Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Rapid Detection of Soil Available Phosphorus using Capacitively Coupled Contactless Conductivity Detection

Author(s): Jun Gao, Wei Li, Jiaoe Li and Rujing Wang*

Volume 22, Issue 2, 2025

Published on: 23 September, 2024

Page: [169 - 183] Pages: 15

DOI: 10.2174/0115701794295930240902050855

Price: $65

TIMBC 2025
Abstract

Background: In China, the traditional method for analyzing soil available phosphorus is inadequate for large-scale soil assessment and nationwide soil formulation demands. To address this, we propose a rapid and reliable method for soil-available phosphorus detection. The setup includes an on-site rapid pre-treatment device, a non-contact conductivity detection device, and a capillary electrophoresis buffer solution system composed of glacial acetic acid and hydroxypropyl-β-cyclodextrin.

Methods: The on-site rapid pre-treatment process includes fresh soil moisture content detection (moisture rapid detector), weighing (handheld weighing meter), stirring (handheld rapid stirrer), and filtration (soil rapid filter) to obtain the liquid sample, and direct injection (capillary electrophoresis detector). The phosphate ion detection parameters include capillary size, separation voltage, injection parameters, and electric injection. We used Liaoning brown soil, Henan yellow tidal soil, Heilongjiang black soil, and Anhui tidal soil as standard samples. Additionally, we used mathematical modeling methods and machine learning algorithms to analyze and process research data.

Results and Conclusion: Following calibration with standard samples, the experimental blind test samples demonstrated conformity with the national standard method, exhibiting a relative standard deviation of less than 3%. The proposed pre-treatment device and non-contact conductivity detector are powered by lithium-ion batteries, rendering them ideal for extended field operations. The non-contact conductivity detector obviates the need for direct contact with test samples, mitigating environmental pollution. Furthermore, the neural network model exhibited the highest level of goodness of fit in chemical data analysis.

Keywords: Soil available phosphorus, on-site rapid pretreatment, detection, capacitively coupled contactless conductivity detection, capillary electrophoresis, back propagation neural network model.

Graphical Abstract
[1]
Seghouani, M.; Bravin, M.N.; Mollier, A. Crop response to nitrogen-phosphorus colimitation: theory, experimental evidences, mechanisms, and models. A review. Agron. Sustain. Dev., 2024, 44(1), 3.
[http://dx.doi.org/10.1007/s13593-023-00939-z]
[2]
Moyles, I.R.; Donohue, J.G.; Fowler, A.C. Quasi-steady uptake and bacterial community assembly in a mathematical model of soil-phosphorus mobility. J. Theor. Biol., 2021, 509, 110530.
[http://dx.doi.org/10.1016/j.jtbi.2020.110530] [PMID: 33129953]
[3]
Rupngam, T.; Messiga, A.J.; Karam, A. Solubility of soil phosphorus in extended waterlogged conditions: An incubation study. Heliyon, 2023, 9(2), e13502.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13502] [PMID: 36825191]
[4]
Quintero, C.E. Dynamic of Phosphorus in Soils Fertilized with different Phosphorus Sources and Phosphorus Acquisition by Lotus Corniculatus. Journal of Ecology & Natural Resources, 2022, 6(4), 000307.
[http://dx.doi.org/10.23880/jenr-16000307]
[5]
Liu, Y.F.; Wen, Z.F.; Bian, Y.; Zhou, Y.; Liu, Z.F.; Zhang, Y.; Feng, X.S. A review on recent innovations of pretreatment and analysis methods for sulfonylurea herbicides. Crit. Rev. Anal. Chem., 2022, 1-30.
[http://dx.doi.org/10.1080/10408347.2022.2116694] [PMID: 36045570]
[6]
Kruse, J.; Abraham, M.; Amelung, W.; Baum, C.; Bol, R.; Kühn, O.; Lewandowski, H.; Niederberger, J.; Oelmann, Y.; Rüger, C.; Santner, J.; Siebers, M.; Siebers, N.; Spohn, M.; Vestergren, J.; Vogts, A.; Leinweber, P. Innovative methods in soil phosphorus research: A review. J. Plant Nutr. Soil Sci., 2015, 178(1), 43-88.
[http://dx.doi.org/10.1002/jpln.201400327] [PMID: 26167132]
[7]
Reis, J.V.; Víctor Hugo Alvarez, V.; Durigan, R.D.; Paulucio, R.B.; Cantarutti, R.B. Interpretation of soil phosphorus availability by Mehlich-3 in soils with contrasting phosphorus buffering capacity. Rev. Bras. Ciênc. Solo, 2020, 44, e0190113.
[http://dx.doi.org/10.36783/18069657rbcs20190113]
[8]
Hu, D.; Zhang, C.; Zhang, Y. Comparison of different pretreatment methods on phosphorus release and recovery as struvite from excess sludge. Environ. Technol., 2023, 44(2), 161-169.
[http://dx.doi.org/10.1080/09593330.2021.1967459] [PMID: 34432613]
[9]
Park, H.J.; Lee, S.Y.; Han, C.W.; Kweon, G. Pretreatment of Soil Samples for Rapid Soil Phosphorus Measurement. Journal of Agriculture & Life Science, 2016, 50(3), 193-203.
[http://dx.doi.org/10.14397/jals.2016.50.3.193]
[10]
Wanke, D.J.; Heichel, J.; Zikeli, S.; Müller, T.; Hartmann, T.E. Comparison of soil phosphorus extraction methods regarding their suitability for organic farming systems. J. Plant Nutr. Soil Sci., 2023, 186(5), 599-608.
[http://dx.doi.org/10.1002/jpln.202300129]
[11]
Sánchez-Esteva, S.; Knadel, M.; Kucheryavskiy, S.; de Jonge, L.W.; Rubæk, G.H.; Hermansen, C.; Heckrath, G. Combining laser-induced breakdown spectroscopy (LIBS) and visible near-infrared spectroscopy (Vis-NIRS) for soil phosphorus determination. Sensors (Basel), 2020, 20(18), 5419.
[http://dx.doi.org/10.3390/s20185419] [PMID: 32967345]
[12]
Guo, P.; Li, T.; Gao, H.; Chen, X.; Cui, Y.; Huang, Y. Evaluating calibration and spectral variable selection methods for predicting three soil nutrients using Vis-NIR spectroscopy. Remote Sens. (Basel), 2021, 13(19), 4000.
[http://dx.doi.org/10.3390/rs13194000]
[13]
Shiri, J.; Keshavarzi, A.; Kisi, O.; Karimi, S.M.; Karimi, S.; Nazemi, A.H.; Rodrigo-Comino, J. Estimating soil available phosphorus content through coupled Wavelet–data-driven models. Sustainability (Basel), 2020, 12(5), 2150.
[http://dx.doi.org/10.3390/su12052150]
[14]
Souza, M.F.; Franco, H.C.J.; Amaral, L.R. Estimation of soil phosphorus availability via visible and near-infrared spectroscopy. Sci. Agric., 2020, 77(5), e20180295.
[http://dx.doi.org/10.1590/1678-992x-2018-0295]
[15]
Xie, Z.; Li, S.; Tang, S.; Huang, L.; Wang, G.; Sun, X.; Hu, Z. Phosphorus leaching from soil profiles in agricultural and forest lands measured by a cascade extraction method. J. Environ. Qual., 2019, 48(3), 568-578.
[http://dx.doi.org/10.2134/jeq2018.07.0285] [PMID: 31180433]
[16]
Hartmann, T.E.; Wollmann, I.; You, Y.; Müller, T. Sensitivity of three phosphate extraction methods to the application of phosphate species differing in immediate plant availability. Agronomy (Basel), 2019, 9(1), 29.
[http://dx.doi.org/10.3390/agronomy9010029]
[17]
Prasad, A.; Sahu, S.P.; Figueiredo Stofela, S.K.; Chaichi, A.; Hasan, S.M.A.; Bam, W.; Maiti, K.; McPeak, K.M.; Liu, G.L.; Gartia, M.R. Printed electrode for measuring phosphate in environmental water. ACS Omega, 2021, 6(17), 11297-11306.
[http://dx.doi.org/10.1021/acsomega.1c00132] [PMID: 34056285]
[18]
Zhu, X.; Wang, K.; Yan, H.; Liu, C.; Zhu, X.; Chen, B. Microfluidics as an emerging platform for exploring soil environmental processes: a critical review. Environ. Sci. Technol., 2022, 56(2), 711-731.
[http://dx.doi.org/10.1021/acs.est.1c03899] [PMID: 34985862]
[19]
Liu, K.; Wang, M.W.; Lin, W.Y.; Phung, D.L.D.; Girgis, M.D.; Wu, A.M.; Tomlinson, J.S.; Shen, C.K. Molecular imaging probe development using microfluidics. Curr. Org. Synth., 2011, 8(4), 473-487.
[http://dx.doi.org/10.2174/157017911796117205] [PMID: 22977436]
[20]
Jia, X.X.; Li, S.; Han, D.P.; Chen, R.; Yao, Z.Y.; Ning, B.; Gao, Z.X.; Fan, Z.C. Development and perspectives of rapid detection technology in food and environment. Crit. Rev. Food Sci. Nutr., 2022, 62(17), 4706-4725.
[http://dx.doi.org/10.1080/10408398.2021.1878101] [PMID: 33523717]
[21]
Kweon, G.; Lund, E.D.; Maxton, C.; Lee, W.S.; Mengel, D.B. Comparison of soil phosphorus measurements. Trans. ASABE, 2015, 58(2), 405-414.
[http://dx.doi.org/10.13031/trans.58.10903]
[22]
McCole, M.; Bradley, M.; McCaul, M.; McCrudden, D. A low-cost portable system for on-site detection of soil pH and potassium levels using 3D printed sensors. Results in Engineering, 2023, 20, 101564.
[http://dx.doi.org/10.1016/j.rineng.2023.101564]
[23]
Nawara, S.; Van Dael, T.; Merckx, R.; Amery, F.; Elsen, A.; Odeurs, W.; Vandendriessche, H.; Mcgrath, S.; Roisin, C.; Jouany, C.; Pellerin, S.; Denoroy, P.; Eichler-Löbermann, B.; Börjesson, G.; Goos, P.; Akkermans, W.; Smolders, E. A comparison of soil tests for available phosphorus in long‐term field experiments in Europe. Eur. J. Soil Sci., 2017, 68(6), 873-885.
[http://dx.doi.org/10.1111/ejss.12486]
[24]
Tian, H.; Qiao, J.; Zhu, Y.; Jia, X.; Shao, M. Vertical distribution of soil available phosphorus and soil available potassium in the critical zone on the Loess Plateau, China. Sci. Rep., 2021, 11(1), 3159.
[http://dx.doi.org/10.1038/s41598-021-82677-4] [PMID: 33542419]
[25]
Wei, Y.; Wang, R.; Zhang, J.; Guo, H.; Chen, X. Partition management of soil nutrients based on capacitive coupled contactless conductivity detection. Agriculture, 2023, 13(2), 313.
[http://dx.doi.org/10.3390/agriculture13020313]
[26]
Paul, P.; Duchateau, T.; Sänger-van de Griend, C.; Adams, E.; Van Schepdael, A. Capillary electrophoresis with capacitively coupled contactless conductivity detection method development and validation for the determination of azithromycin, clarithromycin, and clindamycin. J. Sep. Sci., 2017, 40(17), 3535-3544.
[http://dx.doi.org/10.1002/jssc.201700560] [PMID: 28683179]
[27]
Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring. Micromachines (Basel), 2023, 14(7), 1314.
[http://dx.doi.org/10.3390/mi14071314] [PMID: 37512625]
[28]
Elbashir, A.A.; Elgorashe, R.E.E.; Alnajjar, A.O.; Aboul-Enein, H.Y. Application of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D): 2017–2020. Crit. Rev. Anal. Chem., 2022, 52(3), 535-543.
[http://dx.doi.org/10.1080/10408347.2020.1809340] [PMID: 32835492]
[29]
Do, Y.N.; Kieu, T.L.P.; Dang, T.H.M.; Nguyen, Q.H.; Dang, T.H.; Tran, C.S.; Vu, A.P.; Do, T.T.; Nguyen, T.N.; Dinh, S.L.; Nguyen, T.M.T.; Pham, T.N.M.; Hoang, A.Q.; Pham, B.; Nguyen, T.A.H. Green analytical method for simultaneous determination of glucosamine and calcium in dietary supplements by capillary electrophoresis with capacitively coupled contactless conductivity detection. J. Anal. Methods Chem., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/2765508] [PMID: 36760655]
[30]
Das, B.; Huth, N.; Probert, M.; Condron, L.; Schmidt, S. Soil phosphorus modeling for modern agriculture requires balance of science and practicality: A perspective. J. Environ. Qual., 2019, 48(5), 1281-1294.
[http://dx.doi.org/10.2134/jeq2019.05.0201] [PMID: 31589725]
[31]
Saidi, S.; Ayoubi, S.; Shirvani, M.; Azizi, K.; Zhao, S. Digital mapping of soil phosphorous sorption parameters (PSPs) using environmental variables and machine learning algorithms. Int. J. Digit. Earth, 2023, 16(1), 1752-1769.
[http://dx.doi.org/10.1080/17538947.2023.2210314]
[32]
Meuwly, M. Machine learning for chemical reactions. Chem. Rev., 2021, 121(16), 10218-10239.
[http://dx.doi.org/10.1021/acs.chemrev.1c00033] [PMID: 34097378]
[33]
Liu, Y.; Lu, Z.; He, W.; Wu, Y.; Li, J.; Sun, C. A novel portable microchip electrophoresis system for rapid on-site detection of soil nutrient ions. Meas. Sci. Technol., 2024, 35(7), 075104.
[http://dx.doi.org/10.1088/1361-6501/ad3bdb]
[34]
Kubáň, P.; Hauser, P.C. 20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. Trends Analyt. Chem., 2018, 102, 311-321.
[http://dx.doi.org/10.1016/j.trac.2018.03.007]
[35]
Hauser, P.C.; Kubáň, P. Capacitively coupled contactless conductivity detection for analytical techniques – Developments from 2018 to 2020. J. Chromatogr. A, 2020, 1632, 461616.
[http://dx.doi.org/10.1016/j.chroma.2020.461616] [PMID: 33096295]
[36]
Dinh, L.M.; Hoang, Q.A.; Pham Thi, N.M.; Nguyen Thi, A.H.; Huong, N.T.A. Capillary electrophoresis with capacitively coupled contactless conductivity detection: Recent applications in food control. Heavy metals and arsenic concentrations in water, agricultural soil, and rice in Ngan Son district, Bac Kan province, Vietnam, 2019, 4(4), 266-276.
[http://dx.doi.org/10.47866/2615-9252/vjfc.3848]
[37]
Graf, H.G.; Rudisch, B.M.; Manegold, J.; Huhn, C. Advancements in capacitance‐to‐digital converter‐based C 4 D technology for detection in capillary electrophoresis using amplified excitation voltages and comparison to classical and open‐source C 4 Ds. Electrophoresis, 2021, 42(12-13), 1306-1316.
[http://dx.doi.org/10.1002/elps.202000394] [PMID: 33710630]
[38]
Zhang, X.; Wang, W.; Nordin, A.N.; Li, F.; Jang, S.; Voiculescu, I. The influence of the electrode dimension on the detection sensitivity of electric cell–substrate impedance sensing (ECIS) and its mathematical modeling. Sens. Actuators B Chem., 2017, 247, 780-790.
[http://dx.doi.org/10.1016/j.snb.2017.03.047]
[39]
Zhang, J.; Gao, J.; Chen, X.; Wang, R.; Zhang, Z.; Wei, Y. Design and experiment of capacitively-coupled contactless conductivity detection device for rapid measurement of soil potassium ion. Nongye Jixie Xuebao, 2018, 49(S1), 360-364.
[http://dx.doi.org/10.6041/j.issn.1000-1298.2018.S0.048]
[40]
El-Attug, M.N.; Lutumba, B.; Hoogmartens, J.; Adams, E.; Van Schepdael, A. Method development and validation for trifluoroacetic acid determination by capillary electrophoresis in combination with capacitively coupled contactless conductivity detection (CE-C4D). Talanta, 2010, 83(2), 400-403.
[http://dx.doi.org/10.1016/j.talanta.2010.09.051] [PMID: 21111152]
[41]
Ning, Zhiqiang Liu Jiaxiang; Wu Yue; Tao Mengqi; Fang Yonghua, Infrared spectrum baseline correction method based on improved iterative polynomial fitting. Jiguang Yu Guangdianzixue Jinzhan, 2020, 57(3), 033001.
[http://dx.doi.org/10.3788/LOP57.033001]
[42]
Bateni, A.; Susnar, S.S.; Amirfazli, A.; Neumann, A.W. A high-accuracy polynomial fitting approach to determine contact angles. Colloids Surf. A Physicochem. Eng. Asp., 2003, 219(1-3), 215-231.
[http://dx.doi.org/10.1016/S0927-7757(03)00053-0]
[43]
Najwa Mohd Rizal, N.; Hayder, G.; Mnzool, M.; Elnaim, B.M.E.; Mohammed, A.O.Y.; Khayyat, M.M. Comparison between regression models, support vector machine (SVM), and artificial neural network (ANN) in river water quality prediction. Processes (Basel), 2022, 10(8), 1652.
[http://dx.doi.org/10.3390/pr10081652]
[44]
Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian process regression for materials and molecules. Chem. Rev., 2021, 121(16), 10073-10141.
[http://dx.doi.org/10.1021/acs.chemrev.1c00022] [PMID: 34398616]
[45]
Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A review of the artificial neural network models for water quality prediction. Appl. Sci. (Basel), 2020, 10(17), 5776.
[http://dx.doi.org/10.3390/app10175776]
[46]
Tong, Y.; Yu, L.; Li, S.; Liu, J.; Qin, H.; Li, W. Polynomial fitting algorithm based on neural network. ASP Transactions on Pattern Recognition and Intelligent Systems, 2021, 1(1), 32-39.
[http://dx.doi.org/10.52810/TPRIS.2021.100019]
[47]
Tang, W.; Li, Y.; Yu, Y.; Wang, Z.; Xu, T.; Chen, J.; Lin, J.; Li, X. Development of models predicting biodegradation rate rating with multiple linear regression and support vector machine algorithms. Chemosphere, 2020, 253, 126666.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126666] [PMID: 32289603]
[48]
Deiss, L.; Margenot, A.J.; Culman, S.W.; Demyan, M.S. Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma, 2020, 365, 114227.
[http://dx.doi.org/10.1016/j.geoderma.2020.114227]
[49]
García Nieto, P.J.; Combarro, E.F.; del Coz Díaz, J.J.; Montañés, E. A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study. Appl. Math. Comput., 2013, 219(17), 8923-8937.
[http://dx.doi.org/10.1016/j.amc.2013.03.018]
[50]
Suárez Sánchez, A.; García Nieto, P.J.; Riesgo Fernández, P.; del Coz Díaz, J.J.; Iglesias-Rodríguez, F.J. Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Math. Comput. Model., 2011, 54(5-6), 1453-1466.
[http://dx.doi.org/10.1016/j.mcm.2011.04.017]
[51]
Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. (Basel), 2017, 9(4), 309.
[http://dx.doi.org/10.3390/rs9040309]
[52]
Salem, O.; Guerassimov, A.; Mehaoua, A.; Marcus, A.; Furht, B. Anomaly detection in medical wireless sensor networks using SVM and linear regression models. Int. J. E-Health Med. Commun., 2014, 5(1), 20-45. [IJEHMC]
[http://dx.doi.org/10.4018/ijehmc.2014010102]
[53]
Gao, D.; Liu, Y.; Meng, J.; Jia, Y.; Fan, C. Estimating significant wave height from SAR imagery based on an SVM regression model. Acta Oceanol. Sin., 2018, 37(3), 103-110.
[http://dx.doi.org/10.1007/s13131-018-1203-7]
[54]
Swiler, L.P.; Gulian, M.; Frankel, A.L.; Safta, C.; Jakeman, J.D. A survey of constrained Gaussian process regression: Approaches and implementation challenges. Journal of Machine Learning for Modeling and Computing, 2020, 1(2), 119-156.
[http://dx.doi.org/10.1615/JMachLearnModelComput.2020035155]
[55]
Nawaz, M.N.; Khan, M.H.A.; Hassan, W.; Jaffar, S.T.A.; Jafri, T.H. Utilizing undisturbed soil sampling approach to predict elastic modulus of cohesive soils: a Gaussian process regression model. In: Multiscale and Multidisciplinary Modeling, Experiments and Design; Springer, 2024; pp. 1-16.
[http://dx.doi.org/10.1007/s41939-024-00458-8]
[56]
Yuan, Z.; Peng, X.; Ma, C.; Zhang, A.; Chen, Z.; Jiang, Z.; Zhang, Y. Prediction of mechanical properties of LPBF built part based on process monitoring and Gaussian process regression. Meas. Sci. Technol., 2024, 35(8), 085603.
[http://dx.doi.org/10.1088/1361-6501/ad4383]
[57]
Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol., 2018, 85, 1-16.
[http://dx.doi.org/10.1016/j.jmp.2018.03.001]
[58]
Bachoc, F.; Gamboa, F.; Loubes, J.M.; Venet, N. A Gaussian process regression model for distribution inputs. IEEE Trans. Inf. Theory, 2018, 64(10), 6620-6637.
[http://dx.doi.org/10.1109/TIT.2017.2762322]
[59]
Nguyen-Tuong, D.; Seeger, M.; Peters, J. Model learning with local gaussian process regression. Adv. Robot., 2009, 23(15), 2015-2034.
[http://dx.doi.org/10.1163/016918609X12529286896877]
[60]
Hoang, N.D.; Pham, A.D.; Nguyen, Q.L.; Pham, Q.N. Estimating compressive strength of high performance concrete with Gaussian process regression model. Adv. Civ. Eng., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/2861380]
[61]
Kim, M.K.; Kim, Y.S.; Srebric, J. Predictions of electricity consumption in a campus building using occupant rates and weather elements with sensitivity analysis: Artificial neural network vs. linear regression. Sustain Cities Soc., 2020, 62, 102385.
[http://dx.doi.org/10.1016/j.scs.2020.102385]
[62]
Zhang, X.C.; Gong, J.G.; Xuan, F.Z. A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures. Eng. Fract. Mech., 2021, 258, 108130.
[http://dx.doi.org/10.1016/j.engfracmech.2021.108130]
[63]
Dao, D.V.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Phong, T.V.; Ly, H-B.; Le, T.T.; Trinh, P.T.; Luu, C.; Quoc, N.K.; Thanh, B.N.; Pham, B.T. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena, 2020, 188, 104451.
[http://dx.doi.org/10.1016/j.catena.2019.104451]
[64]
Ruan, X.; Zhu, Y.; Li, J.; Cheng, Y. Predicting the citation counts of individual papers via a BP neural network. J. Informetrics, 2020, 14(3), 101039.
[http://dx.doi.org/10.1016/j.joi.2020.101039]
[65]
Abhishek, K.; Singh, M.P.; Ghosh, S.; Anand, A. Weather forecasting model using artificial neural network. Procedia Technol., 2012, 4, 311-318.
[http://dx.doi.org/10.1016/j.protcy.2012.05.047]
[66]
Kumar, R.L.; Khan, F.; Din, S.; Band, S.S.; Mosavi, A.; Ibeke, E. Recurrent neural network and reinforcement learning model for COVID-19 prediction. Front. Public Health, 2021, 9, 744100.
[http://dx.doi.org/10.3389/fpubh.2021.744100] [PMID: 34671588]
[67]
Wen, L.; Yuan, X. Forecasting CO2 emissions in Chinas commercial department, through BP neural network based on random forest and PSO. Sci. Total Environ., 2020, 718, 137194.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137194] [PMID: 32088474]
[68]
Pal, R.; Sekh, A.A.; Kar, S.; Prasad, D.K. Neural network based country wise risk prediction of COVID-19. Appl. Sci. (Basel), 2020, 10(18), 6448.
[http://dx.doi.org/10.3390/app10186448]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy