-0423] [PMID: 35109714]
[183]
Pushpa Sweety, J.; Sowparani, S.; Mahalakshmi, P.; Selvasudha, N.; Yamini, D.; Geetha, K.; Ruckmani, K. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – Insight into thymoquinone’s improved physicochemical properties. J. Drug Deliv. Sci. Technol., 2020, 55, 101334.
[http://dx.doi.org/10.1016/j.jddst.2019.101334]
[184]
Asfour, M.H.; Mohsen, A.M. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J. Adv. Res., 2018, 9, 17-26.
[http://dx.doi.org/10.1016/j.jare.2017.10.003] [PMID: 30034879]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy