Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Synthesis of Chalcones, Screening In silico and In vitro and Evaluation of Helicobacter pylori Adhesion by Molecular Docking

Author(s): Rodrigo de Almeida Romagna, Reginaldo Bezerra dos Santos, Rita de Cassia Ribeiro Gonçalves and Rodrigo Rezende Kitagawa*

Volume 30, Issue 42, 2024

Published on: 10 September, 2024

Page: [3350 - 3366] Pages: 17

DOI: 10.2174/0113816128327090240821101355

Abstract

Aims: We synthetized 10 hydroxylated and methoxylated chalcones and evaluated them targeting MMP-9 inhibition, looking for the rate of adhesion of H. pylori in gastric cells, and then, reduction of the inflammatory response as alternative therapeutic agents for controlling the infection.

Background: Helicobacter pylori is a Gram-negative bacterium that chronically infects the human stomach, a risk factor for the development of inflammatory gastrointestinal diseases, including cancer, and is classified as a group I carcinogen. It is estimated that it infects around 45% of the global population and that the persistence of the infection is related to the adhesion of the bacteria in the gastric epithelium. The progression of gastric lesions to cancer is connected to the activation of the NF-κB and MAPK pathways, especially in cagA+ strains, which are related to increased expression of MMP-9. The activation of these metalloproteinases (MMPs) contributes to the adhesion of the bacterium in gastric cells and the evolving stages of cancer, such as enabling metastasis. Due to the increasing resistance to the current therapy protocols, the search for alternative targets and candidate molecules is necessary. In this way, controlling adhesion seems to be a suitable option since it is a crucial step in the installation of the bacterium in the gastric environment.

Objective: Synthetize ten hydroxylated and methoxylated chalcones. Assess their anti-H. pylori potential, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Evaluate their cytotoxicity in AGS cells and selectivity with L-929 cells. Analyze the results and correlate them with in silico predictions to evaluate potential anti-adhesive properties for the chalcones against H. pylori.

Methods: The chalcones were synthetized by Claisen-Schmidt condensation using Ba(OH)2 or LiOH as catalysts. Predictive in silico assays in PASS Online, tanimoto similarity, ADME properties and molecular docking in MMP-9 (PDB code: 6ESM) were performed. The in vitro assays carried out were the cell viability in gastric adenocarcinoma cells (AGS) and fibroblasts (L-929) by the MMT method and anti-H. pylori, by the broth microdilution method, through the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).

Results: Ten chalcones were synthesized through Claisen-Schimdt condensation with yields of 10 to 52% and characterized by 1H and 13C nuclear magnetic resonance (NMR) and mass spectrometry (MS). in silico data revealed the possibility of anti-H. pylori, anti-inflammatory, and MMP-9 inhibition for the chalcones. Chalcone 9 showed the best growth inhibition values for MIC and MBC, at 1 μg/mL and 2 μg/mL, respectively. Chalcones 14 and 15 likewise demonstrated excellent inhibitory results, being 2 μg/mL for both MIC and MBC. Additionally, 15 had the best MMP-9 inhibition score. Despite not corroborating the in silico findings, chalcones 10, 13, and 18 showed good cytotoxicity and the best selectivity indices.

Conclusion: All compounds exhibited strong activity against H. pylori, specially 15. The predicted MMP-9 inhibition by molecular docking added to the reasonable SI and CI50 values for 15 and the satisfactory reduction in the rate of survival of the bacteria, reveals that it may be acting synergically to reduce the inflammatory response and the possibilities for developing a tumor by inhibiting both bacteria and malignant cells.

Keywords: Chalcones, Helicobacter pylori, gastric cancer, virulence factor, matrix metalloproteins, MMP-9.

[1]
Mladenova I. Clinical relevance of Helicobacter pylori infection. J Clin Med 2021; 10(16): 3473.
[http://dx.doi.org/10.3390/jcm10163473] [PMID: 34441769]
[2]
Testerman TL, Morris J. Beyond the stomach: An updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol 2014; 20(36): 12781-808.
[http://dx.doi.org/10.3748/wjg.v20.i36.12781] [PMID: 25278678]
[3]
World Health Organization. Schistosomes, Liver Flukes and Helicobacter pylori IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer, Lyon 1994; 61.
[4]
Chen YC, Malfertheiner P, Yu HT, et al. Global prevalence of Helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022. Gastroenterology 2024; 166(4): 605-19.
[http://dx.doi.org/10.1053/j.gastro.2023.12.022] [PMID: 38176660]
[5]
Fallone CA, Chiba N, van Zanten SV, et al. The toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology 2016; 151(1): 51-69.e14.
[http://dx.doi.org/10.1053/j.gastro.2016.04.006] [PMID: 27102658]
[6]
Malfertheiner P, Megraud F, O’Morain CA, et al. European helicobacter and microbiota study group and consensus panel. Management of Helicobacter pylori infection-the Maastricht V/] Florence Consensus Report. Gut 2017; 66(1): 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[7]
Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in world health organization regions. Gastroenterology 2018; 155(5): 1372-1382.e17.
[http://dx.doi.org/10.1053/j.gastro.2018.07.007] [PMID: 29990487]
[8]
Boyanova L, Hadzhiyski P, Gergova R, Markovska R. Evolution of Helicobacter pylori resistance to antibiotics: A topic of increasing concern. Antibiotics (Basel) 2023; 12(2): 332.
[http://dx.doi.org/10.3390/antibiotics12020332] [PMID: 36830243]
[9]
Debraekeleer A, Remaut H. Future perspective for potential Helicobacter pylori eradication therapies. Future Microbiol 2018; 13(6): 671-87.
[http://dx.doi.org/10.2217/fmb-2017-0115] [PMID: 29798689]
[10]
Xu C, Soyfoo DM, Wu Y, Xu S. Virulence of Helicobacter pylori outer membrane proteins: An updated review. Eur J Clin Microbiol Infect Dis 2020; 39(10): 1821-30.
[http://dx.doi.org/10.1007/s10096-020-03948-y] [PMID: 32557327]
[11]
Šterbenc A, Jarc E, Poljak M, Homan M. Helicobacter pylori virulence genes. World J Gastroenterol 2019; 25(33): 4870-84.
[http://dx.doi.org/10.3748/wjg.v25.i33.4870] [PMID: 31543679]
[12]
Baj J, Forma A, Sitarz M, et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 2020; 10(1): 27.
[http://dx.doi.org/10.3390/cells10010027] [PMID: 33375694]
[13]
Ferreira RM, Pinto-Ribeiro I, Wen X, et al. Helicobacter pylori CagA promoter region sequences influence CagA expression and interleukin-8 secretion. J Infect Dis 2016; 213(4): 669-73.
[http://dx.doi.org/10.1093/infdis/jiv467] [PMID: 26401027]
[14]
Rad R, Gerhard M, Lang R, et al. The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J Immunol 2002; 168(6): 3033-41.
[http://dx.doi.org/10.4049/jimmunol.168.6.3033] [PMID: 11884476]
[15]
Lee KE, Khoi PN, Xia Y, et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol 2013; 19(45): 8192-202.
[http://dx.doi.org/10.3748/wjg.v19.i45.8192] [PMID: 24363509]
[16]
Karayiannis I, Martinez-Gonzalez B, Kontizas E, et al. Induction of MMP‐3 and MMP‐9 expression during Helicobacter pylori infection via MAPK signaling pathways. Helicobacter 2023; 28(4): e12987.
[http://dx.doi.org/10.1111/hel.12987] [PMID: 37139985]
[17]
Pan G, Wang X, Wang Y, et al. Helicobacter pylori promotes gastric cancer progression by upregulating semaphorin 5A expression via ERK/MMP9 signaling. Mol Ther Oncolytics 2021; 22: 256-64.
[http://dx.doi.org/10.1016/j.omto.2021.06.002] [PMID: 34514104]
[18]
Sokolova O, Naumann M. Matrix Metalloproteinases in Helicobacter pylori-associated gastritis and gastric cancer. Int J Mol Sci 2022; 23(3): 1883.
[http://dx.doi.org/10.3390/ijms23031883] [PMID: 35163805]
[19]
