Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

iTRAQ-based Proteomic Analysis Unveils NCAM1 as a Novel Regulator in Doxorubicin-induced Cardiotoxicity and DT-010-exerted Cardioprotection

Author(s): Sijie Wang, Caipeng Xie, Huihui Hu, Pei Yu, Haijing Zhong*, Yuqiang Wang* and Luchen Shan*

Volume 20, Issue 9, 2024

Published on: 24 October, 2024

Page: [966 - 977] Pages: 12

DOI: 10.2174/0115734129331758241022113026

Price: $65

Abstract

Background: Doxorubicin (DOX) causes lethal cardiotoxicity, which limits its clinical utility. The molecular mechanisms and effective strategies to combat its cardiotoxicity need further exploration. DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine( TMP), is considered a promising candidate for treating DOX-induced cardiotoxicity. In this study, we aimed to investigate the underlying molecular mechanisms of DOX-induced cardiotoxicity and the cardioprotective effects of DT-010.

Methods: Isobaric tags for relative and absolute quantitation (iTRAQ) in proteomics analysis was employed to analyze the differentially expressed proteins in DOX-injuried hearts. Gene ontology (GO) enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to evaluated the potential mechanisms of DOXinduced cardiotoxicity. The effects of NCAM1 on DOX-induced cardiotoxicity in H9c2 cells, as well as the cardioprotection of DT-010 were assessed through NACM1siRNA transfection, cell viability assay, cell apoptosis staining, reactive oxygen species measurement, and western blotting.

Results: Proteomics analysis revealed that several signaling pathways, including the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, were involved in DOX-induced cardiotoxicity. NCAM1 is one of the significantly changed proteins. DT-010 treatment regulated NCAM1 protein expression. Silencing NCAM1 in DOX-treated H9c2 cells decreased cell viability, increased cell apoptosis and reactive oxygen species (ROS) generation, and attenuated the cardioprotective effects of DT-010. Furthermore, NCAM1 knockdown promoted p38 activation and inhibited the expressions of peroxisome proliferator-activated receptor gamma coactivator- 1 alpha (PGC-1α) and heme oxygenase-1 (HO-1) in DOX-treated cells.

Conclusion: These findings indicate a definite role of NCAM1 in DOX-induced cardiotoxicity and DT-010-exerted cardioprotection, which is mediated through the p38 and Sirt1/PGC- 1α/HO-1 pathway.

Keywords: iTRAQ-based proteomics analysis, doxorubicin, cardiotoxicity, neural cell adhesion molecule 1, DT-010, Sirt1/PGC-1α/HO-1.

Graphical Abstract
[1]
Henriksen, P.A. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart, 2018, 104(12), 971-977.
[http://dx.doi.org/10.1136/heartjnl-2017-312103] [PMID: 29217634]
[2]
Zhang, H.; Weng, J.; Sun, S.; Zhou, J.; Yang, Q.; Huang, X.; Sun, J.; Pan, M.; Chi, J.; Guo, H. Ononin alleviates endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity by activating SIRT3. Toxicol. Appl. Pharmacol., 2022, 452, 116179.
[http://dx.doi.org/10.1016/j.taap.2022.116179] [PMID: 35914558]
[3]
Wenningmann, N.; Knapp, M.; Ande, A.; Vaidya, T.R.; Ait-Oudhia, S. Insights into doxorubicin-induced cardiotoxicity: Molecular mechanisms, preventive strategies, and early monitoring. Mol. Pharmacol., 2019, 96(2), 219-232.
[http://dx.doi.org/10.1124/mol.119.115725] [PMID: 31164387]
[4]
Christidi, E.; Brunham, L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis., 2021, 12, 339.
[http://dx.doi.org/10.1038/s41419-021-03614-x]
[5]
Lin, X.; Wu, G.; Wang, S.; Huang, J. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity. Front. Pharmacol., 2023, 14, 1255158.
[http://dx.doi.org/10.3389/fphar.2023.1255158] [PMID: 38026961]
[6]
Zhou, N.; Wei, S.; Sun, T.; Xie, S.; Liu, J.; Li, W.; Zhang, B. Recent progress in the role of endogenous metal ions in doxorubicin-induced cardiotoxicity. Front. Pharmacol., 2023, 14, 1292088.
[http://dx.doi.org/10.3389/fphar.2023.1292088] [PMID: 38143497]
[7]
Liu, J.; Liu, H.; Deng, L.; Wang, T.; Li, L.; Chen, Y.; Qu, L.; Zou, W. Protective role of dioscin against doxorubicin-induced chronic cardiotoxicity: Insights from nrf2-gpx4 axis-mediated cardiac ferroptosis. Biomolecules, 2024, 14(4), 422.
[http://dx.doi.org/10.3390/biom14040422] [PMID: 38672439]
[8]
Zhou, J.C.; Jin, C.C.; Wei, X.L.; Xu, R.B.; Wang, R.Y.; Zhang, Z.M.; Tang, B.; Yu, J.M.; Yu, J.J.; Shang, S.; Lv, X.X.; Hua, F.; Li, P.P.; Hu, Z.W.; Shen, Y.M.; Wang, F.P.; Ma, X.Y.; Cui, B.; Geng, F.N.; Zhang, X.W. Mesaconine alleviates doxorubicin-triggered cardiotoxicity and heart failure by activating PINK1-dependent cardiac mitophagy. Front. Pharmacol., 2023, 14, 1118017.
[http://dx.doi.org/10.3389/fphar.2023.1118017] [PMID: 37124193]
[9]
Al-Kenany, S.A.; Al-Shawi, N.N. Protective effect of cafestol against doxorubicin-induced cardiotoxicity in rats by activating the Nrf2 pathway. Front. Pharmacol., 2023, 14, 1206782.
[http://dx.doi.org/10.3389/fphar.2023.1206782] [PMID: 37377932]
[10]
Song, J.H.; Kim, M.S.; Lee, S.H.; Hwang, J.T.; Park, S.H.; Park, S.W.; Jeon, S.B.; Lee, R.R.; Lee, J.; Choi, H.K. Hydroethanolic extract of Cirsium setidens ameliorates doxorubicin-induced cardiotoxicity by AMPK-PGC-1α-SOD-mediated mitochondrial protection. Phytomedicine, 2024, 129, 155633.
[http://dx.doi.org/10.1016/j.phymed.2024.155633] [PMID: 38640859]
[11]
Zhu, P.; Ren, Q.; Zhang, R.; Zhang, L.; Xia, X.; Zheng, C.; Ye, T. Exploring the effects of calycosin on anthracycline-induced cardiotoxicity: A network pharmacology, molecular docking, and experimental study. Front. Cardiovasc. Med., 2024, 11, 1286620.
[http://dx.doi.org/10.3389/fcvm.2024.1286620] [PMID: 38576421]
[12]
Li, X.; Luo, W.; Tang, Y.; Wu, J.; Zhang, J.; Chen, S.; Zhou, L.; Tao, Y.; Tang, Y.; Wang, F.; Huang, Y.; Jose, P.A.; Guo, L.; Zeng, C. Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction. Redox Biol., 2024, 72, 103129.
[http://dx.doi.org/10.1016/j.redox.2024.103129] [PMID: 38574433]
[13]
Al-Hussaniy, H.A.; Noori Mohammed, Z.; Alburghaif, A.H.; Akeel Naji, M. Panax ginseng as Antioxidant and Anti-inflammatory to reduce the Cardiotoxicity of Doxorubicin on rat module. Research Journal of Pharmacy and Technology, 2022, 15(10), 4594-4600.
[http://dx.doi.org/10.52711/0974-360X.2022.00771]
[14]
Al-hussaniy, H.A.; Alburghaif, A.H.; alkhafaje, Z.; AL-Zobaidy, M.A.H.J.; Alkuraishy, H.M.; Mostafa-Hedeab, G.; Azam, F.; Al-Samydai, A.M.; Al-tameemi, Z.S.; Naji, M.A. Chemotherapy-induced cardiotoxicity: a new perspective on the role of Digoxin, ATG7 activators, Resveratrol, and herbal drugs. J. Med. Life, 2023, 16(4), 491-500.
[http://dx.doi.org/10.25122/jml-2022-0322] [PMID: 37305823]
[15]
Wang, Y.; Zhang, X.; Xu, C.; Zhang, G.; Zhang, Z.; Yu, P.; Shan, L.; Sun, Y.; Wang, Y. Synthesis and biological evaluation of danshensu and tetramethylpyrazine conjugates as cardioprotective agents. Chem. Pharm. Bull. (Tokyo), 2017, 65(4), 381-388.
[http://dx.doi.org/10.1248/cpb.c16-00839] [PMID: 28381679]
[16]
Zhang, X.; Hu, H.; Luo, J.; Deng, H.; Yu, P.; Zhang, Z.; Zhang, G.; Shan, L.; Wang, Y. A novel danshensu-tetramethylpyrazine conjugate DT-010 provides cardioprotection through the PGC-1α/Nrf2/HO-1 pathway. Biol. Pharm. Bull., 2017, 40(9), 1490-1498.
[http://dx.doi.org/10.1248/bpb.b17-00313] [PMID: 28637941]
[17]
Xie, C.; Luo, J.; Hu, H.; Wang, L.; Yu, P.; Xu, L.; Sun, Y.; Wang, Y.; Shan, L. A novel danshensu/tetramethypyrazine derivative attenuates oxidative stress‑induced autophagy injury via the AMPK‑mTOR‑Ulk1 signaling pathway in cardiomyocytes. Exp. Ther. Med., 2020, 21(2), 118.
[http://dx.doi.org/10.3892/etm.2020.9550] [PMID: 33335581]
[18]
Zhou, X.; Wang, A.; Wang, L.; Yin, J.; Wang, L.; Di, L.; Hoi, M.P.M.; Shan, L.; Wu, X.; Wang, Y. A danshensu-tetramethylpyrazine conjugate DT-010 overcomes multidrug resistance in human breast cancer. Front. Pharmacol., 2019, 10, 722.
[http://dx.doi.org/10.3389/fphar.2019.00722] [PMID: 31293428]
[19]
Wang, L.; Zhang, X.; Cui, G.; Chan, J.Y.W.; Wang, L.; Li, C.; Shan, L.; Xu, C.; Zhang, Q.; Wang, Y.; Di, L.; Lee, S.M.Y. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II. Oncotarget, 2016, 7(22), 32054-32064.
[http://dx.doi.org/10.18632/oncotarget.8410] [PMID: 27081033]
[20]
Arafa, M.H.; Mohammad, N.S.; Atteia, H.H.; Abd-Elaziz, H.R. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J. Physiol. Biochem., 2014, 70(3), 701-711.
[http://dx.doi.org/10.1007/s13105-014-0339-y] [PMID: 24939721]
[21]
Wang, L.; Chan, J.Y.; Zhou, X.; Cui, G.; Yan, Z.; Wang, L.; Yan, R.; Di, L.; Wang, Y.; Hoi, M.P.; Shan, L.; Lee, S.M. A novel agent enhances the chemotherapeutic efficacy of doxorubicin in MCF-7 breast cancer cells. Front. Pharmacol., 2016, 7, 249.
[http://dx.doi.org/10.3389/fphar.2016.00249] [PMID: 27559313]
[22]
Tang, F.; Zhou, X.; Wang, L.; Shan, L.; Li, C.; Zhou, H.; Lee, S.M.Y.; Hoi, M.P.M. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways. Eur. J. Pharmacol., 2018, 820, 86-96.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.021] [PMID: 29229534]
[23]
Vutskits, L.; Gascon, E.; Zgraggen, E.; Kiss, J.Z. The polysialylated neural cell adhesion molecule promotes neurogenesis in vitro. Neurochem. Res., 2006, 31(2), 215-225.
[http://dx.doi.org/10.1007/s11064-005-9021-7] [PMID: 16572258]
[24]
Rønn, L.C.B.; Berezin, V.; Bock, E. The neural cell adhesion molecule in synaptic plasticity and ageing. Int. J. Dev. Neurosci., 2000, 18(2-3), 193-199.
[http://dx.doi.org/10.1016/S0736-5748(99)00088-X] [PMID: 10715574]
[25]
Covault, J.; Sanes, J.R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc. Natl. Acad. Sci. USA, 1985, 82(13), 4544-4548.
[http://dx.doi.org/10.1073/pnas.82.13.4544] [PMID: 3892537]
[26]
Burroughs, C.; Watanabe, M.; Morse, D.E. Distribution of the neural cell adhesion molecule (NCAM) during heart development. J. Mol. Cell. Cardiol., 1991, 23(12), 1411-1422.
[http://dx.doi.org/10.1016/0022-2828(91)90187-Q] [PMID: 1811057]
[27]
Al-Mahdawi, S.; Shallal, A.; Wyse, R.K.H. Neural cell adhesion molecule (N‐CAM) in fetal and mature human heart. FEBS Lett., 1990, 267(2), 183-185.
[http://dx.doi.org/10.1016/0014-5793(90)80920-E] [PMID: 2199212]
[28]
Andersson, A.M.; Olsen, M.; Zhernosekov, D.; Gaardsvoll, H.; Krog, L.; Linnemann, D.; Bock, E. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: A comparative study of newborn, adult and aged rats. Biochem. J., 1993, 290(Pt 3), 641-648.
[http://dx.doi.org/10.1042/bj2900641]
[29]
Gattenlöner, S.; Waller, C.; Ertl, G.; Bültmann, B.D. The overexpression of NCAM (CD56) in human hearts is specific for ischemic damage. Verh. Dtsch. Ges. Pathol., 2004, 88, 246-251.
[PMID: 16892559]
[30]
Tur, M.K.; Etschmann, B.; Benz, A.; Leich, E.; Waller, C.; Schuh, K.; Rosenwald, A.; Ertl, G.; Kienitz, A.; Haaf, A.T.; Bräuninger, A.; Gattenlöhner, S. The 140-kD isoform of CD56 (NCAM1) directs the molecular pathogenesis of ischemic cardiomyopathy. Am. J. Pathol., 2013, 182(4), 1205-1218.
[http://dx.doi.org/10.1016/j.ajpath.2012.12.027] [PMID: 23462508]
[31]
Arnett, D.K.; Meyers, K.J.; Devereux, R.B.; Tiwari, H.K.; Gu, C.C.; Vaughan, L.K.; Perry, R.T.; Patki, A.; Claas, S.A.; Sun, Y.V.; Broeckel, U.; Kardia, S.L. Genetic variation in NCAM1 contributes to left ventricular wall thickness in hypertensive families. Circ. Res., 2011, 108(3), 279-283.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.239210] [PMID: 21212386]
[32]
Rigopoulos, A.G.; Rizos, I.; Parissis, J. Rate of intramyocardial NCAM re-expression in dilated cardiomyopathy: More pronounced in the left than in the right ventricle? Int. J. Cardiol., 2017, 249, 332.
[http://dx.doi.org/10.1016/j.ijcard.2017.06.018] [PMID: 29121738]
[33]
Nagao, K.; Sowa, N.; Inoue, K.; Tokunaga, M.; Fukuchi, K.; Uchiyama, K.; Ito, H.; Hayashi, F.; Makita, T.; Inada, T.; Tanaka, M.; Kimura, T.; Ono, K. Myocardial expression level of neural cell adhesion molecule correlates with reduced left ventricular function in human cardiomyopathy. Circ. Heart Fail., 2014, 7(2), 351-358.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000939] [PMID: 24365773]
[34]
Yu, P.; Zhao, J.; Jiang, H.; Liu, M.; Yang, X.; Zhang, B.; Yu, Y.; Zhang, L.; Tong, R.; Liu, G.; Chen, R.; Zou, Y.; Ge, J. Neural cell adhesion molecule-1 may be a new biomarker of coronary artery disease. Int. J. Cardiol., 2018, 257, 238-242.
[http://dx.doi.org/10.1016/j.ijcard.2017.12.040] [PMID: 29506702]
[35]
Huang, G.; Huang, Z.; Peng, Y.; Wang, Y.; Liu, W.; Xue, Y.; Yang, W. Metabolic Processes are Potential Biological Processes Distinguishing Nonischemic Dilated Cardiomyopathy from Ischemic Cardiomyopathy: A Clue from Serum Proteomics. Pharm. Genomics Pers. Med., 2021, 14, 1169-1184.
[http://dx.doi.org/10.2147/PGPM.S323379] [PMID: 34557019]
[36]
Wu, J. C. X., Huihui Hu, Pei Yu, Yuqiang Wang and Luchen Shan. Prevention of DT-010 on doxorubicin induced cardiotoxicity in rats. World J. Pharm. Pharm. Sci., 2021.
[37]
Lu, J.; Bi, Y.; Ning, G. Curbing the obesity epidemic in China. Lancet Diabetes Endocrinol., 2016, 4(6), 470-471.
[http://dx.doi.org/10.1016/S2213-8587(16)30007-9] [PMID: 27133171]
[38]
Wen, J.; Zhang, L.; Liu, H.; Wang, J.; Li, J.; Yang, Y.; Wang, Y.; Cai, H.; Li, R.; Zhao, Y. Salsolinol Attenuates Doxorubicin-Induced Chronic Heart Failure in Rats and Improves Mitochondrial Function in H9c2 Cardiomyocytes. Front. Pharmacol., 2019, 10, 1135.
[http://dx.doi.org/10.3389/fphar.2019.01135] [PMID: 31680945]
[39]
Goyal, S.N.; Mahajan, U.B.; Chandrayan, G.; Kumawat, V.S.; Kamble, S.; Patil, P.; Agrawal, Y.O.; Patil, C.R.; Ojha, S. Protective effect of oleanolic acid on oxidative injury and cellular abnormalities in doxorubicin induced cardiac toxicity in rats. Am. J. Transl. Res., 2016, 8(1), 60-69.
[PMID: 27069540]
[40]
Nagao, K.; Ono, K.; Iwanaga, Y.; Tamaki, Y.; Kojima, Y.; Horie, T.; Nishi, H.; Kinoshita, M.; Kuwabara, Y.; Hasegawa, K.; Kita, T.; Kimura, T. Neural cell adhesion molecule is a cardioprotective factor up-regulated by metabolic stress. J. Mol. Cell. Cardiol., 2010, 48(6), 1157-1168.
[http://dx.doi.org/10.1016/j.yjmcc.2009.10.014] [PMID: 19853610]
[41]
Linnemann, D. Reexpression of the neural cell adhesion molecule (NCAM) on cardiac myocytes in aging rat heart. Acta Histochem., 1994, 96(4), 349-354.
[http://dx.doi.org/10.1016/S0065-1281(11)80018-8] [PMID: 7717040]
[42]
Rajabi, M.; Kassiotis, C.; Razeghi, P.; Taegtmeyer, H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev., 2007, 12(3-4), 331-343.
[http://dx.doi.org/10.1007/s10741-007-9034-1] [PMID: 17516164]
[43]
Wharton, J.; Gordon, L.; Walsh, F.S.; Flanigan, T.P.; Moore, S.E.; Polak, J.M. Neural cell adhesion molecule (N-CAM) expression during cardiac development in the rat. Brain Res., 1989, 483(1), 170-176.
[http://dx.doi.org/10.1016/0006-8993(89)90050-4] [PMID: 2706505]
[44]
Sihag, S.; Cresci, S.; Li, A.Y.; Sucharov, C.C.; Lehman, J.J. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart. J. Mol. Cell. Cardiol., 2009, 46(2), 201-212.
[http://dx.doi.org/10.1016/j.yjmcc.2008.10.025] [PMID: 19061896]
[45]
Karamanlidis, G.; Nascimben, L.; Couper, G.S.; Shekar, P.S.; del Monte, F.; Tian, R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res., 2010, 106(9), 1541-1548.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.212753] [PMID: 20339121]
[46]
Ditlevsen, D.K.; Køhler, L.B.; Pedersen, M.V.; Risell, M.; Kolkova, K.; Meyer, M.; Berezin, V.; Bock, E. The role of phosphatidylinositol 3‐kinase in neural cell adhesion molecule‐mediated neuronal differentiation and survival. J. Neurochem., 2003, 84(3), 546-556.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01538.x] [PMID: 12558974]
[47]
Tsai, K.H.; Wang, W.J.; Lin, C.W.; Pai, P.; Lai, T.Y.; Tsai, C.Y.; Kuo, W.W. NADPH oxidase‐derived superoxide Anion‐induced apoptosis is mediated via the JNK‐dependent activation of NF‐κB in cardiomyocytes exposed to high glucose. J. Cell. Physiol., 2012, 227(4), 1347-1357.
[http://dx.doi.org/10.1002/jcp.22847] [PMID: 21604272]
[48]
Zhang, X.L.; Xu, F.X.; Han, X.Y. siRNA-mediated NCAM1 gene silencing suppresses oxidative stress in pre-eclampsia by inhibiting the p38MAPK signaling pathway. J. etCell. Biochem., 2019, 120(11), 18608-18617.
[http://dx.doi.org/10.1002/jcb.28778]
[49]
Ackermann, M.A.; Petrosino, J.M.; Manring, H.R.; Wright, P.; Shettigar, V.; Kilic, A.; Janssen, P.M.L.; Ziolo, M.T.; Accornero, F. TGF-β1 affects cell-cell adhesion in the heart in an NCAM1-dependent mechanism. J. Mol. Cell. Cardiol., 2017, 112, 49-57.
[http://dx.doi.org/10.1016/j.yjmcc.2017.08.015] [PMID: 28870505]

© 2025 Bentham Science Publishers | Privacy Policy