Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Effects of Sodium Hypochlorite and Chlorine Dioxide on Human Root Canal Dentine: An ATR-FTIR Spectroscopy Study

Author(s): Hilal Erdogan*, Funda Kont Cobankara and Mustafa Topkafa

Volume 20, Issue 9, 2024

Published on: 22 November, 2024

Page: [1024 - 1032] Pages: 9

DOI: 10.2174/0115734129341127241112093734

Price: $65

Abstract

Background: It is very important to assess the effects of NaOCl and ClO2 on dentine deproteination because these solutions are in contact with dentine during endodontic treatment and may affect the physical and chemical structure of dentine.

Objectives: This study aimed to analyze the effects of sodium-hypochlorite (NaOCl) and chlorinedioxide (ClO2) on the chemical structure of human dentine by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy.

Methods: Fifteen human maxillary incisor roots were cut longitudinally into two parallel dentin discs being approximately 4x4x2 mm in size. 30 samples were randomly allocated to 6 groups treated with 5.25% NaOCl or 0.014% ClO2 (1, 5, or 10 minutes); self-control was used. The effect of solutions on the organic and inorganic components of the radicular dentine surface was analyzed using the amide:phosphate ratio and carbonate:phosphate ratio. The intragroup differences (paired t-test) and intergroup differences (one-way analysis of variance and Tukey’s posthoc test) were analyzed.

Results: The intragroup comparisons showed the amide:phosphate ratio to be higher at all times at ClO2. NaOCl caused a decrease in the amide:phosphate ratio at 10 minutes (p<0.05). The intergroup comparison showed that NaOCl caused a greater decrease in amide:phosphate at all times compared to ClO2 (p<0.05). All comparisons demonstrated no significant difference in the carbonate: phosphate ratio (p˃0.05).

Conclusion: Considering the results of this study, it is recommended to avoid prolonged exposure to minimize NaOCl-induced dentine deproteination. It should also be taken into account that ClO2 increases the amide:phosphate ratio in radicular dentine, and this effect is advantageous in clinical use for collagen structure, contrary to the negative impact of NaOCl.

Keywords: Dental materials, chlorine dioxide, demineralization, fourier transform infrared spectroscopy, protein denaturation, surface properties.

Graphical Abstract
[1]
Peters, O.A.; Schönenberger, K.; Laib, A. Effects of four Ni–Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int. Endod. J., 2001, 34(3), 221-230.
[http://dx.doi.org/10.1046/j.1365-2591.2001.00373.x]
[2]
Şen, B.H.; Wesselink, P.R.; Türkün, M. The smear layer: A phenomenon in root canal therapy. Int. Endod. J., 1995, 28(3), 141-148.
[http://dx.doi.org/10.1111/j.1365-2591.1995.tb00289.x]
[3]
Frais, S.; Ng, Y-L.; Gulabivala, K. Some factors affecting the concentration of available chlorine in commercial sources of sodium hypochlorite. Int. Endod. J., 2001, 34(3), 206-215.
[http://dx.doi.org/10.1046/j.1365-2591.2001.00371.x]
[4]
Di Renzo, M.; Ellis, T.H.; Sacher, E.; Stangel, I. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces. Biomaterials, 2001, 22(8), 793-797.
[http://dx.doi.org/10.1016/S0142-9612(00)00239-8]
[5]
Cobankara, F.K.; Ozkan, H.B.; Terlemez, A. Comparison of organic tissue dissolution capacities of sodium hypochlorite and chlorine dioxide. J. Endod., 2010, 36(2), 272-274.
[http://dx.doi.org/10.1016/j.joen.2009.10.027]
[6]
Gu, L.; Huang, X.; Griffin, B.; Bergeron, B.R.; Pashley, D.H.; Niu, L.; Tay, F.R. Primum non nocere – The effects of sodium hypochlorite on dentin as used in endodontics. Acta Biomater., 2017, 61, 144-156.
[http://dx.doi.org/10.1016/j.actbio.2017.08.008]
[7]
Bjelović, L.; Glišić, B.; Živković, M.; Kanjevac, T. Investigation of p-chloroaniline formation in the reactions between different endodontic irrigants. Kragujevac J. Sci., 2019, (41), 43-52.
[http://dx.doi.org/10.5937/KgJSci1941043B]
[8]
Pascon, F.M.; Kantovitz, K.R.; Sacramento, P.A.; Nobre-dos-Santos, M.; Puppin-Rontani, R.M. Effect of sodium hypochlorite on dentine mechanical properties. A review. J. Dent., 2009, 37(12), 903-908.
[http://dx.doi.org/10.1016/j.jdent.2009.07.004]
[9]
Marending, M.; Luder, H.U.; Brunner, T.J.; Knecht, S.; Stark, W.J.; Zehnder, M. Effect of sodium hypochlorite on human root dentine – mechanical, chemical and structural evaluation. Int. Endod. J., 2007, 40(10), 786-793.
[http://dx.doi.org/10.1111/j.1365-2591.2007.01287.x]
[10]
Sim, T.P.C.; Knowles, J.C.; Ng, Y.L.; Shelton, J.; Gulabivala, K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int. Endod. J., 2001, 34(2), 120-132.
[http://dx.doi.org/10.1046/j.1365-2591.2001.00357.x]
[11]
Hu, X.; Peng, Y.; Sum, C.; Ling, J. Effects of concentrations and exposure times of sodium hypochlorite on dentin deproteination: attenuated total reflection Fourier transform infrared spectroscopy study. J. Endod., 2010, 36(12), 2008-2011.
[http://dx.doi.org/10.1016/j.joen.2010.08.035]
[12]
da Cunha, L.F.; Furuse, A.Y.; Mondelli, R.F.L.; Mondelli, J. Compromised bond strength after root dentin deproteinization reversed with ascorbic acid. J. Endod., 2010, 36(1), 130-134.
[http://dx.doi.org/10.1016/j.joen.2009.09.008]
[13]
Zoni, R.; Zanelli, R.; Riboldi, E.; Bigliardi, L.; Sansebastiano, G. Investigation on virucidal activity of chlorine dioxide. experimental data on feline calicivirus, HAV and Coxsackie B5. J. Prev. Med. Hyg., 2007, 48(3), 91-95.
[http://dx.doi.org/10.15167/2421-4248/jpmh2007.48.3.99]
[14]
Herczegh, A.; Ghidan, Á.; Friedreich, D.; Gyurkovics, M.; Bendő, Z.; Lohinai, Z. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm. Acta Microbiol. Immunol. Hung., 2013, 60(1), 63-75.
[http://dx.doi.org/10.1556/AMicr.60.2013.1.7]
[15]
Wirthlin, M.R.; Marshall, G.W., Jr; Rowland, R.W. Formation and decontamination of biofilms in dental unit waterlines. J. Periodontol., 2003, 74(11), 1595-1609.
[http://dx.doi.org/10.1902/jop.2003.74.11.1595]
[16]
Özmen, P.; Erdoğan, H.; Güngördü, A.; Pişkin, B.; Çobankara, F.K.; Sütcü, S.; Şahin, N. Comparison of antimicrobial efficacy of different disinfectants on the biofilm formation in dental unit water systems using dip slide and conventional methods: A pilot study. Microsc. Res. Tech., 2024, 87(6), 1241-1249.
[http://dx.doi.org/10.1002/jemt.24511]
[17]
Herczegh, A.; Gyurkovics, M.; Agababyan, H.; Ghidán, Á.; Lohinai, Z. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro. Acta Microbiol. Immunol. Hung., 2013, 60(3), 359-373.
[http://dx.doi.org/10.1556/AMicr.60.2013.3.10]
[18]
Hatanaka, N.; Xu, B.; Yasugi, M.; Morino, H.; Tagishi, H.; Miura, T.; Shibata, T.; Yamasaki, S. Chlorine dioxide is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite. J. Hosp. Infect., 2021, 118, 20-26.
[http://dx.doi.org/10.1016/j.jhin.2021.09.006]
[19]
Singh, S.; Arora, V.; Majithia, I.; Dhiman, R.; Kumar, D.; Ather, A. Comparative evaluation of 15% ethylenediamine tetra-acetic acid plus cetavlon and 5% chlorine dioxide in removal of smear layer: A scanning electron microscope study. Contemp. Clin. Dent., 2013, 4(1), 67-70.
[http://dx.doi.org/10.4103/0976-237X.111624]
[20]
Ozkan, H.; Cobankara, F.; Sayin, Z.; Ozer, F. Evaluation of the antibacterial effects of single and combined use of different irrigation solutions against intracanal Enterococcus faecalis. Acta Stomatol. Croat., 2020, 54(3), 250-262.
[http://dx.doi.org/10.15644/asc54/3/3]
[21]
Nishikiori, R.; Nomura, Y.; Sawajiri, M.; Masuki, K.; Hirata, I.; Okazaki, M. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts. J. Dent., 2008, 36(12), 993-998.
[http://dx.doi.org/10.1016/j.jdent.2008.08.006]
[22]
Eddy, R.S.; Joyce, A.P.; Roberts, S.; Buxton, T.B.; Liewehr, F. An in vitro evaluation of the antibacterial efficacy of chlorine dioxide on E. faecalis in bovine incisors. J. Endod., 2005, 31(9), 672-675.
[http://dx.doi.org/10.1097/01.don.0000155223.87616.02]
[23]
Kalay, T.S.; Kara, Y.; Karaoglu, S.A.; Kolayli, S. Evaluation of stabilized chlorine dioxide in terms of antimicrobial activity and dentin bond strength. Comb. Chem. High Throughput Screen., 2022, 25(9), 1427-1436.
[http://dx.doi.org/10.2174/1386207324666210816121255]
[24]
Ballal, N.V.; Khandewal, D.; Karthikeyan, S.; Somayaji, K.; Foschi, F. Evaluation of chlorine dioxide irrigation solution on the microhardness and surface roughness of root canal dentin. Eur. J. Prosthodont. Restor. Dent., 2015, 23(4), 173-178.
[25]
Bayrak, S.; Tuloglu, N.; Tunc, E.S. Effects of deproteinization on bond strength of composite to primary teeth affected by amelogenesis. Pediatr. Dent., 2019, 41(4), 304-308.
[26]
Nagendrababu, V.; Murray, P.E.; Ordinola-Zapata, R.; Peters, O.A.; Rôças, I.N.; Siqueira, J.F., Jr; Priya, E.; Jayaraman, J.; J Pulikkotil, S.; Camilleri, J.; Boutsioukis, C.; Rossi-Fedele, G.; Dummer, P.M.H. PRILE 2021 guidelines for reporting laboratory studies in Endodontology: A consensus-based development. Int. Endod. J., 2021, 54(9), 1482-1490.
[http://dx.doi.org/10.1111/iej.13542]
[27]
Ramírez-Bommer, C.; Gulabivala, K.; Ng, Y.L.; Young, A. Estimated depth of apatite and collagen degradation in human dentine by sequential exposure to sodium hypochlorite and EDTA : A quantitative FTIR study. Int. Endod. J., 2018, 51(4), 469-478.
[http://dx.doi.org/10.1111/iej.12864]
[28]
Gasga, J.; Piñeiro, E.L.; Álvarez, G.; Orozco, G.E.; García-García, R.; Brès, E.F. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater. Sci. Eng. C, 2013, 33(8), 4568-4574.
[http://dx.doi.org/10.1016/j.msec.2013.07.014]
[29]
Jiang, T.; Ma, X.; Wang, Y.; Zhu, Z.; Tong, H.; Hu, J. Effects of hydrogen peroxide on human dentin structure. J. Dent. Res., 2007, 86(11), 1040-1045.
[http://dx.doi.org/10.1177/154405910708601104]
[30]
Lopes, C.C.A.; Limirio, P.H.J.O.; Novais, V.R.; Dechichi, P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev., 2018, 53(9), 747-769.
[http://dx.doi.org/10.1080/05704928.2018.1431923]
[31]
Bachmann, L.; Diebolder, R.; Hibst, R.; Zezell, D.M. Infrared absorption bands of enamel and dentin tissues from human and bovine teeth. Appl. Spectrosc. Rev., 2003, 38(1), 1-14.
[http://dx.doi.org/10.1081/ASR-120017479]
[32]
Lubbers, J.R.; Bianchine, J.R. Effects of the acute rising dose administration of chlorine dioxide, chlorate and chlorite to normal healthy adult male volunteers. J. Environ. Pathol. Toxicol. Oncol., 1984, 5(4-5), 215-228.
[33]
Anna, H.; Barnabás, P.; Zsolt, L.; Romána, Z. Tracking of the degradation process of chlorhexidine digluconate and ethylenediaminetetraacetic acid in the presence of hyper-pure chlorine dioxide in endodontic disinfection. J. Pharm. Biomed. Anal., 2019, 164, 360-364.
[http://dx.doi.org/10.1016/j.jpba.2018.11.005]
[34]
Puttaiah, R. Evaluation of DioxiClear as a treatment for dental unit waterline biofilms & as a water contamination control agent. Available from: https://cdn.shopify.com/s/files/1/0414/2833/files/Evaluation_of_BioClenz_as_a_treatment_for_DUWL-_Puttaiah.pdf?1978(accessed on 8-10-2024)
[35]
Erdogan, H. Letter to the Editor. J. Pharm. Biomed. Anal., 2021, 201, 114127.
[http://dx.doi.org/10.1016/j.jpba.2021.114127]
[36]
Pashley, D.H. Dentin: a dynamic substrate-a review. Scanning Microsc., 1989, 3(1), 161-174. https://www.ncbi.nlm.nih.gov/pubmed/2662395
[37]
Shellis, R.P. Structural organization of calcospherites in normal and rachitic human dentine. Arch. Oral Biol., 1983, 28(1), 85-95.
[http://dx.doi.org/10.1016/0003-9969(83)90030-4]
[38]
Davies, J.M.S.; Horwitz, D.A.; Davies, K.J.A. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radic. Biol. Med., 1993, 15(6), 637-643.
[http://dx.doi.org/10.1016/0891-5849(93)90167-S]
[39]
Mountouris, G.; Silikas, N.; Eliades, G. Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin. J. Adhes. Dent., 2004, 6(3), 175-182.
[http://dx.doi.org/10.3290/j.jad.a9506]
[40]
Gómez-López, V.M.; Rajkovic, A.; Ragaert, P.; Smigic, N.; Devlieghere, F. Chlorine dioxide for minimally processed produce preservation: A review. Trends Food Sci. Technol., 2009, 20(1), 17-26.
[http://dx.doi.org/10.1016/j.tifs.2008.09.005]
[41]
Kamalasanan, R.R.; Devarasanahalli, S.V.; Aswathanarayana, R.M.; Rashmi, K.; Gowda, Y.; Nadig, R.R. Effect of 5% chlorine dioxide irrigant on micro push out bond strength of resin sealer to radicular dentin: An in vitro study. J. Clin. Diagn. Res., 2017, 11(5), ZC49-ZC53.
[http://dx.doi.org/10.7860/JCDR/2017/25519.9857]
[42]
Fredericks, J.D.; Bennett, P.; Williams, A.; Rogers, K.D. FTIR spectroscopy: A new diagnostic tool to aid DNA analysis from heated bone. Forensic Sci. Int. Genet., 2012, 6(3), 375-380.
[http://dx.doi.org/10.1016/j.fsigen.2011.07.014]
[43]
Raczyk-Stanisławiak, U.; Świetlik, J.; Dąbrowska, A.; Nawrocki, J. Biodegradability of organic by-products after natural organic matter oxidation with ClO2—case study. Water Res., 2004, 38(4), 1044-1054.
[http://dx.doi.org/10.1016/j.watres.2003.10.032]
[44]
Godeau, G.; Darmanin, T.; Guittard, F. Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds. J. Appl. Polym. Sci., 2016, 133(11), app.43130.
[http://dx.doi.org/10.1002/app.43130]
[45]
Tan, H.; Wheeler, W.B.; Wei, C. Reaction of chlorine dioxide with amino acids and peptides: Kinetics and mutagenicity studies. Mutat. Res. Genet. Toxicol. Test., 1987, 188(4), 259-266.
[http://dx.doi.org/10.1016/0165-1218(87)90002-4]
[46]
Alliger, H. An overall view of ClO2. Available from:https://cdn.shopify.com/s/files/1/0414/2833/files/An_Overall_View_Cl02.pdf?1961(accessed on 8-10-2024)
[47]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Collagen: the fibrous proteins of the matrix.Molecular Cell Biology, 4th ed; W. H. Freeman: New York, USA, 2000. https://scholar.google.com/scholar_lookup?title=Collagen:+The+Fibrous+Proteins+of+the+Matrix&author=Lodish,+H.&author=Berk,+A.&author=Zipursky,+S.L.&author=Matsudaira,+P.&author=Baltimore,+D.&author=Darnell,+J.&publication_year=2000
[48]
Barón, M.; Morales, V.; Fuentes, M.V.; Linares, M.; Escribano, N.; Ceballos, L. The influence of irrigation solutions in the inorganic and organic radicular dentine composition. Aust. Endod. J., 2020, 46(2), 217-225.
[http://dx.doi.org/10.1111/aej.12395]
[49]
Buyukozer Ozkan, H.; Terlemez, A.; Batibay, A.B.; Erdogan, H.; Kont Cobankara, F. Evaluation of surface tensions and root-dentin surface contact angles of different endodontic irrigation solutions. BMC Oral Health, 2024, 24(1), 681.
[http://dx.doi.org/10.1186/s12903-024-04453-w]
[50]
Saghiri, M.A.; Delvarani, A.; Mehrvarzfar, P.; Nikoo, M.; Lotfi, M.; Karamifar, K.; Asgar, K.; Dadvand, S. The impact of pH on cytotoxic effects of three root canal irrigants. Saudi Dent. J., 2011, 23(3), 149-152.
[http://dx.doi.org/10.1016/j.sdentj.2011.03.002]
[51]
Zehnder, M.; Kosicki, D.; Luder, H.; Sener, B.; Waltimo, T. Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2002, 94(6), 756-762.
[http://dx.doi.org/10.1067/moe.2002.128961]
[52]
Ascenzi, J.M. Handbook of Disinfectants and Antiseptics, 1st ed; CRC press: Boca Raton, 1995.
[http://dx.doi.org/10.1201/9781482273359]
[53]
Severing, A.L.; Rembe, J.D.; Koester, V.; Stuermer, E.K. Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro. J. Antimicrob. Chemother., 2019, 74(2), 365-372.
[http://dx.doi.org/10.1093/jac/dky432]
[54]
Fukuzaki, S.; Urano, H.; Yamada, S. Effect of pH on the efficacy of sodium hypochlorite solution as cleaning and bactericidal agents. J. Surface Finish. Soc. Japan, 2007, 58(8), 465-469.
[http://dx.doi.org/10.4139/sfj.58.465]
[55]
Rossi-Fedele, G.; Guastalli, A.R.; Doğramacı, E.J.; Steier, L.; De Figueiredo, J.A.P. Influence of pH changes on chlorine-containing endodontic irrigating solutions. Int. Endod. J., 2011, 44(9), 792-799.
[http://dx.doi.org/10.1111/j.1365-2591.2011.01911.x]
[56]
Hart, P.; Connell, D. Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets. Tappi J., 2008, 7(7), 3-11.
[http://dx.doi.org/10.32964/TJ7.7.3]
[57]
Aggazzotti, G.; Fantuzzi, G.; Righi, E.; Predieri, G. Environmental and biological monitoring of chloroform in indoor swimming pools. J. Chromatogr. A, 1995, 710(1), 181-190.
[http://dx.doi.org/10.1016/0021-9673(95)00432-M]
[58]
Kalhori, F.; Yazdyani, H.; Khademorezaeian, F.; Hamzkanloo, N.; Mokaberi, P.; Hosseini, S.; Chamani, J. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence, 2022, 37(11), 1836-1845.
[http://dx.doi.org/10.1002/bio.4360]

© 2025 Bentham Science Publishers | Privacy Policy