Damjanovski S, Amano T, Li Q, Pei D, Shi YB. Overexpression of matrix metalloproteinases leads to lethality in transgenic Xenopus laevis: Implications for tissue‐dependent functions of matrix metalloproteinases during late embryonic development. Dev Dyn 2001; 221(1): 37-47.
[http://dx.doi.org/10.1002/dvdy.1123] [PMID: 11357192]
[20]
Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 1999; 274(19): 13066-76.
[http://dx.doi.org/10.1074/jbc.274.19.13066] [PMID: 10224058]
[21]
Verma S, Kesh K, Gupta A, Swarnakar S. An overview of matrix metalloproteinase 9 polymorphism and gastric cancer risk. Asian Pac J Cancer Prev 2015; 16(17): 7393-400.
[http://dx.doi.org/10.7314/APJCP.2015.16.17.7393] [PMID: 26625734]
[22]
Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem 2020; 194: 112260.
[http://dx.doi.org/10.1016/j.ejmech.2020.112260] [PMID: 32224379]
[23]
Bockerstett KA, DiPaolo RJ. Regulation of gastric carcinogenesis by inflammatory cytokines. Cell Mol Gastroenterol Hepatol 2017; 4(1): 47-53.
[http://dx.doi.org/10.1016/j.jcmgh.2017.03.005] [PMID: 28560288]
[24]
Wroblewski LE, Peek RM Jr, Wilson KT. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev 2010; 23(4): 713-39.
[http://dx.doi.org/10.1128/CMR.00011-10] [PMID: 20930071]
[25]
Posselt G, Backert S, Wessler S. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 2013; 11(1): 77.
[http://dx.doi.org/10.1186/1478-811X-11-77] [PMID: 24099599]
[26]
Kim H, Lim JW, Kim KH. Helicobacter pylori-induced expression of interleukin-8 and cyclooxygenase-2 in AGS gastric epithelial cells: Mediation by nuclear factor-kappaB. Scand J Gastroenterol 2001; 36(7): 706-16.
[http://dx.doi.org/10.1080/003655201300191969] [PMID: 11444469]
[27]
Christian F, Smith E, Carmody R. The regulation of NF-κB subunits by phosphorylation. Cells 2016; 5(1): 12.
[http://dx.doi.org/10.3390/cells5010012] [PMID: 26999213]
[28]
Karin M, Yamamoto Y, Wang QM. The IKK NF-κB system: A treasure trove for drug development. Nat Rev Drug Discov 2004; 3(1): 17-26.
[http://dx.doi.org/10.1038/nrd1279] [PMID: 14708018]
[29]
Gilmore TD, Herscovitch M. Inhibitors of NF-κB signaling: 785 and counting. Oncogene 2006; 25(51): 6887-99.
[http://dx.doi.org/10.1038/sj.onc.1209982] [PMID: 17072334]
[30]
Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance - From biology to clinical implications. Nat Rev Gastroenterol Hepatol 2021; 18(9): 613-29.
[http://dx.doi.org/10.1038/s41575-021-00449-x] [PMID: 34002081]
[31]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[32]
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 2019; 20(18): 4331.
[http://dx.doi.org/10.3390/ijms20184331]
[33]
Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem 2016; 12: 2694-718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[34]
Sangiovanni E, Vrhovsek U, Rossoni G, et al. Ellagitannins from Rubus berries for the control of gastric inflammation: In vitro and in vivo studies. PLoS One 2013; 8(8): e71762.
[http://dx.doi.org/10.1371/journal.pone.0071762] [PMID: 23940786]
[35]
Choi JH, Cho SO, Kim H. α-Lipoic acid inhibits expression of] IL-8 by suppressing activation of MAPK, Jak/Stat, and NF-κB in H. pylori-infected gastric epithelial AGS cells. Yonsei Med J 2016; 57(1): 260-4.
[http://dx.doi.org/10.3349/ymj.2016.57.1.260] [PMID: 26632410]
[36]
Fumagalli M, Sangiovanni E, Vrhovsek U, et al. Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation. Pharmacol Res 2016; 111: 703-12.
[http://dx.doi.org/10.1016/j.phrs.2016.07.028] [PMID: 27473819]
[37]
Pastene E, Parada V, Avello M, Ruiz A, García A. Catechin-based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells. Phytother Res 2014; 28(11): 1637-45.
[http://dx.doi.org/10.1002/ptr.5176] [PMID: 24853276]
[38]
Lee JH, Shim JS, Lee JS, et al. Inhibition of pathogenic bacterial adhesion by acidic polysaccharide from green tea (Camellia sinensis). J Agric Food Chem 2006; 54(23): 8717-23.
[http://dx.doi.org/10.1021/jf061603i] [PMID: 17090112]
[39]
Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. In vitro anti‐adhesive activity of green tea extract against pathogen adhesion. Phytother Res 2009; 23(4): 460-6.
[http://dx.doi.org/10.1002/ptr.2609] [PMID: 19107860]
[40]
Chua EG, Verbrugghe P, Perkins TT, Tay CY. Fucoidans disrupt adherence of Helicobacter pylori to AGS cells in vitro. Evid Based Complement Alternat Med 2015; 2015: 1-6.
[http://dx.doi.org/10.1155/2015/120981] [PMID: 26604968]
[41]
Salehi B, Quispe C, Chamkhi I, et al. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol 2021; 11: 592654.
[http://dx.doi.org/10.3389/fphar.2020.592654] [PMID: 33536909]
[42]
Rajendran G, Bhanu D, Aruchamy B, et al. Chalcone: A promising bioactive scaffold in medicinal chemistry. Pharmaceuticals 2022; 15(10): 1250.
[http://dx.doi.org/10.3390/ph15101250] [PMID: 36297362]
[43]
Choi HR, Lim H, Lee JH, Park H, Kim HP. Interruption of Helicobacter pylori-induced NLRP3 inflammasome activation by chalcone derivatives. Biomol Ther (Seoul) 2021; 29(4): 410-8.
[http://dx.doi.org/10.4062/biomolther.2020.192] [PMID: 33653970]
[44]
Lai CH, Rao YK, Fang SH, Sing YT, Tzeng YM. Identification of 3′,4′,5′-trimethoxychalcone analogues as potent inhibitors of Helicobacter pylori-induced inflammation in human gastric epithelial cells. Bioorg Med Chem Lett 2010; 20(18): 5462-5.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.094] [PMID: 20705463]
[45]
Ishikawa C, Senba M, Mori N. Butein inhibits NF-κB, AP-1 and Akt activation in adult T-cell leukemia/lymphoma. Int J Oncol 2017; 51(2): 633-43.
[http://dx.doi.org/10.3892/ijo.2017.4026] [PMID: 28586006]
[46]
Shin SY, Woo Y, Hyun J, et al. Relationship between the structures of flavonoids and their NF-κB-dependent transcriptional activities. Bioorg Med Chem Lett 2011; 21(20): 6036-41.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.077] [PMID: 21907578]
[47]
Emam SH, Sonousi A, Osman EO, Hwang D, Kim GD, Hassan RA. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. Bioorg Chem 2021; 107: 104630.
[http://dx.doi.org/10.1016/j.bioorg.2021.104630] [PMID: 33476864]
[48]
Srinivasan B, Johnson TE, Lad R, Xing C. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3′,4′,5′-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities. J Med Chem 2009; 52(22): 7228-35.
[http://dx.doi.org/10.1021/jm901278z] [PMID: 19883086]
[49]
Li X, Liu J, Zhao Z, Wang T, Lin J, Chen D. Effects of natural chalcone-tannin hybrids protecting mesenchymal stem cells against ROS-mediated oxidative damage and indexes for antioxidant mechanisms. Chem Lett 2016; 45(7): 743-5.
[http://dx.doi.org/10.1246/cl.160177]
[50]
Hofmann E, Webster J, Do T, et al. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg Med Chem 2016; 24(4): 578-87.
[http://dx.doi.org/10.1016/j.bmc.2015.12.024] [PMID: 26762836]
[51]
Dinkova-Kostova AT, Abeygunawardana C, Talalay P. Chemoprotective properties of phenylpropenoids, bis(benzylidene) cycloalkanones, and related Michael reaction acceptors: correlation of potencies as phase 2 enzyme inducers and radical scavengers. J Med Chem 1998; 41(26): 5287-96.
[http://dx.doi.org/10.1021/jm980424s] [PMID: 9857096]
[52]
Jian M, Sun X, Cheng G, et al. Discovery of phenolic matrix metalloproteinase inhibitors by peptide microarray for osteosarcoma treatment. J Nat Prod 2022; 85(10): 2424-32.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00626] [PMID: 36122348]
[53]
Shalaby MA, Rizk SA, Fahim AM. Synthesis, reactions and application of chalcones: A systematic review. Org Biomol Chem 2023; 21(26): 5317-46.
[http://dx.doi.org/10.1039/D3OB00792H] [PMID: 37338020]
[54]
Marquina S, Maldonado-Santiago M, Sánchez-Carranza JN, et al. Design, synthesis and QSAR study of 2′-hydroxy-4′-alkoxy chalcone derivatives that exert cytotoxic activity by the mitochondrial apoptotic pathway. Bioorg Med Chem 2019; 27(1): 43-54.
[http://dx.doi.org/10.1016/j.bmc.2018.10.045] [PMID: 30482548]
[55]
Kulkarni PS, Swami PM, Zubaidha PK. Calcium hydroxide is an efficient catalyst for synthesis of polyhydroxy chalcones. Synth React Inorg Met-Org Nano-Met Chem 2013; 43(5): 617-20.
[http://dx.doi.org/10.1080/15533174.2012.752392]
[56]
Aguilera A, Alcantara AR, Marinas JM, Sinisterra JV. Ba(OH)2 as the catalyst in organic reactions. Part XIV. Mechanism of Claisen-Schmidt condensation in solid-liquid conditions. Can J Chem 1987; 65(6): 1165-71.
[http://dx.doi.org/10.1139/v87-195]
[57]
Alcantara A, Marinas JM, Sinisterra JV. Ba(OH)2 as catalyst in organic reactions. VIII. Nature of the adsorbed species in Claisen-Schmidt reaction. React Kinet Catal Lett 1986; 32(2): 377-85.
[http://dx.doi.org/10.1007/BF02068339]
[58]
Kumar V, Kumar S, Hassan M, et al. Novel chalcone derivatives as potent Nrf2 activators in mice and human lung epithelial cells. J Med Chem 2011; 54(12): 4147-59.
[http://dx.doi.org/10.1021/jm2002348] [PMID: 21539383]
[59]
Rosa GP. Polyhydroxy Chalcones and Flavanones: Synthesis and Evaluation of Their Potential as Antioxidant and Anticholinesterasic Agents. International Symposium on Synthesis and Catalysis 2017.
[60]
Xu M, Wu P, Shen F, Ji J, Rakesh KP. Chalcone derivatives and their antibacterial activities: Current development. Bioorg Chem 2019; 91: 103133.
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[61]
Schmid R, Heuckeroth S, Korf A, et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 2023; 41(4): 447-9.
[http://dx.doi.org/10.1038/s41587-023-01690-2] [PMID: 36859716]
[62]
Nencki M, Sieber N. On the connections of mono- and dibasic fatty acids with phenols. J Pract Chem 1881; 23(1): 147-56.
[http://dx.doi.org/10.1002/prac.18810230111]
[63]
Proença C, Albuquerque HMT, Ribeiro D, et al. Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities. Eur J Med Chem 2016; 115: 381-92.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.043] [PMID: 27031214]
[64]
Syper L, Kloc K, Mzochowski J. Synthesis of ubiquinone and menaquinone analogues by oxidative demethylation of alkenylhydroquinone ethers with argentic oxide or ceric ammonium nitrate in the presence of 2,4,6-pyridine-tricarboxylic acid. Tetrahedron 1980; 36: 123-9.
[http://dx.doi.org/10.1016/0040-4020(80)85034-4]
[65]
Jung SH, Park SY. Synthesis and PPAR-g ligand-binding activity of the new series of 2-hydroxychalcone and thiazolidinedione derivatives. Chem Pharm Bull 2006; 54(3): 368-71.
[http://dx.doi.org/10.1248/cpb.54.368] [PMID: 16508194]
[66]
Bhagat S, Sharma R, Sawant DM, Sharma L, Chakraborti AK. LiOH·H2O as a novel dual activation catalyst for highly efficient and easy synthesis of 1,3-diaryl-2-propenones by Claisen-Schmidt condensation under mild conditions. J Mol Catal Chem 2006; 244(1-2): 20-4.
[http://dx.doi.org/10.1016/j.molcata.2005.08.039]
[67]
Vandrewalla P. Chalkones: Preparation of some hydroxy-chalkones, their bromination and study of the reactivity of the bromo derivatives. Proc Indiana Acad Sci 1948; 28: 125-31.
[68]
Kumar S, Lamba MS, Makrandi JK. An efficient green procedure for the synthesis of chalcones using C-200 as solid support under grinding conditions. Green Chem Lett Rev 2008; 1(2): 123-5.
[http://dx.doi.org/10.1080/17518250802325993]
[69]
Boumendjel A, Boccard J, Carrupt PA, et al. Antimitotic and antiproliferative activities of chalcones: Forward structure-activity relationship. J Med Chem 2008; 51(7): 2307-10.
[http://dx.doi.org/10.1021/jm0708331] [PMID: 18293907]
[70]
Brand K, Collischonn H. Über Pyrogallol‐dimethyläther‐1,3. (1. Mitteilung.). J Prakt Chem 1921; 103(1): 329-51.
[http://dx.doi.org/10.1002/prac.19221030116]
[71]
Jamode VS, Bhandarkar SE. Synthesis and characterization] of 3-(2-hydroxy-3,4-benzophenyl)-5-aryl-substituted-pyrazolines. Asian J Chem 2006; 18(2): 1586-8.
[72]
Ahn S, Shin SY, Jung Y, et al. 1H and 13C NMR spectral assignments of novel flavonoids bearing benzothiazepine. Magn Reson Chem 2016; 54(5): 382-90.
[http://dx.doi.org/10.1002/mrc.4388] [PMID: 26594038]
[73]
Rao KS, Bharath MS, Kathn KR, Rao VV, Rao NR. Synthesis and anticonvulsant studies of some newer benzothiazepine derivatives. Eur J Biomed Pharm Sci 2017; 4(2): 372-5.
[74]
Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 2015. Available at: www.clsi.org
[75]
Elshikh M, Ahmed S, Funston S, et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett 2016; 38(6): 1015-9.
[http://dx.doi.org/10.1007/s10529-016-2079-2] [PMID: 26969604]
[76]
Knezevic P, Aleksic Sabo V, Simin N, Lesjak M, Mimica-Dukic N. A colorimetric broth microdilution method for assessment of Helicobacter pylori sensitivity to antimicrobial agents. J Pharm Biomed Anal 2018; 152: 271-8.
[http://dx.doi.org/10.1016/j.jpba.2018.02.003] [PMID: 29448222]
[77]
Mosmann T. Colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63.
[78]
Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res 2018; 46(W1): W363-7.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[79]
Bhagat S, Sharma R, Chakraborti AK. Dual-activation protocol for tandem cross-aldol condensation: An easy and highly efficient synthesis of α,α′-bis(aryl/alkylmethylidene)ketones. J Mol Catal Chem 2006; 260(1-2): 235-40.
[http://dx.doi.org/10.1016/j.molcata.2006.07.018]
[80]
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20(7): 1126-67.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[81]
Wu CY, Wang C-J, Tseng C-C, et al. Helicobacter pylori promote gastric cancer cells invasion through a NF-kB and COX-2-mediated pathway. World J Gastroenterol 2005; 11(21): 3197-203.
[http://dx.doi.org/10.3748/wjg.v11.i21.3197] [PMID: 15929167]
[82]
Mori N, Sato H, Hayashibara T, et al. Helicobacter pylori induces matrix metalloproteinase-9 through activation of nuclear factor κB. Gastroenterology 2003; 124(4): 983-92.
[http://dx.doi.org/10.1053/gast.2003.50152] [PMID: 12671895]
[83]
Nam YH, Ryu E, Lee D, et al. CagA phosphorylation-dependent MMP-9 expression in gastric epithelial cells. Helicobacter 2011; 16(4): 276-83.
[http://dx.doi.org/10.1111/j.1523-5378.2011.00851.x] [PMID: 21762266]
[84]
Lv Y-P, Cheng P, Zhang J-Y, et al. Helicobacter pylori-induced matrix metallopeptidase-10 promotes gastric bacterial colonization and gastritis. Sci Adv 2019; 5(4): eaau6547.
[85]
Panda SP, Panigrahy UP, Mallick SP, Prasanth DSNBK, Raghavendra M. Screening assessment of trimethoxy flavonoid and -(-)-epigallocatechin-3-gallate against formalin-induced arthritis in Swiss albino rats and binding properties on NF-κB-MMP9 proteins. Future J Pharm Sci 2021; 7(1): 207.
[http://dx.doi.org/10.1186/s43094-021-00359-4]
[86]
Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 2004; 109(2): 238-46.
[http://dx.doi.org/10.1002/ijc.11669] [PMID: 14750175]
[87]
Whittaker M, Floyd CD, Brown P, Gearing AJH. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 1999; 99(9): 2735-76.
[http://dx.doi.org/10.1021/cr9804543] [PMID: 11749499]
[88]
Wen Y, Cai X, Chen S, et al. 7-Methoxy-1-tetralone induces apoptosis, suppresses cell proliferation and migration in hepatocellular carcinoma via regulating c-Met, p-AKT, NF-κB, MMP2, and MMP9 expression. Front Oncol 2020; 10: 58.
[http://dx.doi.org/10.3389/fonc.2020.00058] [PMID: 32117722]
[89]
Nara H, Sato K, Naito T, et al. Thieno[2,3-d]pyrimidine-2-carboxamides bearing a carboxybenzene group at 5-position: Highly potent, selective, and orally available MMP-13 inhibitors interacting with the S1″ binding site. Bioorg Med Chem 2014; 22(19): 5487-505.
[http://dx.doi.org/10.1016/j.bmc.2014.07.025] [PMID: 25192810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy