Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Development and Characterization of Fast-dissolving Tablets to Enhance Bioavailability of BCS Class II Drugs by Solid Dispersion Method

Author(s): Samathana Kanagaraj Sathish*, Kunchithapadam Janakiraman and Periyasamy Muthumani

Volume 20, Issue 9, 2024

Published on: 28 October, 2024

Page: [1005 - 1023] Pages: 19

DOI: 10.2174/0115734129341966241023105918

Price: $65

Abstract

Background: Rapid tablet or capsule dissolution requires the tablet to disintegrate and dissolve at a higher rate, enhancing drug dissolution and bioavailability. Suitable disintegrants have shown an appreciable rate of disintegration or dissolution. Using factorial design for formulation to improve bioavailability is a key focus in pharmaceutical research to enhance dissolution.

Methods: Azelnidipine (Azp) tablets were formulated with Hydroxypropyl β-cyclodextrin (HβCD), β-cyclodextrin (βCD), and Kolliphor HS15 (HS15) to enhance solubility. A 23 factorial design optimized the formulation, focusing on disintegration time (DT) and time for 90% dissolution (T90). Eight formulations (F1-F8) were prepared using the kneading method. Tablets were evaluated for physical properties, drug content, friability, dissolution, and drugexcipient interactions (FTIR and DSC). The optimal formulation (F9) was determined via desirability analysis.

Results: Tablets showed acceptable Carr's index (CI), Hausner ratio (HR), and Angle of Repose (AR). Increasing βCD concentration decreased DT, enhancing water absorption and faster dissolution. βCD tablets had the lowest DT among the formulations, with F4 showing the best disintegration. Higher HS15 concentration also reduced DT, with F8 achieving the highest drug release (T90%) within 60 minutes. R² values ranged from 0.922 to 0.994, indicating high predictability. The optimal formulation had a desirability of 1.0, consisting of 3.523 mg HS15, 28.4 mg βCD, and 1.49 mg βCD, with a DT of 102 ± 1.13 seconds and 98% dissolution. FTIR and DSC confirmed no drug–excipient interactions.

Conclusion: Optimized super disintegrant concentrations and wet granulation techniques resulted in tablets with strong mechanical properties, rapid disintegration, and consistent drug content. Future research and in vivo studies should explore additional excipient combinations

Keywords: Azeldepine, kolliphor HS15, hydroxypropyl β cyclodextrin (HβCD), 3D surface response plot, contour graphs, optimal formulation (F9).

Next »
Graphical Abstract
[1]
Aguiar, Soluble and hydrophobic drugs can be strongly Finholt and Solvang. 1967.
[2]
Udupa, D.N. Bioavailability and bioequivalence of novel drug delivery. J. Bioequivalence Bioavailab., 2010, 1(1)
[http://dx.doi.org/10.4172/0975-0851.1000037]
[3]
Parida, S.; Bal, U.; Mahapatra, A.K.; Swain, S. Biopharmaceutics Classification System (BCS) and Biowaiver: in Drug Product Design. Res. J. Life Sci. Bioinform., 2024, 5(1), 11-28.
[4]
Poonam Irache; Jain, C.M.; Jaiswal, A.R.; Irache, P.; Yelane, A.H.; Tattu, H.P. A review on solubility enhancement technique for pharmaceutical drugs. GSC Biological and Pharmaceutical Sciences, 2024, 26(2), 239-253.
[http://dx.doi.org/10.30574/gscbps.2024.26.2.0069]
[5]
Maheshwari, S; Singh, A; Varshney, AP; Sharma, A Advancing oral drug delivery: The science of fast dissolving tablets (FDTs). Intelligent Pharmacy, 2024, 2(4), 580-587.
[6]
Hassan, N.; Bakhtiari, M.N.; Nayab, D.E. Review: Drug Dissolution and Solubility. Global Immunological & Infectious Diseases Review, 2018, 3(1), 8-12.
[7]
Sachdeva, S.; Singh, H.; Singh, J. Enhancing dissolution and bioavailability: A review on co-processed superdisintegrants in pharmaceutical formulations. J. Drug Deliv. Ther., 2024, 14(8), 223-237.
[http://dx.doi.org/10.22270/jddt.v14i8.6747]
[8]
Rahane, R.D.; Rachh, P.R. A review on fast dissolving tablet. J. Drug Deliv. Ther., 2018, 8(5), 50-55.
[http://dx.doi.org/10.22270/jddt.v8i5.1888]
[9]
Sharma, M.; Singh, A.; Gupta, S.; Kumar, S.; Kumar, S. A Comprehensive Review of Disintegrants: Backbone of disintegration. Life Sci. J., 2024, 43(1), 15-35.
[10]
Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm., 2004, 58(2), 265-278.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.001] [PMID: 15296954]
[11]
Sekar, V.; Chellan, V.R. Immediate release tablets of telmisartan using superdisintegrant-formulation, evaluation and stability studies. Chem. Pharm. Bull. (Tokyo), 2008, 56(4), 575-577.
[http://dx.doi.org/10.1248/cpb.56.575] [PMID: 18379110]
[12]
Vadaga, AK; Gudla, SS; Nareboina, GS; Gubbala, H; Golla, B Comprehensive review on modern techniques of granulation in pharmaceutical solid dosage forms. Intelligent Pharmacy, 2024.
[http://dx.doi.org/10.1016/j.ipha.2024.05.006]
[13]
El-Setouhy, D.A.; Basalious, E.B.; Abdelmalak, N.S. Effect of different meltable binders on the disintegration and dissolution behavior of zolmitriptan oromucosal fast melt tablets. J. Pharm. Nutr. Sci., 2017, 7(1), 13-23.
[http://dx.doi.org/10.6000/1927-5951.2017.07.01.3]
[14]
Vasconcelos, T.; Marques, S.; Sarmento, B. The biopharmaceutical classification system of excipients. Ther. Deliv., 2017, 8(2), 65-78.
[http://dx.doi.org/10.4155/tde-2016-0067] [PMID: 28088879]
[15]
Mohsin, K.; Long, M.A.; Pouton, C.W. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of drug after dispersion of formulations in aqueous solution. J. Pharm. Sci., 2009, 98(10), 3582-3595.
[http://dx.doi.org/10.1002/jps.21659] [PMID: 19130605]
[16]
Devi, L.S.; Casadidio, C.; Gigliobianco, M.R.; Di Martino, P.; Censi, R. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics. Int. J. Pharm., 2024, 654, 123976.
[http://dx.doi.org/10.1016/j.ijpharm.2024.123976] [PMID: 38452831]
[17]
Saffarionpour, S.; Diosady, L.L. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv. Transl. Res., 2024, 1-40.
[http://dx.doi.org/10.1007/s13346-024-01586-x] [PMID: 38671315]
[18]
Ez-zoubi, A.; Zaroual, H.; Zoubi, Y.E.; Fadil, M.; Farah, A. Inclusion complex essential oil into cyclodextrins and its optimization via experimental designs: A review. Chem. Zvesti, 2024, 78(7), 4075-4094.
[http://dx.doi.org/10.1007/s11696-024-03405-6]
[19]
Notario-Pérez, F.; Martín-Illana, A.; Cazorla-Luna, R.; Ruiz-Caro, R.; Tamayo, A.; Rubio, J.; María-Dolores, V. Mucoadhesive vaginal discs based on cyclodextrin and surfactants for the controlled release of antiretroviral drugs to prevent the sexual transmission of HIV. Pharmaceutics, 2020, 12(4), 321.
[http://dx.doi.org/10.3390/pharmaceutics12040321] [PMID: 32265431]
[20]
Jacob, S.; Nair, A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res., 2018, 79(5), 201-217.
[http://dx.doi.org/10.1002/ddr.21452] [PMID: 30188584]
[21]
Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5), 1161.
[http://dx.doi.org/10.3390/molecules23051161] [PMID: 29751694]
[22]
González-Pérez, A.; Dias, R.S.; Nylander, T.; Lindman, B. Cyclodextrin-surfactant complex: A new route in DNA decompaction. Biomacromolecules, 2008, 9(3), 772-775.
[http://dx.doi.org/10.1021/bm7012907] [PMID: 18257531]
[23]
López-López, M.; López-Cornejo, P.; González-Cortés, C.; Blanco-Arévalo, D.; Pérez-Alfonso, D.; Mozo-Mulero, C.; Oviedo, J.; Moyá, M.L. Influence of the cyclodextrin nature on the decompaction of dimeric cationic surfactant-DNA complexes. Colloids Surf. A Physicochem. Eng. Asp., 2018, 555, 133-141.
[http://dx.doi.org/10.1016/j.colsurfa.2018.06.066]
[24]
Jiang, L.; Deng, M.; Wang, Y.; Liang, D.; Yan, Y.; Huang, J. Special effect of β-cyclodextrin on the aggregation behavior of mixed cationic/anionic surfactant systems. J. Phys. Chem. B, 2009, 113(21), 7498-7504.
[http://dx.doi.org/10.1021/jp811455f] [PMID: 19309096]
[25]
Luviano, A.S.; Hernández-Pascacio, J.; Ondo, D.; Campbell, R.A.; Piñeiro, Á.; Campos-Terán, J.; Costas, M. Highly viscoelastic films at the water/air interface: α-Cyclodextrin with anionic surfactants. J. Colloid Interface Sci., 2020, 565, 601-613.
[http://dx.doi.org/10.1016/j.jcis.2019.12.012] [PMID: 32032852]
[26]
Jobe, D.J.; Reinsborough, V.C.; Wetmore, S.D. Sodium dodecyl sulfate micellar aggregation numbers in the presence of cyclodextrins. Langmuir, 1995, 11(7), 2476-2479.
[http://dx.doi.org/10.1021/la00007a027]
[27]
Sasaki, H.; Igarashi, Y.; Nishida, K.; Nakamura, J. Intestinal permeability of ophthalmic β-blockers for predicting ocular permeability. J. Pharm. Sci., 1994, 83(9), 1335-1338.
[http://dx.doi.org/10.1002/jps.2600830926] [PMID: 7830251]
[28]
Agrawal, R; Naveen, Y. Pharmaceutical processing–A review on wet granulation technology. Int J Pharm Front, 2011, 1(1), 65-83.
[29]
Mandal, U.; Gowda, V.; Ghosh, A.; Selvan, S.; Solomon, S.; Pal, T.K. Formulation and optimization of sustained release matrix tablet of metformin HCl 500 mg using response surface methodology. Yakugaku Zasshi, 2007, 127(8), 1281-1290.
[http://dx.doi.org/10.1248/yakushi.127.1281] [PMID: 17666882]
[30]
Price, K. Book review: Three-Dimensional Machine Vision by Takeo Kanade (Kluwer Academic Publishers). ACM SIGART Bulletin, 1988, 103(103), 23.
[http://dx.doi.org/10.1145/44418.1057647]
[31]
Mishra, D.N.; Bindal, M.; Singh, S.K.; Vijaya Kumar, S.G. Spray dried excipient base: a novel technique for the formulation of orally disintegrating tablets. Chem. Pharm. Bull. (Tokyo), 2006, 54(1), 99-102.
[http://dx.doi.org/10.1248/cpb.54.99] [PMID: 16394558]
[32]
Chowdary, KP; Naresh, A Formulation Development of Efavirenz Tablets Employing β Cyclodextrin-PVP K30-SLS: A Factorial Study. J. Appl. Pharm. Sci., 2011, 30, 130-134.
[33]
Serajuddin, A.T.M.; Mufson, D.; Bernstein, D.F.; Sheen, P-C.; Augustine, M.A. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J. Pharm. Sci., 1988, 77(5), 414-417.
[http://dx.doi.org/10.1002/jps.2600770512] [PMID: 3411464]
[34]
Arun Kumar, M.S. Solubility enhancement techniques: A comprehensive review. WJBPHS, 2023, 13(3), 414-149.
[http://dx.doi.org/10.30574/wjbphs.2023.13.3.0125]
[35]
Raskapur, K.D.; Patel, M.M.; Captain, A.D. UV-Spectrophotometric method development and validation for determination of Azelnidipine in pharmaceutical dosage form. Toxicology, 2010, 106, 135-143.
[36]
Seitz, J.A.; Flessland, G.M. Evaluation of the physical properties of compressed tablets. I. Tablet hardness and friability. J. Pharm. Sci., 1965, 54(9), 1353-1357.
[http://dx.doi.org/10.1002/jps.2600540926] [PMID: 5881235]
[37]
Pabari, RM; Ramtoola, Z Effect of a disintegration mechanism on wetting, water absorption, and disintegration time of orodispersible tablets. J Young Pharm., 2012, 4(3), 157-63.
[http://dx.doi.org/10.4103/0975-1483.100021]
[38]
Ainurofiq, A.; Choiri, S. Drug release model and kinetics of natural polymers-based sustained release tablet. Lat. Am. J. Pharm., 2015, 34(7), 1328-1337.
[39]
Reji, M.; Kumar, R. Response surface methodology (RSM): An overview to analyze multivariate data. Indian J. Microbiol. Res., 2022, 9, 241-248.
[40]
Fan, A.; Pallerla, S.; Carlson, G.; Ladipo, D.; Dukich, J.; Capella, R.; Leung, S. Effect of particle size distribution and flow property of powder blend on tablet weight variation. Am. Pharm. Rev., 2005, 8(2), 73-78.
[41]
Brubaker, J.; Moghtadernejad, S. A Comprehensive Review of the Rheological Properties of Powders in Pharmaceuticals. Powders, 2024, 3(2), 233-254.
[http://dx.doi.org/10.3390/powders3020015]
[42]
Kumar, S.; Chopra, S.; Mittal, A.; Singh, S.; Kaur, J.; Singh, D. A comprehensive review on tablet processing and evaluation. JETIR, 2018, 5(12), 719-732.
[43]
Suhag, R.; Kellil, A.; Razem, M. Factors Influencing Food Powder Flowability. Powders., 2024, 3(1), 65-76.
[44]
Patel, S; Kaushal, AM; Bansal, AK Compression physics in the formulation development of tablets. Crit Rev Ther Drug Carrier Syst., 2006, 23(1), 1-65.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v23.i1.10]
[45]
Patil, C.; Das, S. Effect of various superdisintegrants on the drug release profile and disintegration time of Lamotrigine orally disintegrating tablets. Afr. J. Pharm. Pharmacol., 2009, 5(1), 76-82.
[http://dx.doi.org/10.5897/AJPP10.279]
[46]
Mishra, J; Hardenia, S; Jain, DK A review of formulation technology for recent advancements in fast dissolving tablets. IJISRT, 2023, 8(3)
[47]
Pahwa, R.; Gupta, N. Superdisintegrants in the development of orally disintegrating tablets: a review. Int. J. Pharm. Sci. Res., 2011, 2(11), 2767.
[48]
Dilebo, J.; Gabriel, T. An overview of factors affecting superdisintegrants functionalities. IJPSN, 2019, 12(1), 4355-4361.
[http://dx.doi.org/10.37285/ijpsn.2019.12.1.1]
[49]
Kumar, A.; Saharan, V.A. A comparative study of different proportions of superdisintegrants: Formulation and evaluation of orally disintegrating tablets of salbutamol sulphate. Turk J Pharm Sci, 2017, 14(1), 40-48.
[http://dx.doi.org/10.4274/tjps.74946] [PMID: 32454593]
[50]
Yee, K.M.; Mohamad, N.; Kee, P.E.; Chew, Y.L.; Lee, S.K.; Lakshminarayanan, V.; Tan, C.S.; Liew, K.B. Recent Advances in Orally Disintegrating Tablet: Properties, Formulation and Production. Drug Deliv. Lett., 2024, 14(3), 211-225.
[http://dx.doi.org/10.2174/0122103031291909240317162755]
[51]
Mohanachandran, P.S.; Sindhumol, P.G.; Kiran, T.S. Superdisintegrants: an overview. Int. J. Pharm. Sci. Rev. Res., 2011, 6(1), 105-109.
[52]
Sahoo, S.; Metta, S. An Exploration of The Potential of Natural Super Disintegrating Agents in Pharmaceutical Formulations: A Review. Journal of Pharmacological and Pharmaceutical Research, 2024, 1(1), 21.
[http://dx.doi.org/10.5455/JPPR.20240107023841]
[53]
Late, S.G.; Banga, A.K. Response surface methodology to optimize novel fast disintegrating tablets using β cyclodextrin as diluent. AAPS PharmSciTech, 2010, 11(4), 1627-1635.
[http://dx.doi.org/10.1208/s12249-010-9541-6] [PMID: 21086083]
[54]
Edge, S.; Miller, R.W. Croscarmellose sodium. In: Handbook of pharmaceutical excipients; Row, R.C.; Sheskey, P.J.; Owen, S.C., Eds.; Pharmaceutical Press: London, 2005; pp. 211-213.
[55]
Srikar, G.; Gouthami, K.S.; Manasa, B.; Sirisha, A.S. Formulation optimization and characterization of amlodipine oral disintegrating tablets prepared by cogrinding technique. Pharm. Lett., 2013, 5(4), 335-343.
[56]
Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov. Today, 2016, 21(2), 363-368.
[http://dx.doi.org/10.1016/j.drudis.2015.11.016] [PMID: 26687191]
[57]
Zoghbi, A.; Wang, B. Carvedilol solubility enhancement by inclusion complexation and solid dispersion. J. Drug Deliv. Ther., 2015, 5(2), 1-8.
[http://dx.doi.org/10.22270/jddt.v5i2.1074]
[58]
Askarizadeh, M.; Esfandiari, N.; Honarvar, B.; Sajadian, S.A.; Azdarpour, A. Kinetic modeling to explain the release of medicine from drug delivery systems. ChemBioEng Rev., 2023, 10(6), 1006-1049.
[http://dx.doi.org/10.1002/cben.202300027]
[59]
Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Peterchristoper, G.V. Release kinetics–concepts and applications. IJPRT, 2018, 8(1), 12-20.
[60]
Mainardi, P.H.; Bidoia, E.D. Fundamental concepts and recent Applications of factorial statistical designs. Brazilian Journal of Biometrics, 2022, 40(1)
[http://dx.doi.org/10.28951/bjb.v40i1.552]
[61]
Benedetti, B.; Caponigro, V.; Ardini, F. Experimental design step by step: a practical guide for beginners. Crit. Rev. Anal. Chem., 2022, 52(5), 1015-1028.
[http://dx.doi.org/10.1080/10408347.2020.1848517] [PMID: 33258692]
[62]
Morgan, E.; Burton, K.W.; Church, P.A. Practical exploratory experimental designs. Chemom. Intell. Lab. Syst., 1989, 5(4), 283-302.
[http://dx.doi.org/10.1016/0169-7439(89)80028-0]
[63]
Singh, B.; Kapil, R.; Nandi, M.; Ahuja, N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin. Drug Deliv., 2011, 8(10), 1341-1360.
[http://dx.doi.org/10.1517/17425247.2011.605120] [PMID: 21790511]
[64]
Han, J.K.; Kim, J.Y.; Choi, D.H.; Park, E.S. A formulation development strategy for dual-release bilayer tablets: An integrated approach of quality by design and a placebo layer. Int. J. Pharm., 2022, 618, 121659.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121659] [PMID: 35292397]
[65]
Apeji, Y.E.; Ariko, N.A.; Olayemi, O.J.; Olowosulu, A.K.; Oyi, A.R. Optimization of the Extragranular Excipient Composition of Paracetamol Tablet formulation using the Quality by Design Approach. Braz. J. Pharm. Sci., 2022, 58, e20544.
[http://dx.doi.org/10.1590/s2175-97902022e20544]
[66]
Pal, TK; Dan, S; Dan, N Application of Response Surface Methodology (RSM) in statistical optimization and pharmaceutical characterization of a matrix tablet formulation using metformin HCl as a model drug. Int. J. Sci., 2014.
[67]
Debnath, S.; Aishwarya, M.N.; Babu, M.N. Formulation by design: An approach to designing better drug delivery systems. Pharm. Times, 2018, 50, 9-14.
[68]
N Politis, S.; Colombo, P.; Colombo, G.; M Rekkas, D. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm., 2017, 43(6), 889-901.
[http://dx.doi.org/10.1080/03639045.2017.1291672] [PMID: 28166428]
[69]
Das, U; Panda, DK; Mandal, S Formulation by Design: An Overview; In Tech, 2023.
[70]
Miller, L.A.; Carrier, R.L.; Ahmed, I. Practical considerations in development of solid dosage forms that contain cyclodextrin. J. Pharm. Sci., 2007, 96(7), 1691-1707.
[http://dx.doi.org/10.1002/jps.20831] [PMID: 17243148]
[71]
Loftsson, T.; Brewster, M.E.; Masson, M. Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv., 2004, 2, 261-275.
[http://dx.doi.org/10.2165/00137696-200402040-00006]
[72]
Santosh Kumar, R.; Kumari, A. Superdisintegrant: crucial elements for mouth dissolving tablets. J. Drug Deliv. Ther., 2019, 9(2), 461-468.
[http://dx.doi.org/10.22270/jddt.v9i2.2480]
[73]
Interfacial Inversion, Interference and IR Absorption in Vibrational Sum Frequency Scattering Experiments.
[74]
Investigation into laser self-mixing for accelerator applications. 2009.
[http://dx.doi.org/10.1017/CBO9780511703997.007]
[75]
Interference Bands and their Applications. Nature, 1893, 48(1235), 212-214.
[http://dx.doi.org/10.1038/048212b0]
[76]
Vlad, R.A.; Antonoaea, P.; Todoran, N.; Muntean, D.L.; Rédai, E.M.; Silași, O.A.; Tătaru, A.; Bîrsan, M.; Imre, S.; Ciurba, A. Pharmacotechnical and analytical preformulation studies for cannabidiol orodispersible tablets. Saudi Pharm. J., 2021, 29(9), 1029-1042.
[http://dx.doi.org/10.1016/j.jsps.2021.07.012] [PMID: 34588849]
[77]
Tatulian, S.A. Analysis of protein–protein and protein–membrane interactions by isotope-edited infrared spectroscopy. Phys. Chem. Chem. Phys., 2024, 26(33), 21930-21953.
[http://dx.doi.org/10.1039/D4CP01136H] [PMID: 39108200]
[78]
Han, Y.; Pan, Y.; Lv, J.; Guo, W.; Wang, J. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties. Powder Technol., 2016, 291, 110-120.
[http://dx.doi.org/10.1016/j.powtec.2015.11.068]
[79]
Li, M.; Qiu, S.; Lu, Y.; Wang, K.; Lai, X.; Rehan, M. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal. Pharm. Res., 2014, 31(9), 2312-2325.
[http://dx.doi.org/10.1007/s11095-014-1326-2] [PMID: 24590881]
[80]
Ayalasomayajula, LU; Earle, RR; Prasanthi, T; Harika, V Formulation and Evaluation of Etoricoxib Oro Dispersable Tablets by Direct Compression Method. IOSR Journal of Pharmacy and Biological Sciences, 2016, 11(2), 64-70.
[81]
Drapier-Beche, N.; Fanni, J.; Parmentier, M. Physical and chemical properties of molecular compounds of lactose. J. Dairy Sci., 1999, 82(12), 2558-2563.
[http://dx.doi.org/10.3168/jds.S0022-0302(99)75510-4] [PMID: 10629801]
[82]
Donovan, J.W.; Lorenz, K.; Kulp, K. Differential scanning calorimetry of heat-moisture. Cereal Chem., 1983, 60(5), 381-387.

© 2025 Bentham Science Publishers | Privacy Policy