Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Integrating Organ-on-chip Models In Drug Discovery: A Comprehensive Review on Innovations and Implications

Author(s): Raagul Seenivasan, Anitha Marimuthu, Jey Kumar Pachiyappan and Gonna Nandhi Krishnan Ganesh*

Volume 20, Issue 9, 2024

Published on: 29 October, 2024

Page: [953 - 965] Pages: 13

DOI: 10.2174/0115734129333473241018114102

Price: $65

Abstract

This review article examines the current developments in applying microfluidic technologies in cancer therapy and personalized medicine. This includes the fabrication of cancer cells onto the microfluidic chips, preclinical cancer model simulation development, biomarker detection, tumor heterogeneity detection, integration of microfluidics in robotic drug delivery systems, Artificial Intelligence (AI), and discuss the use of techniques such as Machine Learning (ML) to predict pharmacokinetics and pharmacodynamics of cancer cells. This review article also highlights how integrating cancer models with microfluidic devices helps to simulate disease progression more accurately, thereby improving treatment options. These devices also enable researchers to identify suitable doses for cancer treatment. Moreover, microfluidics chips facilitate cell transformation in many types of cancer, which is important for patient-specific therapy. Microfluidics technology in robotic drug delivery enables precise delivery of targeted drugs, thus reducing the potential side effects of the drugs. Integrating these fields into the medical and pharmaceutical fields helps researchers to develop the pharmaceutical product faster than the traditional method of drug discovery. Overall, this review article highlights the integration of interdisciplinary technologies in the healthcare field, which may decrease the timeline of drug discovery and provide efficient drugs to patients.

Keywords: Cancer, drug delivery, fabrication, organ on chip, tumor, microfluidics.

Graphical Abstract
[1]
Mathur, L.; Ballinger, M.; Utharala, R.; Merten, C.A. Microfluidics as an enabling technology for personalized cancer therapy. Small, 2020, 16(9), 1904321.
[http://dx.doi.org/10.1002/smll.201904321] [PMID: 31747127]
[2]
Mehdi, S.; Chauhan, A.; Dhutty, A. Cancer and new perspective to treat cancer. Int. J. Curr. Pharm. Res., 2023, 15(6), 16-22.
[http://dx.doi.org/10.22159/ijcpr.2023v15i6.3078]
[3]
Wong, A.H.H.; Li, H.; Jia, Y.; Mak, P.I.; Martins, R.P.S.; Liu, Y.; Vong, C.M.; Wong, H.C.; Wong, P.K.; Wang, H.; Sun, H.; Deng, C.X. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Sci. Rep., 2017, 7(1), 9109.
[http://dx.doi.org/10.1038/s41598-017-08831-z] [PMID: 28831060]
[4]
Guo, Q.; Zhang, L.; Liu, J.; Li, Z.; Li, J.; Zhou, W.; Wang, H.; Li, J.; Liu, D.; Yu, X.; Zhang, J. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics, 2021, 5(1), 73-89.
[http://dx.doi.org/10.7150/ntno.49614] [PMID: 33391976]
[5]
Feng, Q.; Sun, J.; Jiang, X. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale, 2016, 8(25), 12430-12443.
[http://dx.doi.org/10.1039/C5NR07964K] [PMID: 26864887]
[6]
Sarvan, V.H. Types and application of pharmaceutical nanotechnology: a review., Int. J. Curr. Pharm. Res., 2023, 15(3), 14-18.
[http://dx.doi.org/10.22159/ijcpr.2023v15i3.3010]
[7]
Venugopal Menon, N.; Lim, S.B.; Lim, C.T. Microfluidics for personalized drug screening of cancer. Curr. Opin. Pharmacol., 2019, 48, 155-161.
[http://dx.doi.org/10.1016/j.coph.2019.09.008] [PMID: 31634805]
[8]
Silva, A.C.Q.; Vilela, C.; Santos, H.A.; Silvestre, A.J.D.; Freire, C.S.R. Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology. Appl. Mater. Today, 2020, 18, 100450.
[http://dx.doi.org/10.1016/j.apmt.2019.100450]
[9]
Pillai, S.; Kwan, J.C.; Yaziji, F.; Yu, H.; Tran, S.D. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel), 2023, 15(15), 3894.
[http://dx.doi.org/10.3390/cancers15153894] [PMID: 37568710]
[10]
Mahhengam, N.; fahem ghetran Khazaali, A.; Aravindhan, S.; Olegovna Zekiy, A.; Melnikova, L.; Siahmansouri, H. Applications of Microfluidic Devices in the Diagnosis and Treatment of Cancer: A Review Study. Crit. Rev. Anal. Chem., 2022, 52(8), 1863-1877.
[http://dx.doi.org/10.1080/10408347.2021.1922870] [PMID: 34024197]
[11]
Zhang, Z.; Nagrath, S. Microfluidics and cancer: are we there yet? Biomed. Microdevices, 2013, 15(4), 595-609.
[http://dx.doi.org/10.1007/s10544-012-9734-8] [PMID: 23358873]
[12]
Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer, 2019, 19(2), 65-81.
[http://dx.doi.org/10.1038/s41568-018-0104-6] [PMID: 30647431]
[13]
Ayuso, J.M.; Virumbrales-Muñoz, M.; Lang, J.M.; Beebe, D.J. A role for microfluidic systems in precision medicine. Nat. Commun., 2022, 13(1), 3086.
[http://dx.doi.org/10.1038/s41467-022-30384-7] [PMID: 35654785]
[14]
Lanz, H.L.; Saleh, A.; Kramer, B.; Cairns, J.; Ng, C.P.; Yu, J.; Trietsch, S.J.; Hankemeier, T.; Joore, J.; Vulto, P.; Weinshilboum, R.; Wang, L. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer, 2017, 17(1), 709.
[http://dx.doi.org/10.1186/s12885-017-3709-3] [PMID: 29096610]
[15]
Lee, S.H.; Jun, B.H. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. J. Ind. Eng. Chem., 2019, 71, 65-77.
[http://dx.doi.org/10.1016/j.jiec.2018.11.041]
[16]
Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.T.; Ebrahimi Warkiani, M.; Li, W. Fundamentals and applications of inertial microfluidics: a review. Lab Chip, 2016, 16(1), 10-34.
[http://dx.doi.org/10.1039/C5LC01159K] [PMID: 26584257]
[17]
Novotný, J.; Foret, F. Fluid manipulation on the micro-scale: Basics of fluid behavior in microfluidics. J. Sep. Sci., 2017, 40(1), 383-394.
[http://dx.doi.org/10.1002/jssc.201600905] [PMID: 27700009]
[18]
Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, 77(3), 977-1026.
[http://dx.doi.org/10.1103/RevModPhys.77.977]
[19]
Dietzel, A. A Brief Introduction to Microfluidics. In: Microsystems for Pharmatechnology; Springer International Publishing: Cham, 2016; pp. 1-21.
[http://dx.doi.org/10.1007/978-3-319-26920-7_1]
[20]
Battat, S.; Weitz, D.A.; Whitesides, G.M. Nonlinear Phenomena in Microfluidics. Chem. Rev., 2022, 122(7), 6921-6937.
[http://dx.doi.org/10.1021/acs.chemrev.1c00985] [PMID: 35194990]
[21]
Franke, T.A.; Wixforth, A. Microfluidics for miniaturized laboratories on a chip. ChemPhysChem, 2008, 9(15), 2140-2156.
[http://dx.doi.org/10.1002/cphc.200800349] [PMID: 18932153]
[22]
Cottet, J.; Renaud, P. Introduction to microfluidics. In: Drug Delivery Devices and Therapeutic Systems; Elsevier, 2021; pp. 3-17.
[http://dx.doi.org/10.1016/B978-0-12-819838-4.00014-6]
[23]
Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: a review. Lab Chip, 2017, 17(1), 34-75.
[http://dx.doi.org/10.1039/C6LC01018K] [PMID: 27841886]
[24]
Su, R.; Wang, F.; McAlpine, M.C. 3D printed microfluidics: advances in strategies, integration, and applications. Lab Chip, 2023, 23(5), 1279-1299.
[http://dx.doi.org/10.1039/D2LC01177H] [PMID: 36779387]
[25]
Guo, M.; Deng, Y.; Huang, J.; Huang, Y.; Deng, J.; Wu, H. Fabrication and Validation of a 3D Portable PEGDA Microfluidic Chip for Visual Colorimetric Detection of Captured Breast Cancer Cells. Polymers (Basel), 2023, 15(15), 3183.
[http://dx.doi.org/10.3390/polym15153183] [PMID: 37571077]
[26]
An, L.; Ji, F.; Zhao, E.; Liu, Y.; Liu, Y. Measuring cell deformation by microfluidics. Front. Bioeng. Biotechnol., 2023, 11, 1214544.
[http://dx.doi.org/10.3389/fbioe.2023.1214544] [PMID: 37434754]
[27]
Wang, J.; Meng, X.; Yu, M.; Li, X.; Chen, Z.; Wang, R.; Fang, J. A novel microfluidic system for enrichment of functional circulating tumor cells in cancer patient blood samples by combining cell size and invasiveness. Biosens. Bioelectron., 2023, 227, 115159.
[http://dx.doi.org/10.1016/j.bios.2023.115159] [PMID: 36841114]
[28]
Guimarães, C.F.; Cruz-Moreira, D.; Caballero, D.; Pirraco, R.P.; Gasperini, L.; Kundu, S.C.; Reis, R.L. Shining a Light on Cancer—Photonics in Microfluidic Tumor Modeling and Biosensing. Adv. Healthc. Mater., 2023, 12(14), 2201442.
[http://dx.doi.org/10.1002/adhm.202201442] [PMID: 35998112]
[29]
Gadde, M.; Mehrabi-Dehdezi, M.; Debeb, B.G.; Woodward, W.A.; Rylander, M.N. Influence of Macrophages on Vascular Invasion of Inflammatory Breast Cancer Emboli Measured Using an In Vitro Microfluidic Multi-Cellular Platform. Cancers (Basel), 2023, 15(19), 4883.
[http://dx.doi.org/10.3390/cancers15194883] [PMID: 37835577]
[30]
Kuang, J.; Sun, W.; Zhang, M.; Kang, L.; Yang, S.; Zhang, H.; Wang, Y.; Hu, P. A three-dimensional biomimetic microfluidic chip to study the behavior of hepatic stellate cell under the tumor microenvironment. Chin. Chem. Lett., 2023, 34(3), 107573.
[http://dx.doi.org/10.1016/j.cclet.2022.05.087]
[31]
Azadi, S.; Torkashvand, E.; Mohammadi, E.; Tafazzoli-Shadpour, M. Analysis of EMT induction in a non-invasive breast cancer cell line by mesenchymal stem cell supernatant: Study of 2D and 3D microfluidic based aggregate formation and migration ability, and cytoskeleton remodeling. Life Sci., 2023, 320, 121545.
[http://dx.doi.org/10.1016/j.lfs.2023.121545] [PMID: 36871932]
[32]
Zhu, L.; Tang, Q.; Mao, Z.; Chen, H.; Wu, L.; Qin, Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication, 2024, 16(1), 012005.
[http://dx.doi.org/10.1088/1758-5090/ad1116] [PMID: 38035370]
[33]
Kim, H.; Ahn, Y.H.; Moon, C.M.; Kang, J.L.; Woo, M.; Kim, M. Lethal effects of mitochondria via microfluidics. Bioeng. Transl. Med., 2023, 8(3), e10461.
[http://dx.doi.org/10.1002/btm2.10461] [PMID: 37206227]
[34]
Islam, M.S.; Chen, X. Continuous CTC separation through a DEP- based contraction–expansion inertial microfluidic channel. Biotechnol. Prog., 2023, 39(4), e3341.
[http://dx.doi.org/10.1002/btpr.3341] [PMID: 36970770]
[35]
Yin, S.; Lu, R.; Li, Y.; Sun, D.; Liu, C.; Liu, B.; Li, J. A microfluidic device inspired by leaky tumor vessels for hematogenous metastasis mechanism research. Analyst (Lond.), 2023, 148(7), 1570-1578.
[http://dx.doi.org/10.1039/D2AN02081E] [PMID: 36892183]
[36]
Ugrinic, M.; Decanini, D.; Bidan, N.; Lazzari, G.; Harouri, A.; Hwang, G.; Haghiri-Gosnet, A.M.; Mura, S. Fabrication of high aspect ratio microfluidic devices for long term in vitro culture of 3D tumor models. Microelectron. Eng., 2023, 267-268, 111898.
[http://dx.doi.org/10.1016/j.mee.2022.111898]
[37]
Li, P.; Wang, C.; Qiu, J.; Song, F.; Huang, Y.; Zhang, Y.; Zhang, K.; Ji, H.; Sang, Y.; Blaker, J.J.; Zhang, Y.; Han, L. Inhibitory effect of zinc oxide nanorod arrays on breast cancer cells profiled through real-time cytokines screening by a single-cell microfluidic platform. BMEMat, 2023, 1(3), e12040.
[http://dx.doi.org/10.1002/bmm2.12040]
[38]
Gural, N.; Irimia, D. Microfluidic devices for precise measurements of cell directionality reveal a role for glutamine during cell migration. Sci Rep., 2023, 13(1), 23032.
[http://dx.doi.org/10.21203/rs.3.rs-2799430/v1]
[39]
Wang, Z.; Ahmed, S.; Labib, M.; Wang, H.; Wu, L.; Bavaghar-Zaeimi, F.; Shokri, N.; Blanco, S.; Karim, S.; Czarnecka-Kujawa, K.; Sargent, E.H.; McGray, A.J.R.; de Perrot, M.; Kelley, S.O. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat. Biomed. Eng., 2023, 7(9), 1188-1203.
[http://dx.doi.org/10.1038/s41551-023-01023-3] [PMID: 37037966]
[40]
Ngan Ngo, T.K.; Kuo, C.H.; Tu, T.Y. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. Biomicrofluidics, 2023, 17(1), 011501.
[http://dx.doi.org/10.1063/5.0108792] [PMID: 36647540]
[41]
Cao, X.; Liu, Q.; Shi, W.; liu, K.; Deng, T.; Weng, X.; Pan, S.; Yu, Q.; Deng, W.; Yu, J.; Wang, Q.; Xiao, G.; Xu, X. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect. Int. J. Pharm., 2023, 641, 123039.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123039] [PMID: 37225026]
[42]
Peng, T.; Qiang, J.; Yuan, S. Investigation on a cascaded inertial and acoustic microfluidic device for sheathless and label-free separation of circulating tumor cells. Phys. Fluids, 2023, 35(8), 082009.
[http://dx.doi.org/10.1063/5.0160391]
[43]
Gimondi, S.; Ferreira, H.; Reis, R.L.; Neves, N.M. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS Nano, 2023, 17(15), 14205-14228.
[http://dx.doi.org/10.1021/acsnano.3c01117] [PMID: 37498731]
[44]
Bi, W.; Cai, S.; Lei, T.; Wang, L. Implementation of blood-brain barrier on microfluidic chip: Recent advance and future prospects. Ageing Res. Rev., 2023, 87, 101921.
[http://dx.doi.org/10.1016/j.arr.2023.101921] [PMID: 37004842]
[45]
Ide, H.; Aoshi, T.; Saito, M.; Espulgar, W.V.; Briones, J.C.; Hosokawa, M.; Matsunaga, H.; Arikawa, K.; Takeyama, H.; Koyama, S.; Takamatsu, H.; Tamiya, E. Linking antigen specific T-cell dynamics in a microfluidic chip to single cell transcription patterns. Biochem. Biophys. Res. Commun., 2023, 657, 8-15.
[http://dx.doi.org/10.1016/j.bbrc.2023.03.035] [PMID: 36963175]
[46]
Shao, C.; Yu, Y.; Lei, X.; Cao, J.; Zhao, Y.; Ye, F. Organ-on-a-chip for dynamic tumor drug resistance investigation. Chem. Eng. J., 2023, 460, 141739.
[http://dx.doi.org/10.1016/j.cej.2023.141739]
[47]
Hou, C.; Gu, Y.; Yuan, W.; Zhang, W.; Xiu, X.; Lin, J.; Gao, Y.; Liu, P.; Chen, X.; Song, L. Application of microfluidic chips in the simulation of the urinary system microenvironment. Mater. Today Bio, 2023, 19, 100553.
[http://dx.doi.org/10.1016/j.mtbio.2023.100553] [PMID: 36747584]
[48]
Banik, S.; Uchil, A.; Kalsang, T.; Chakrabarty, S.; Ali, M.A.; Srisungsitthisunti, P.; Mahato, K.K.; Surdo, S.; Mazumder, N. The revolution of PDMS microfluidics in cellular biology. Crit. Rev. Biotechnol., 2023, 43(3), 465-483.
[http://dx.doi.org/10.1080/07388551.2022.2034733] [PMID: 35410564]
[49]
Parihar, A.; Choudhary, N.K.; Parihar, D.S.; Khan, R. Tumor-on-a-Chip: Microfluidic Models of Hypoxic Tumor Microenvironment. Hypoxia in Cancer: Significance and Impact on Cancer Therapy. Singapore: Springer. Nat. Singap., 2023, 297-328.
[http://dx.doi.org/10.1007/978-981-99-0313-9_14]
[50]
Chen, Y.S.; Huang, C.H.; Pai, P.C.; Seo, J.; Lei, K.F. A Review on Microfluidics-Based Impedance Biosensors. Biosensors (Basel), 2023, 13(1), 83.
[http://dx.doi.org/10.3390/bios13010083] [PMID: 36671918]
[51]
Wan, Z.; Floryan, M.A.; Coughlin, M.F.; Zhang, S.; Zhong, A.X.; Shelton, S.E.; Wang, X.; Xu, C.; Barbie, D.A.; Kamm, R.D. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay. Adv. Healthc. Mater., 2023, 12(14), 2201784.
[http://dx.doi.org/10.1002/adhm.202201784] [PMID: 36333913]
[52]
Ye, S.; Cao, Q.; Ni, P.; Xiong, S.; Zhong, M.; Yuan, T.; Shan, J.; Liang, J.; Fan, Y.; Zhang, X. Construction of Microfluidic Chip Structure for Cell Migration Studies in Bioactive Ceramics. Small, 2023, 19(40), 2302152.
[http://dx.doi.org/10.1002/smll.202302152] [PMID: 37282789]
[53]
Phillips, C.M.; Lima, E.A.B.F.; Gadde, M.; Jarrett, A.M.; Rylander, M.N.; Yankeelov, T.E. Towards integration of time-resolved confocal microscopy of a 3D in vitro microfluidic platform with a hybrid multiscale model of tumor angiogenesis. PLOS Comput. Biol., 2023, 19(1), e1009499.
[http://dx.doi.org/10.1371/journal.pcbi.1009499] [PMID: 36652468]
[54]
Farahinia, A.; Zhang, W.; Badea, I. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. Sensors (Basel), 2023, 23(11), 5300.
[http://dx.doi.org/10.3390/s23115300] [PMID: 37300027]
[55]
Villalba-Villalba, A.G.; Muñoz, C.; Maldonado, A. Evaluation of the deformation index of sea urchin Echinometra vanbrunti ovules by microfluidics. Biophys. J., 2023, 122(3), 533a.
[http://dx.doi.org/10.1016/j.bpj.2022.11.2825]
[56]
Abraham, A.; Virdi, S.; Herrero, N.; Bryant, I.; Nwakama, C.; Jacob, M.; Khaparde, G.; Jordan, D.; McCuddin, M.; McKinley, S.; Taylor, A.; Peeples, C.; Ekpenyong, A. Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis. Micromachines (Basel), 2023, 14(9), 1653.
[http://dx.doi.org/10.3390/mi14091653] [PMID: 37763816]
[57]
Lu, Y.; Yue, S.; Liang, M.; Wang, T.; Wang, R.; Chen, Z.; Fang, J. Establishment of a cascaded microfluidic single cell analysis system for molecular and functional heterogeneity analysis of circulating tumor cells. Sens. Actuators B Chem., 2023, 393, 134174.
[http://dx.doi.org/10.1016/j.snb.2023.134174]
[58]
Johnson, A.; Reimer, S.; Childres, R.; Cupp, G.; Kohs, T.C.L.; McCarty, O.J.T.; Kang, Y. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell. Mol. Bioeng., 2023, 16(1), 3-21.
[http://dx.doi.org/10.1007/s12195-022-00755-7] [PMID: 36660587]
[59]
Mendanha, D.; Gimondi, S.; Costa, B.M.; Ferreira, H.; Neves, N.M. Microfluidic-derived docosahexaenoic acid liposomes for glioblastoma therapy. Nanomedicine, 2023, 53, 102704.
[http://dx.doi.org/10.1016/j.nano.2023.102704] [PMID: 37582426]
[60]
Cheng, Y.; Zhang, S.; Qin, L.; Zhao, J.; Song, H.; Yuan, Y.; Sun, J.; Tian, F.; Liu, C. Poly(ethylene oxide) concentration gradient-based microfluidic isolation of circulating tumor cells. Anal. Chem., 2023, 95(6), 3468-3475.
[http://dx.doi.org/10.1021/acs.analchem.2c05257] [PMID: 36725367]
[61]
Sharma, I.; Thakur, M.; Singh, S.; Tripathi, A. Microfluidic devices as a tool for drug delivery and diagnosis: A review. Int. J. Appl. Pharmaceut., 2021, 13(1), 95-102.
[http://dx.doi.org/10.22159/ijap.2021v13i1.39032]
[62]
Kuril, A.; Ambekar, A.; Nimase, B.; Giri, P.; Nikam, P.; Desai, H.; Aher, S. Exploring the potential of 3D printing in pharmaceutical development. Int. J. Curr. Pharm. Sci., 2023, 15(6), 31-42.

© 2025 Bentham Science Publishers | Privacy Policy