Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Research Article

Machine Learning to Differentiate Malignant and Non-malignant Pleural Effusion Findings

Author(s): Raissa A.C. Guassu, Matheus Alvarez, Tarcísio. A. Reis, Aglaia. M. G. Ximenes, Ivana. T. Aguiar, Erica. N. Hasimoto, Raul. L. R. Junior and Diana Rodrigues de Pina*

Volume 21, Issue 3, 2025

Published on: 16 September, 2024

Page: [227 - 235] Pages: 9

DOI: 10.2174/011573398X306397240903054052

Price: $65

Abstract

Introduction: This study developed a method using machine learning techniques to differentiate between malignant and non-malignant pleural effusions, analyzing texture parameters in computed tomography scans.

Method: The study involved forty-one patients, with their computed tomography examinations classified into three groups: True Positive - patients with both cytopathological analysis and pleural biopsy indicating malignancy; True Negative - patients with negative results in both tests; and False Negative - patients with negative cytopathological analysis but positive pleural biopsy results. Four machine learning methods were applied across three analyses: True Positive versus True Negative, True Positive versus False Negative, and True Negative versus False Negative. The logistic regression model demonstrated notable effectiveness, achieving an Area Under the Curve of 0.84 ± 0.02 in the True Positive versus True Negative analysis and 0.81 ± 0.05 in the True Positive versus False Negative comparison. In the True Negative versus False Negative analysis, the Naive Bayes model achieved an Area Under the Curve of 0.72 ± 0.02.

Results: Statistically significant differences were observed in the liquid Lactate Dehydrogenase and protein content between the True Positive and True Negative groups (p-values of 0.0390 and 0.0249, respectively), and in the liquid pH level between the True Positive and False Negative groups (p-value of 0.0254). The use of textural features in combination with machine learning techniques provided a reliable classification for investigating suspected pleural effusion findings. This method represents a potential tool for assisting in clinical diagnosis and decision-making, enhancing the accuracy of pleural effusion assessments.

Conclusion: In conclusion, our approach not only improves diagnostic accuracy but also offers a faster and non-invasive alternative, significantly benefiting clinical decision-making and patient care.

Keywords: Pleural effusion, texture analysis, machine learning, computed tomography, pleural metastasis, lactate dehydrogenase.

Graphical Abstract
[1]
Chubb SP, Williams RA. Biochemical analysis of pleural fluid and ascites. Clin Biochem Rev 2018; 39(2): 39-50.
[PMID: 30473591]
[2]
Yousaf Z, Ata F, Chaudhary H, Krause F, Illigens BMW, Siepmann T. Etiology, pathological characteristics, and clinical management of black pleural effusion. Medicine 2022; 101(8): e28130.
[http://dx.doi.org/10.1097/MD.0000000000028130] [PMID: 35212269]
[3]
Porcel J, Light R. Pleural fluid analysis for evaluating pleural effusions. Curr Respir Med Rev 2008; 4(3): 217-25.
[http://dx.doi.org/10.2174/157339808785161369]
[4]
Porcel J. The diagnostic utility of pleural fluid tests in clinical practice. Curr Respir Med Rev 2012; 8(5): 383-90.
[http://dx.doi.org/10.2174/157339812803832485]
[5]
Arora RD, Boster J. Malignant pleural effusion. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[6]
Jany B, Welte T. Pleural effusion in adults—Etiology, diagnosis, and treatment. Dtsch Arztebl Int 2019; 116(21): 377-86.
[http://dx.doi.org/10.3238/arztebl.2019.0377] [PMID: 31315808]
[7]
Thomas R, Lee YCG. Causes and management of common benign pleural effusions. Thorac Surg Clin 2013; 23(1): 25-42, v-vi.
[http://dx.doi.org/10.1016/j.thorsurg.2012.10.004] [PMID: 23206715]
[8]
Karkhanis V, Joshi J. Pleural effusion: Diagnosis, treatment, and management. Open Access Emerg Med 2012; 4: 31-52.
[http://dx.doi.org/10.2147/OAEM.S29942] [PMID: 27147861]
[9]
Gokce M, Altinsoy B, Piskin O, Bahadir B. Uniportal VATS pleural biopsy in the diagnosis of exudative pleural effusion: Awake or intubated? J Cardiothorac Surg 2021; 16(1): 95.
[http://dx.doi.org/10.1186/s13019-021-01461-7] [PMID: 33879212]
[10]
RL Medford A, Maskell N. New developments in the management of pleural effusions. Curr Respir Med Rev 2006; 2(3): 305-11.
[http://dx.doi.org/10.2174/157339806778018926]
[11]
Cantey EP, Walter JM, Corbridge T, Barsuk JH. Complications of thoracentesis. Curr Opin Pulm Med 2016; 22(4): 378-85.
[http://dx.doi.org/10.1097/MCP.0000000000000285] [PMID: 27093476]
[12]
Jiang B, Li X, Yin Y, et al. Ultrasound elastography: A novel tool for the differential diagnosis of pleural effusion. Eur Respir J 2019; 54(2): 1802018.
[http://dx.doi.org/10.1183/13993003.02018-2018] [PMID: 31151959]
[13]
Potter AL, Bajaj SS, Yang CFJ. The 2021 USPSTF lung cancer screening guidelines: A new frontier. Lancet Respir Med 2021; 9(7): 689-91.
[http://dx.doi.org/10.1016/S2213-2600(21)00210-1] [PMID: 33965004]
[14]
de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 2020; 382(6): 503-13.
[http://dx.doi.org/10.1056/NEJMoa1911793] [PMID: 31995683]
[15]
Garin N, Marti C, Scheffler M, Stirnemann J, Prendki V. Computed tomography scan contribution to the diagnosis of community-acquired pneumonia. Curr Opin Pulm Med 2019; 25(3): 242-8.
[http://dx.doi.org/10.1097/MCP.0000000000000567] [PMID: 30730311]
[16]
Ferguson JH. Resolution of empyema thoracis after patient refusal of surgical intervention: A case series and review of the literature. Curr Respir Med Rev 2020; 15(4): 309-14.
[http://dx.doi.org/10.2174/1573398X15666190702164539]
[17]
Pinto Leite N, Pereira JM, Cunha R, Pinto P, Sirlin C. CT evaluation of appendicitis and its complications: Imaging techniques and key diagnostic findings. AJR Am J Roentgenol 2005; 185(2): 406-17.
[http://dx.doi.org/10.2214/ajr.185.2.01850406] [PMID: 16037513]
[18]
Hooper C, Lee YCG, Maskell N. Investigation of a unilateral pleural effusion in adults: British thoracic society pleural disease guideline 2010. Thorax 2010; 65 (Suppl. 2): ii4-ii17.
[http://dx.doi.org/10.1136/thx.2010.136978] [PMID: 20696692]
[19]
Becher T, Bußmeyer M, Lautenschläger I, Schädler D, Weiler N, Frerichs I. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients. Br J Anaesth 2018; 120(6): 1219-28.
[http://dx.doi.org/10.1016/j.bja.2018.02.030] [PMID: 29793589]
[20]
Sunita Agarwala , Kumar A, Dhara AK, Thakur SB, Sadhu A, Nandi D. Special convolutional neural network for identification and positioning of interstitial lung disease patterns in computed tomography images. Pattern Recognit Image Anal 2021; 31(4): 730-8.
[http://dx.doi.org/10.1134/S1054661821040027]
[21]
Samarin A, Savelev A, Toropov A, et al. One-staged attention-based neoplasms recognition method for single-channel monochrome computer tomography snapshots. Pattern Recognit Image Anal 2022; 32(3): 645-50.
[http://dx.doi.org/10.1134/S1054661822030361]
[22]
Parekh V, Jacobs MA. Radiomics: A new application from established techniques. Expert Rev Precis Med Drug Dev 2016; 1(2): 207-26.
[http://dx.doi.org/10.1080/23808993.2016.1164013] [PMID: 28042608]
[23]
Guo Y, Logan HL, Glueck DH, Muller KE. Selecting a sample size for studies with repeated measures. BMC Med Res Methodol 2013; 13(1): 100.
[http://dx.doi.org/10.1186/1471-2288-13-100] [PMID: 23902644]
[24]
Alobaidli S, McQuaid S, South C, Prakash V, Evans P, Nisbet A. The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br J Radiol 2014; 87(1042): 20140369.
[http://dx.doi.org/10.1259/bjr.20140369] [PMID: 25051978]
[25]
Almeida MAM, Santos IAX. Classification models for skin tumor detection using texture analysis in medical images. J Imaging 2020; 6(6): 51.
[http://dx.doi.org/10.3390/jimaging6060051] [PMID: 34460597]
[26]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016; 278(2): 563-77.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[27]
Demsˇar J. Orange: Data mining toolbox in Python. J Mach Learn Res 2013; 14: 2349-53.
[28]
Carter JV, Pan J, Rai SN, Galandiuk S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery 2016; 159(6): 1638-45.
[http://dx.doi.org/10.1016/j.surg.2015.12.029] [PMID: 26962006]
[29]
Ren Z, Hu Y, Xu L. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms. Respir Res 2019; 20(1): 220.
[http://dx.doi.org/10.1186/s12931-019-1197-5] [PMID: 31619240]
[30]
Li C, Hou L, Sharma BY, et al. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput Methods Programs Biomed 2018; 153: 211-25.
[http://dx.doi.org/10.1016/j.cmpb.2017.10.022] [PMID: 29157454]
[31]
Li Y, Tian S, Huang Y, Dong W. Driverless artificial intelligence framework for the identification of malignant pleural effusion. Transl Oncol 2021; 14(1): 100896.
[http://dx.doi.org/10.1016/j.tranon.2020.100896] [PMID: 33045678]
[32]
Chen Z, Chen K, Lou Y, Zhu J, Mao W, Song Z. Machine learning applied to near-infrared spectra for clinical pleural effusion classification. Sci Rep 2021; 11(1): 9411.
[http://dx.doi.org/10.1038/s41598-021-87736-4] [PMID: 33941795]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy