Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Recent Advancements in Nanopharmaceuticals for Novel Drug Delivery Systems

Author(s): Kai Bin Liew*, Ee Va Koh, Xue Er Kong, Nurdina Aleyah Ismail, Rabiatul Adawiyah Abu Bakar, Phei Er Kee, Syed Haroon Khalid and Hiu Ching Phang

Volume 13, Issue 2, 2025

Published on: 25 September, 2024

Page: [271 - 286] Pages: 16

DOI: 10.2174/0122117385324246240826042254

Price: $65

Abstract

Nanoparticles have found applications across diverse sectors, including agriculture, food, cosmetics, chemicals, mechanical engineering, automotive, and oil and gas industries. In the medical field, nanoparticles have garnered considerable attention due to their great surface area, high solubility, rapid dissolution, and enhanced bioavailability. Nanopharmaceuticals are specifically designed to precisely deliver drug substances to targeted tissues and cells, aiming to optimize therapeutic efficacy while minimizing potential adverse effects. Furthermore, nanopharmaceuticals offer advantages, such as expedited therapeutic onset, reduced dosages, minimized variability between fed and fasted states, and enhanced patient compliance. The increasing interest in nanopharmaceuticals research among scientists and industry stakeholders highlights their potential for various medical applications from disease management to cancer treatment. This review examines the distinctive characteristics of ideal nanoparticles for efficient drug delivery, explores the current types of nanoparticles utilized in medicine, and delves into the applications of nanopharmaceuticals, including drug and gene delivery, as well as transdermal drug administration. This review provides insights into the nanopharmaceuticals field, contributing to the development of novel drug delivery systems and enhancing the potential of nanotechnology in healthcare.

Keywords: Nanopharmaceuticals, nanoparticles, drug delivery, characteristics, applications, nanotechnology.

Next »
Graphical Abstract
[1]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[2]
Weissig V, Pettinger T, Murdock N. Nanopharmaceuticals (part 1): Products on the market. Int J Nanomedicine 2014; 9: 4357-73.
[http://dx.doi.org/10.2147/IJN.S46900] [PMID: 25258527]
[3]
Malik S, Muhammad K, Waheed Y. Nanotechnology: A revolution in modern industry. Molecules 2023; 28(2): 661.
[http://dx.doi.org/10.3390/molecules28020661] [PMID: 36677717]
[4]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[5]
Liu L, Ye Q, Lu M, et al. A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci Rep 2015; 5(1): 10881.
[http://dx.doi.org/10.1038/srep10881] [PMID: 26039249]
[6]
Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. J Biomed Technol 2024; 5: 109-22.
[http://dx.doi.org/10.1016/j.bmt.2023.09.001]
[7]
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem 2018; 6: 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[8]
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023; 15(7): 1596.
[http://dx.doi.org/10.3390/polym15071596] [PMID: 37050210]
[9]
Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release 2017; 260: 202-12.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.003] [PMID: 28603030]
[10]
Zhang Q, Kuang G, Zhang L, Zhu Y. Nanocarriers for platinum drug delivery. J Biomed Technol 2023; 2: 77-89.
[http://dx.doi.org/10.1016/j.bmt.2022.11.011]
[11]
Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The influence of nanoparticle properties on oral bioavailability of drugs. Int J Nanomedicine 2020; 15: 6295-310.
[http://dx.doi.org/10.2147/IJN.S257269] [PMID: 32943863]
[12]
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol 2018; 46(6): 1111-21.
[http://dx.doi.org/10.1080/21691401.2017.1379014] [PMID: 28933183]
[13]
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 2019; 14(1): 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[14]
Joseph T, Kar Mahapatra D, Esmaeili A, et al. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023; 13(3): 574.
[http://dx.doi.org/10.3390/nano13030574] [PMID: 36770535]
[15]
Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 2016; 238: 176-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.051] [PMID: 27480450]
[16]
Haripriyaa M, Suthindhiran K. Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery. Futur J Pharm Sci 2023; 9(1): 113.
[http://dx.doi.org/10.1186/s43094-023-00569-y]
[17]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[18]
Heuer-Jungemann A, Feliu N, Bakaimi I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 2019; 119(8): 4819-80.
[http://dx.doi.org/10.1021/acs.chemrev.8b00733] [PMID: 30920815]
[19]
Szeto GL, Lavik EB. Materials design at the interface of nanoparticles and innate immunity. J Mater Chem B Mater Biol Med 2016; 4(9): 1610-8.
[http://dx.doi.org/10.1039/C5TB01825K] [PMID: 27453783]
[20]
Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci 2021; 16(4): 444-58.
[http://dx.doi.org/10.1016/j.ajps.2020.07.005] [PMID: 34703494]
[21]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[22]
Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol 2011; 697: 63-70.
[http://dx.doi.org/10.1007/978-1-60327-198-1_6] [PMID: 21116954]
[23]
Awashra M, MĹ‚ynarz P. The toxicity of nanoparticles and their interaction with cells: An in vitro metabolomic perspective. Nanoscale Adv 2023; 5(10): 2674-723.
[http://dx.doi.org/10.1039/D2NA00534D] [PMID: 37205285]
[24]
HĂĽhn D, Kantner K, Geidel C, et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013; 7(4): 3253-63.
[http://dx.doi.org/10.1021/nn3059295] [PMID: 23566380]
[25]
Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 2018; 13(1): 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[26]
Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 2017; 41: 260-8.
[http://dx.doi.org/10.1016/j.jddst.2017.07.019]
[27]
Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: Progress, current status, and prospects. Int J Nanomedicine 2017; 12: 4085-109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[28]
Nagal A, K Singla R. Nanoparticles in different delivery systems: A brief review. Indo Glob J Pharm Sci 2013; 3(2): 96-106.
[http://dx.doi.org/10.35652/IGJPS.2013.12]
[29]
Hsu CY, Rheima AM, Kadhim MM, et al. An overview of nanoparticles in drug delivery: Properties and applications. S Afr J Chem Eng 2023; 46: 233-70.
[http://dx.doi.org/10.1016/j.sajce.2023.08.009]
[30]
Lestari WA, Wahyuningsih S, Gomez-Ruiz S, Wibowo FR. Drug loading ability and release study of various size small mesoporous silica nanoparticle as drug carrier. J Phys Conf Ser 2022; 2190(1): 012032.
[http://dx.doi.org/10.1088/1742-6596/2190/1/012032]
[31]
Bharti C, Gulati N, Nagaich U, Pal AK. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig 2015; 5(3): 124-33.
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[32]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[33]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[34]
Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1): 169.
[http://dx.doi.org/10.1186/s12943-023-01865-0] [PMID: 37814270]
[35]
Gagliardi A, Giuliano E, Venkateswararao E, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 2021; 12: 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[36]
Wong KY, Wong MS, Liu J. Aptamer-functionalized liposomes for drug delivery. Biomed J 2023; 100685: 100685.
[http://dx.doi.org/10.1016/j.bj.2023.100685] [PMID: 38081386]
[37]
Zwicke GL, Ali Mansoori G, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 2012; 3(1): 18496.
[http://dx.doi.org/10.3402/nano.v3i0.18496] [PMID: 23240070]
[38]
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13(11): 4391-416.
[http://dx.doi.org/10.1016/j.apsb.2023.05.018] [PMID: 37969727]
[39]
Thapa RK, Kim JO. Nanomedicine-based commercial formulations: Current developments and future prospects. J Pharm Investig 2023; 53(1): 19-33.
[http://dx.doi.org/10.1007/s40005-022-00607-6] [PMID: 36568502]
[40]
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236: 115751.
[http://dx.doi.org/10.1016/j.jpba.2023.115751] [PMID: 37778202]
[41]
Lombardo D, Kiselev MA. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022; 14(3): 543.
[http://dx.doi.org/10.3390/pharmaceutics14030543] [PMID: 35335920]
[42]
Sriwidodo , Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 2022; 8(2): e08934.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08934]
[43]
Rommasi F, Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett 2021; 16(1): 95.
[http://dx.doi.org/10.1186/s11671-021-03553-8] [PMID: 34032937]
[44]
Awad NS, Paul V, Mahmoud MS, et al. Effect of pegylation and targeting moieties on the ultrasound-mediated drug release from liposomes. ACS Biomater Sci Eng 2020; 6(1): 48-57.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01301] [PMID: 33463192]
[45]
Taher M, Susanti D, Haris MS, et al. PEGylated liposomes enhance the effect of cytotoxic drug: A review. Heliyon 2023; 9(3): e13823.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13823] [PMID: 36873538]
[46]
Chis AA, Dobrea C, Morgovan C, et al. Applications and limitations of dendrimers in biomedicine. Molecules 2020; 25(17): 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[47]
Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials 2019; 13(1): 65.
[http://dx.doi.org/10.3390/ma13010065] [PMID: 31877717]
[48]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[49]
Palmerston Mendes L, Pan J, Torchilin V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017; 22(9): 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[50]
Song C, Shen M, Rodrigues J, Mignani S, Majoral JP, Shi X. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coord Chem Rev 2020; 421: 213463.
[http://dx.doi.org/10.1016/j.ccr.2020.213463]
[51]
Koopaie M. 22 - Nanoparticulate systems for dental drug delivery. In: Mozafari M, Ed. Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier 2020; pp. 525-59.
[http://dx.doi.org/10.1016/B978-0-08-102985-5.00022-X]
[52]
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine 2010; 5(3): 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[53]
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the application of micellar drug delivery systems in cancer nanomedicine. Pharmaceuticals 2023; 16(3): 433.
[http://dx.doi.org/10.3390/ph16030433] [PMID: 36986532]
[54]
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[55]
Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol 2021; 15(1): 19-27.
[http://dx.doi.org/10.1049/nbt2.12018] [PMID: 34694727]
[56]
Perumal S, Atchudan R, Lee W. A review of polymeric micelles and their applications. Polymers 2022; 14(12): 2510.
[http://dx.doi.org/10.3390/polym14122510] [PMID: 35746086]
[57]
Mishra S, Shah H, Patel A, Tripathi SM, Malviya R, Prajapati BG. Applications of bioengineered polymer in the field of nano-based drug delivery. ACS Omega 2024; 9(1): 81-96.
[http://dx.doi.org/10.1021/acsomega.3c07356] [PMID: 38222544]
[58]
Begines B, Ortiz T, PĂ©rez-Aranda M, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020; 10(7): 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[59]
Yokota J, Kyotani S. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J Chin Med Assoc 2018; 81(6): 511-9.
[http://dx.doi.org/10.1016/j.jcma.2018.01.008] [PMID: 29555445]
[60]
Souto EB, Blanco-Llamero C, Krambeck K, et al. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomater 2024; 180: 1-17.
[http://dx.doi.org/10.1016/j.actbio.2024.04.010] [PMID: 38604468]
[61]
Chandra Hembram K, Prabha S, Chandra R, Ahmed B, Nimesh S. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomed Biotechnol 2016; 44(1): 305-14.
[http://dx.doi.org/10.3109/21691401.2014.948548] [PMID: 25137489]
[62]
Wu X, Zheng Y, Yang D, et al. A strategy using mesoporous polymer nanospheres as nanocarriers of Bcl-2 siRNA towards breast cancer therapy. J Mater Chem B Mater Biol Med 2019; 7(3): 477-87.
[http://dx.doi.org/10.1039/C8TB02463D] [PMID: 32254735]
[63]
Pathak C, Vaidya FU, Pandey SM. Mechanism for development of nanobased drug delivery system. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, Eds. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier 2019; pp. 35-67.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00003-X]
[64]
Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials 2020; 10(5): 847.
[http://dx.doi.org/10.3390/nano10050847] [PMID: 32354008]
[65]
Stiufiuc GF, Stiufiuc RI. Magnetic nanoparticles: Synthesis, characterization, and their use in biomedical field. Appl Sci 2024; 14(4): 1623.
[http://dx.doi.org/10.3390/app14041623]
[66]
Ahmad M, Minhas M, Sohail M, Faisal M, Rashid H. Comprehensive review on magnetic drug delivery systems: A novel approach for drug targeting. J Pharm Altern Med 2013; 2
[67]
Majidi S, Zeinali Sehrig F, Farkhani SM, Soleymani Goloujeh M, Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol 2016; 44(2): 722-34.
[http://dx.doi.org/10.3109/21691401.2014.982802] [PMID: 25435409]
[68]
Nowak-Jary J, Machnicka B. In vivo biodistribution and clearance of magnetic iron oxide nanoparticles for medical applications. Int J Nanomedicine 2023; 18: 4067-100.
[http://dx.doi.org/10.2147/IJN.S415063] [PMID: 37525695]
[69]
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20(1): 305.
[http://dx.doi.org/10.1186/s12951-022-01510-w] [PMID: 35761279]
[70]
Pondman K, Le Gac S, Kishore U. Nanoparticle-induced immune response: Health risk versus treatment opportunity? Immunobiology 2023; 228(2): 152317.
[http://dx.doi.org/10.1016/j.imbio.2022.152317] [PMID: 36592542]
[71]
Levy M, Luciani N, Alloyeau D, et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 2011; 32(16): 3988-99.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.031] [PMID: 21392823]
[72]
Sivamaruthi BS, Kapoor DU, Kukkar RR, et al. Mesoporous silica nanoparticles: Types, synthesis, role in the treatment of alzheimer’s disease, and other applications. Pharmaceutics 2023; 15(12): 2666.
[http://dx.doi.org/10.3390/pharmaceutics15122666] [PMID: 38140007]
[73]
Patel RJ, Pandey P, Patel AA, et al. Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs. J Drug Deliv Sci Technol 2023; 82: 104306.
[http://dx.doi.org/10.1016/j.jddst.2023.104306]
[74]
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018; 10(3): 118.
[http://dx.doi.org/10.3390/pharmaceutics10030118] [PMID: 30082647]
[75]
Djayanti K, Maharjan P, Cho KH, et al. Mesoporous silica nanoparticles as a potential nanoplatform: Therapeutic applications and considerations. Int J Mol Sci 2023; 24(7): 6349.
[http://dx.doi.org/10.3390/ijms24076349] [PMID: 37047329]
[76]
Wu H, Li F, Wang S, et al. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 2018; 151: 66-77.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.018] [PMID: 29078200]
[77]
Farshbaf M, Salehi R, Annabi N, Khalilov R, Akbarzadeh A, Davaran S. pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging. Drug Dev Ind Pharm 2018; 44(3): 452-62.
[http://dx.doi.org/10.1080/03639045.2017.1397686] [PMID: 29098882]
[78]
Ariaeenejad S, Jokar F, Hadian P, et al. An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: Xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles. Int J Biol Macromol 2020; 164: 3462-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.211] [PMID: 32888986]
[79]
Hajebi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92: 1-18.
[http://dx.doi.org/10.1016/j.actbio.2019.05.018] [PMID: 31096042]
[80]
Sindhu RK, Gupta R, Wadhera G, Kumar P. Modern herbal nanogels: Formulation, delivery methods, and applications. Gels 2022; 8(2): 97.
[http://dx.doi.org/10.3390/gels8020097] [PMID: 35200478]
[81]
Yang S, Wang F, Han H, et al. Fabricated technology of biomedical micro-nano hydrogel. J Biomed Technol 2023; 2: 31-48.
[http://dx.doi.org/10.1016/j.bmt.2022.11.012]
[82]
Manimaran V, Nivetha RP, Tamilanban T, et al. Nanogels as novel drug nanocarriers for CNS drug delivery. Front Mol Biosci 2023; 10: 1232109.
[http://dx.doi.org/10.3389/fmolb.2023.1232109] [PMID: 37621994]
[83]
Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 1997; 54 (Suppl. 4): 15-21.
[http://dx.doi.org/10.2165/00003495-199700544-00005] [PMID: 9361957]
[84]
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(7): 769-87.
[http://dx.doi.org/10.1007/s00210-022-02245-z] [PMID: 35505234]
[85]
Choi J, Rui Y, Kim J, et al. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies. Nanomedicine 2020; 23: 102115.
[http://dx.doi.org/10.1016/j.nano.2019.102115] [PMID: 31655205]
[86]
Su Z, Erdene-Ochir T, Ganbold T, Baigude H. Design of curdlan-based pH-sensitive polymers with endosome buffering functionality for siRNA delivery. Int J Biol Macromol 2020; 146: 773-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.129] [PMID: 31778701]
[87]
Erdene-Ochir T, Ganbold T, Zandan J, Han S, Borjihan G, Baigude H. Alkylation enhances biocompatibility and siRNA delivery efficiency of cationic curdlan nanoparticles. Int J Biol Macromol 2020; 143: 118-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.048] [PMID: 31816379]
[88]
Shah S, Madhu H, Soniwala M, et al. Lipid-based nanoparticles. Nanocarrier Vaccines. Wiley Online Library 2024; pp. 241-3.
[http://dx.doi.org/10.1002/9781394175482.ch7]
[89]
Francia V, Schiffelers RM, Cullis PR, Witzigmann D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug Chem 2020; 31(9): 2046-59.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00366] [PMID: 32786370]
[90]
Jayeoye TJ, Nwude EF, Singh S, Prajapati BG, Kapoor DU, Muangsin N. Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: A review. Bionanoscience 2024.
[http://dx.doi.org/10.1007/s12668-024-01436-7]
[91]
Peng LH, Huang YF, Zhang CZ, et al. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials 2016; 103: 137-49.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.057] [PMID: 27376562]
[92]
Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles—emerging potential for managing leukemia and lymphoma. Front Bioeng Biotechnol 2017; 5: 79.
[http://dx.doi.org/10.3389/fbioe.2017.00079] [PMID: 29326927]
[93]
Akinyelu J, Singh M. Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. Appl Nanosci 2019; 9(1): 7-17.
[http://dx.doi.org/10.1007/s13204-018-0896-4]
[94]
Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh MG, Suguna L. Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf B Biointerfaces 2013; 106: 208-16.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.035] [PMID: 23434714]
[95]
Bagga P, Ansari TM, Siddiqui HH, et al. Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandize effect of the antibiotic levofloxacin. EXCLI J 2016; 15: 772-80.
[PMID: 28337108]
[96]
Ahangari A, Salouti M, Heidari Z, Kazemizadeh AR, Safari AA. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Deliv 2013; 20(1): 34-9.
[http://dx.doi.org/10.3109/10717544.2012.746402] [PMID: 23311651]
[97]
Capanema NSV, Carvalho IC, Mansur AAP, Carvalho SM, Lage AP, Mansur HS. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells. ACS Appl Nano Mater 2019; 2(11): 7393-408.
[http://dx.doi.org/10.1021/acsanm.9b01924]
[98]
Farooq U, Ahmad T, Khan A, et al. Rifampicin conjugated silver nanoparticles: A new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae. Int J Nanomedicine 2019; 14: 3983-93.
[http://dx.doi.org/10.2147/IJN.S198194] [PMID: 31213810]
[99]
Amarnath Praphakar R, Jeyaraj M, Ahmed M, Suresh Kumar S, Rajan M. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int J Biol Macromol 2018; 118(Pt B): 1627-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.008] [PMID: 29981824]
[100]
Shakil MS, Hasan MA, Sarker SR. Iron oxide nanoparticles for breast cancer theranostics. Curr Drug Metab 2019; 20(6): 446-56.
[http://dx.doi.org/10.2174/1389200220666181122105043] [PMID: 30465497]
[101]
Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics 2019; 11(11): 615.
[http://dx.doi.org/10.3390/pharmaceutics11110615] [PMID: 31744202]
[102]
Kapoor DU, Patel RJ, Gaur M, Parikh S, Prajapati BG. Metallic and metal oxide nanoparticles in treating Pseudomonas aeruginosa infections. J Drug Deliv Sci Technol 2024; 91: 105290.
[http://dx.doi.org/10.1016/j.jddst.2023.105290]
[103]
Bhakta G, Sharma RK, Gupta N, Cool S, Nurcombe V, Maitra A. Multifunctional silica nanoparticles with potentials of imaging and gene delivery. Nanomedicine 2011; 7(4): 472-9.
[http://dx.doi.org/10.1016/j.nano.2010.12.008] [PMID: 21215332]
[104]
Marwah M, Perrie Y, Badhan RKS, Lowry D. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J Liposome Res 2020; 30(2): 136-49.
[http://dx.doi.org/10.1080/08982104.2019.1604746] [PMID: 31010367]
[105]
Farjadian F, Rezaeifard S, Naeimi M, et al. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam). Int J Nanomedicine 2019; 14: 6901-15.
[http://dx.doi.org/10.2147/IJN.S214467] [PMID: 31564860]
[106]
Xia B, Zhang W, Tong H, Li J, Chen Z, Shi J. Multifunctional chitosan/porous silicon@au nanocomposite hydrogels for long-term and repeatedly localized combinatorial therapy of cancer via a single injection. ACS Biomater Sci Eng 2019; 5(4): 1857-67.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01533] [PMID: 33405559]
[107]
Sadrjavadi K, Shahbazi B, Fattahi A. De-esterified tragacanth-chitosan nano-hydrogel for methotrexate delivery; Optimization of the formulation by Taguchi design. Artif Cells Nanomed Biotechnol 2018; 46(sup2): 883-93.
[http://dx.doi.org/10.1080/21691401.2018.1471482] [PMID: 29764208]
[108]
Ghaem B, Sadeghi M, Bardajee GR. Synthesis of nano-polymer supported on nano-hydrogel chitosan base and its application for DOX delivery. J Polym Environ 2020; 28(9): 2457-68.
[http://dx.doi.org/10.1007/s10924-020-01775-y]
[109]
Lin F, Li Y, Cui W. Injectable hydrogel microspheres in cartilage repair. Biomedical Technology 2023; 1: 18-29.
[http://dx.doi.org/10.1016/j.bmt.2022.11.002]
[110]
Palmer B, DeLouise L. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 2016; 21(12): 1719.
[http://dx.doi.org/10.3390/molecules21121719] [PMID: 27983701]
[111]
Liu L, Zhao W, Ma Q, et al. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Adv 2023; 5(6): 1527-58.
[http://dx.doi.org/10.1039/D2NA00530A] [PMID: 36926556]
[112]
Lapteva M, Mondon K, Möller M, Gurny R, Kalia YN. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Mol Pharm 2014; 11(9): 2989-3001.
[http://dx.doi.org/10.1021/mp400639e] [PMID: 25057896]
[113]
Goebel ASB, Neubert RHH, Wohlrab J. Dermal targeting of tacrolimus using colloidal carrier systems. Int J Pharm 2011; 404(1-2): 159-68.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.029] [PMID: 21094231]
[114]
Eroğlu İ, Azizoğlu E, Özyazıcı M, et al. Effective topical delivery systems for corticosteroids: Dermatological and histological evaluations. Drug Deliv 2016; 23(5): 1502-13.
[PMID: 25259424]
[115]
Siddique MI, Katas H, Amin MCIM, Ng SF, Zulfakar MH, Jamil A. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis. Int J Pharm 2016; 507(1-2): 72-82.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.005] [PMID: 27154252]
[116]
Takeuchi I, Takeshita T, Suzuki T, Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf B Biointerfaces 2017; 160: 520-6.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.011] [PMID: 29017147]
[117]
Akhtar B, Muhammad F, Aslam B, Saleemi MK, Sharif A. Biodegradable nanoparticle based transdermal patches for gentamicin delivery: Formulation, characterization and pharmacokinetics in rabbits. J Drug Deliv Sci Technol 2020; 57: 101680.
[http://dx.doi.org/10.1016/j.jddst.2020.101680]
[118]
Raviraj V, Pham BTT, Kim BJ, et al. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nanotechnol 2021; 12(1): 6.
[http://dx.doi.org/10.1186/s12645-021-00079-7]
[119]
Dalwadi S, Thakkar V, Prajapati B. Optimizing neuroprotective nano-structured lipid carriers for transdermal delivery through artificial neural network. Pharm Nanotechnol 2024; 12: 1-15.
[http://dx.doi.org/10.2174/0122117385294969240326052312] [PMID: 38616760]
[120]
Yuniarsih N, Chaerunisaa A, Elamin K, Wathoni N. Polymeric nanohydrogel in topical drug delivery system. Int J Nanomedicine 2024; 19: 2733-54.
[http://dx.doi.org/10.2147/IJN.S442123] [PMID: 38505165]
[121]
Rajput R, Narkhede J, Naik JB. Nanogels as nanocarriers for drug delivery: A review. ADMET DMPK 2020; 8(1): 1-15.
[http://dx.doi.org/10.5599/admet.724] [PMID: 35299773]
[122]
Mohammed N, Rejinold NS, Mangalathillam S, Biswas R, Nair SV, Jayakumar R. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J Biomed Nanotechnol 2013; 9(9): 1521-31.
[http://dx.doi.org/10.1166/jbn.2013.1647] [PMID: 23980500]
[123]
Karati D, Mukherjee S, Singh S, Prajapati BG, Basu B. Biopolymer-based nano-formulations for mitigation of ocular infections: A review. Polym Bull 2024; 81(9): 7631-58.
[http://dx.doi.org/10.1007/s00289-023-05095-8]
[124]
Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular drug delivery. Int J Ophthalmol 2013; 6(3): 390-6.
[PMID: 23826539]
[125]
Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, Molina-Martínez IT, Herrero-Vanrell R. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2016; 6(6): 686-707.
[http://dx.doi.org/10.1007/s13346-016-0336-5] [PMID: 27766598]
[126]
Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 2020; 13(4): 246-54.
[http://dx.doi.org/10.2174/1872211314666191224115211] [PMID: 31884933]
[127]
Chaiyasan W, Srinivas SP, Tiyaboonchai W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 2015; 21: 1224-34.
[PMID: 26604662]
[128]
Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. Natamycin solid lipid nanoparticles – sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: Preparation and optimization. Int J Nanomedicine 2019; 14: 2515-31.
[http://dx.doi.org/10.2147/IJN.S190502] [PMID: 31040672]
[129]
Eid HM, Elkomy MH, El Menshawe SF, Salem HF. Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: The influence of pegylation and chitosan coating. AAPS PharmSciTech 2019; 20(5): 183.
[http://dx.doi.org/10.1208/s12249-019-1371-6] [PMID: 31054011]
[130]
dos Santos GA, Ferreira-Nunes R, Dalmolin LF, et al. Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Sci Rep 2020; 10(1): 19285.
[http://dx.doi.org/10.1038/s41598-020-76381-y] [PMID: 33159142]
[131]
Bonechi C, Mahdizadeh FF, Talarico L, et al. Liposomal encapsulation of citicoline for ocular drug delivery. Int J Mol Sci 2023; 24(23): 16864.
[http://dx.doi.org/10.3390/ijms242316864] [PMID: 38069187]
[132]
Prajapati B, Modi C, Patel U, Kendre P. Nanoemulsion based in-situ gel for ocular delivery of brimonidine tartrate. Curr Drug Ther 2024; 19(3): 336-45.
[http://dx.doi.org/10.2174/1574885518666230626164030]
[133]
Yousry C, Zikry PM, Basalious EB, El-Gazayerly ON. Self-nanoemulsifying system optimization for higher terconazole solubilization and non-irritant ocular administration. Adv Pharm Bull 2020; 10(3): 389-98.
[http://dx.doi.org/10.34172/apb.2020.047] [PMID: 32665897]
[134]
Grimaudo MA, Amato G, Carbone C, et al. Micelle-nanogel platform for ferulic acid ocular delivery. Int J Pharm 2020; 576: 118986.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118986] [PMID: 31870956]
[135]
Liu R, Sun L, Fang S, et al. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: Development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharm Dev Technol 2016; 21(5): 576-82.
[http://dx.doi.org/10.3109/10837450.2015.1026607] [PMID: 26024239]
[136]
Zoratto N, Forcina L, Matassa R, et al. Hyaluronan-cholesterol nanogels for the enhancement of the ocular delivery of therapeutics. Pharmaceutics 2021; 13(11): 1781.
[http://dx.doi.org/10.3390/pharmaceutics13111781] [PMID: 34834195]
[137]
Kyriakides TR, Raj A, Tseng TH, et al. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16(4): 042005.
[http://dx.doi.org/10.1088/1748-605X/abe5fa] [PMID: 33578402]
[138]
Su S, Kang PM. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials 2020; 10(4): 656.
[http://dx.doi.org/10.3390/nano10040656] [PMID: 32244653]
[139]
Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14(2): 282-95.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[140]
Feng J, Markwalter CE, Tian C, Armstrong M, Prud’homme RK. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J Transl Med 2019; 17(1): 200.
[http://dx.doi.org/10.1186/s12967-019-1945-9] [PMID: 31200738]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy