Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

A Bioanalytical Method Using High-performance Liquid Chromatography-mass Spectrometry for Determining Empagliflozin and Linagliptin in Human Plasma: Application in Bioequivalence Pharmacokinetic Study

Author(s): Rana Said*, Basel Arafat and Tawfiq Arafat

Volume 20, Issue 9, 2024

Published on: 04 December, 2024

Page: [978 - 993] Pages: 16

DOI: 10.2174/0115734129338148241202074530

Price: $65

Abstract

Background and Objectives: A combination of empagliflozin and linagliptin in a fixed dosage was employed for treating individuals with a diagnosis of type 2 diabetes mellitus. A rapid, accurate, and sensitive liquid chromatography-tandem mass spectrometry method was devised and validated for simultaneous measuring empagliflozin and linagliptin levels in human plasma. This method provides a good analytical tool for bioequivalence and pharmacokinetic studies.

Methods: The separation was conducted employing a C8 column using a mobile phase consisting of acetonitrile (ACN, 2.5mM) and ammonium chloride (55:45). Optimal detection of the analytes and their deuterated internal standards was accomplished through electrospray ionization in the positive mode.

Results: Validation of standard curve concentrations linearity was carried out within the ranges of 1.500 – 500.000 ng/mL for empagliflozin and 0.050 – 7.000 ng/mL for linagliptin. Both drugs showed intra-batch and inter-batch precision (CV%) of less than 3.7%. The stability of the drugs was confirmed under various storage conditions, proving suitability for routine laboratory analysis.

Conclusion: This validated method is appropriate for pharmacokinetic studies and large-scale analysis with high precision and accuracy.

Keywords: Empagliflozin, linagliptin, LC-MS/MS, protein precipitation, validation, pharmacokinetic, bioequivalence.

« Previous
Graphical Abstract
[1]
Chenchula, S.; Varthya, S.B.; Padmavathi, R. Rationality, efficacy, tolerability of empagliflozin plus linagliptin combination for the management of type 2 diabetes mellitus: A systematic review of randomized controlled trials and observational studies. Curr. Diabetes Rev., 2022, 18(4), e100921196392.
[http://dx.doi.org/10.2174/1573399817666210910165402] [PMID: 34514991]
[2]
DeFronzo, R.A.; Lee, C.; Kohler, S. Safety and tolerability of combinations of empagliflozin and linagliptin in patients with type 2 diabetes: Pooled data from two randomized controlled trials. Adv. Ther., 2018, 35(7), 1009-1022.
[http://dx.doi.org/10.1007/s12325-018-0724-y] [PMID: 29949041]
[3]
Ideishi, A.; Suematsu, Y.; Tashiro, K.; Morita, H.; Kuwano, T.; Tomita, S.; Nakai, K.; Miura, S. Combination of linagliptin and empagliflozin preserves cardiac systolic function in an ischemia-reperfusion injury mice with diabetes mellitus. Cardiol. Res., 2021, 12(2), 91-97.
[http://dx.doi.org/10.14740/cr1194] [PMID: 33738012]
[4]
Zeng, Y.H.; Liu, S.C.; Lee, C.C.; Sun, F.J.; Liu, J.J. Effect of empagliflozin versus linagliptin on body composition in Asian patients with type 2 diabetes treated with premixed insulin. Sci. Rep., 2022, 12(1), 17065.
[http://dx.doi.org/10.1038/s41598-022-21486-9] [PMID: 36224294]
[5]
Kovil, R.; Saboo, B.; Shah, K.; Padhye, D.; Chudasama, D.; Raj, V.; Shaikh, N. Single-pill Combination of Empagliflozin and Linagliptin in Real World Indian Type 2 Diabetes Patient (GRID). J. Assoc. Physicians India, 2020, 68(10), 53-55.
[PMID: 32978926]
[6]
Kaku, K.; Haneda, M.; Tanaka, Y.; Lee, G.; Shiki, K.; Miyamoto, Y.; Solimando, F.; Lee, J.; Lee, C.; George, J. Linagliptin as add‐on to empagliflozin in a fixed‐dose combination in Japanese patients with type 2 diabetes: Glycaemic efficacy and safety profile in a two‐part, randomized, placebo‐controlled trial. Diabetes Obes. Metab., 2019, 21(1), 136-145.
[http://dx.doi.org/10.1111/dom.13496] [PMID: 30091172]
[7]
Rizos, C.V.; Filippatos, T.D.; Elisaf, M.S. Pharmacokinetic drug evaluation of empagliflozin plus linagliptin for the treatment of type 2 diabetes. Expert Opin. Drug Metab. Toxicol., 2018, 14(1), 117-125.
[http://dx.doi.org/10.1080/17425255.2018.1418325] [PMID: 29241374]
[8]
Zimmer, D. New US FDA draft guidance on bioanalytical method validation versus current FDA and EMA guidelines: Chromatographic methods and ISR. Bioanalysis, 2014, 6(1), 13-19.
[http://dx.doi.org/10.4155/bio.13.298] [PMID: 24256335]
[9]
Said, R.; Arafat, B.; Arafat, T. Quantitation of thiorphan in human plasma using LC-MS/MS and its application to a bioequivalence study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2024, 1243, 124190.
[http://dx.doi.org/10.1016/j.jchromb.2024.124190] [PMID: 38941717]
[10]
Shah, P.A.; Shrivastav, P.S.; George, A. Mixed-mode solid phase extraction combined with LC-MS/MS for determination of empagliflozin and linagliptin in human plasma. Microchem. J., 2019, 145, 523-531.
[http://dx.doi.org/10.1016/j.microc.2018.11.015]
[11]
Donepudi, S.; Achanta, S. Validated HPLC-UV method for simultaneous estimation of linagliptin and empagliflozin in human plasma. Int J Appl. Pharm, 2018, 10, 56-61.
[http://dx.doi.org/10.22159/ijap.2018v10i3.24662]
[12]
Elmasry, M.S.; Hasan, M.A.; Hassan, W.S.; Merey, H.A.; Nour, I.M. Flourimetric study on antidiabetic combined drugs; empagliflozin and linagliptin in their pharmaceutical formulation and human plasma. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 248, 119258.
[http://dx.doi.org/10.1016/j.saa.2020.119258] [PMID: 33310272]
[13]
Stone, J. Sample preparation techniques for mass spectrometry in the clinical laboratory. In: Mass Spectrometry for the Clinical Laboratory; Nair, H.; Clarke, W., Eds.; Academic Press: San Diego, 2017; pp. 37-62.
[http://dx.doi.org/10.1016/B978-0-12-800871-3.00003-1]
[14]
Watt, A.P.; Morrison, D.; Locker, K.L.; Evans, D.C. Higher throughput bioanalysis by automation of a protein precipitation assay using a 96-well format with detection by LC-MS/MS. Anal. Chem., 2000, 72(5), 979-984.
[http://dx.doi.org/10.1021/ac9906633] [PMID: 10739201]
[15]
Sleczka, B.; Wang, J.; Olah, T. LC-MS-MS total drug analysis of biological samples using a high throughput protein precipitation method. LC GC N. Am., 2006, 24(7), 1-24.
[16]
Parise, R.A.; Covey, J.M.; Hollingshead, M.G.; Srivastava, A.K.; Synold, T.W.; Beumer, J.H. Development and validation of an LC–MS/MS generic assay platform for small molecule drug bioanalysis. J. Pharm. Biomed. Anal., 2021, 203, 114185.
[http://dx.doi.org/10.1016/j.jpba.2021.114185] [PMID: 34111734]
[17]
Kong, R. 17 - LC/MS Application in High-Throughput ADME Screen. In: Separation Science and Technology; Ahuja, S.; Dong, M.W., Eds.; Academic Press, 2005; pp. 413-446.
[18]
Duggan, J.X. Quantification below the LLOQ in regulated LC-MS/MS assays: A review of bioanalytical considerations and cautions. Bioanalysis, 2019, 11(8), 797-814.
[http://dx.doi.org/10.4155/bio-2018-0261] [PMID: 30994002]
[19]
Beccaria, M.; Cabooter, D. Current developments in LC-MS for pharmaceutical analysis. Analyst (Lond.), 2020, 145(4), 1129-1157.
[http://dx.doi.org/10.1039/C9AN02145K] [PMID: 31971527]
[20]
Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; A critical review on causes, evaluation, prevention and applications. Talanta, 2013, 115, 104-122.
[http://dx.doi.org/10.1016/j.talanta.2013.03.048] [PMID: 24054567]
[21]
French, D. Chapter Five - Advances in Clinical Mass Spectrometry. In: Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier, 2017; pp. 153-198.
[22]
Tudela, E.; Muñoz, G.; Muñoz-Guerra, J.A. Matrix effect marker for multianalyte analysis by LC–MS/MS in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 901, 98-106.
[http://dx.doi.org/10.1016/j.jchromb.2012.06.007] [PMID: 22762913]

© 2025 Bentham Science Publishers | Privacy Policy