Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Integrating Network Pharmacology, Bioinformatics, and Mendelian Randomization Analysis to Identify Hub Targets and Mechanisms of Kunkui Baoshen Decoction in Treating Diabetic Kidney Disease

Author(s): Siyuan Song and Jiangyi Yu*

Volume 30, Issue 42, 2024

Published on: 05 September, 2024

Page: [3367 - 3393] Pages: 27

DOI: 10.2174/0113816128331463240816145054

Price: $65

Abstract

Objective: To uncover the potential hub targets of Kunkui Baoshen decoction (KKBS) in alleviating diabetic kidney disease (DKD).

Methods: Targets associated with KKBS and DKD were curated from TCMSP, GeneCards, OMIM, and Dis- GeNET databases. Common targets were identified through intersection analysis using a Venn diagram. Employing the "Drug-component-target" approach and constructing a Protein-protein Interaction (PPI) network, pivotal components and hub targets involved in KKBS's therapeutic action against DKD were identified. Functional enrichment and Gene Set Enrichment Analysis (GSEA) elucidated the potential mechanisms of these hub targets. Molecular docking simulations validated binding interactions. Subsequently, hub targets were validated using independent cohorts and clinical datasets. Immune cell infiltration in DKD samples was assessed using ESTIMATE, CIBERSORT, and IPS algorithms. A nomogram was developed to predict DKD prevalence. Finally, causal relationships between hub targets and DKD were explored through Mendelian randomization (MR) analysis at the genetic level.

Results: Jaranol, isorhamnetin, nobiletin, calycosin, and quercetin emerged as principal effective components in KKBS, with predicted modulation of the PI3K/Akt, MAPK, HIF-1, NF-kB, and IL-17 signaling pathways. The hub targets in the PPI network include proteins involved in regulating podocyte autophagy and apoptosis, managing antioxidant stress, contributing to insulin resistance, and participating in extracellular matrix deposition in DKD. Molecular docking affirmed favorable binding interactions between principal components and hub targets. Validation efforts across cohorts and databases underscored the potential of hub targets as DKD biomarkers. Among 20 model algorithms, the Extra Tree model yielded the largest Area Under the Curve (AUC) in receiver operating characteristic (ROC) analysis. MR analysis elucidated that the targets related to antioxidant stress had a positive impact on DKD, while the target associated with renal tubular basement membrane degradation had a negative impact.

Conclusion: Integration of Network Pharmacology, Bioinformatics, and MR analysis unveiled the capacity of KKBS to modulate pivotal targets in the treatment of DKD.

Keywords: Kunkui Baoshen decoction, diabetic kidney disease, network pharmacology, molecular docking, bioinformatics, MR analysis.

[1]
Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, et al. Targeting inflammation to treat diabetic kidney disease: The road to 2030. Kidney Int 2023; 103(2): 282-96.
[http://dx.doi.org/10.1016/j.kint.2022.10.030] [PMID: 36470394]
[2]
He F, Ng Yin Ling C, Nusinovici S, et al. Development and external validation of machine learning models for diabetic microvascular complications: Cross-sectional study with metabolites. J Med Internet Res 2024; 26: e41065.
[http://dx.doi.org/10.2196/41065] [PMID: 38546730]
[3]
Ilyas Z, Chaiban JT, Krikorian A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy. Rev Endocr Metab Disord 2017; 18(1): 21-8.
[http://dx.doi.org/10.1007/s11154-017-9422-3] [PMID: 28289965]
[4]
Sawaf H, Thomas G, Taliercio JJ, Nakhoul G, Vachharajani TJ, Mehdi A. Therapeutic advances in diabetic nephropathy. J Clin Med 2022; 11(2): 378.
[http://dx.doi.org/10.3390/jcm11020378] [PMID: 35054076]
[5]
Wang N, Zhang C. Recent advances in the management of diabetic kidney disease: Slowing progression. Int J Mol Sci 2024; 25(6): 3086.
[http://dx.doi.org/10.3390/ijms25063086] [PMID: 38542060]
[6]
Wei C, Wang C, Li R, et al. The pharmacological mechanism of Abelmoschus manihot in the treatment of chronic kidney disease. Heliyon 2023; 9(11): e22017.
[http://dx.doi.org/10.1016/j.heliyon.2023.e22017] [PMID: 38058638]
[7]
Tan Y, Li R, Zhou P, et al. Huobahuagen tablet improves renal function in diabetic kidney disease: A real-world retrospective cohort study. Front Endocrinol (Lausanne) 2023; 14: 1166880.
[http://dx.doi.org/10.3389/fendo.2023.1166880] [PMID: 37404303]
[8]
Han H, Cao A, Wang L, et al. Huangqi decoction ameliorates streptozotocin-induced rat diabetic nephropathy through antioxidant and regulation of the TGF-β/MAPK/PPAR-γ signaling. Cell Physiol Biochem 2017; 42(5): 1934-44.
[http://dx.doi.org/10.1159/000479834] [PMID: 28793292]
[9]
Xu H, Shen J, Liu H, Shi Y, Li L, Wei M. Morroniside and loganin extracted from Cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can J Physiol Pharmacol 2006; 84(12): 1267-73.
[http://dx.doi.org/10.1139/y06-075] [PMID: 17487235]
[10]
Gan X, Shu Z, Wang X, et al. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine. Sci Adv 2023; 9(43): eadh0215.
[http://dx.doi.org/10.1126/sciadv.adh0215] [PMID: 37889962]
[11]
Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res 2019; 4: 186.
[http://dx.doi.org/10.12688/wellcomeopenres.15555.3] [PMID: 32760811]
[12]
Qin C, Chen M, Yu Q, et al. Causal relationship between the blood immune cells and intervertebral disc degeneration: Univariable, bidirectional and multivariable Mendelian randomization. Front Immunol 2024; 14: 1321295.
[http://dx.doi.org/10.3389/fimmu.2023.1321295] [PMID: 38268919]
[13]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[14]
Li J, Zhao P, Li Y, Tian Y, Wang Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci Rep 2015; 5(1): 15290.
[http://dx.doi.org/10.1038/srep15290] [PMID: 26469778]
[15]
Murad AM, Rech EL. NanoUPLC-MSE proteomic data assessment of soybean seeds using the Uniprot database. BMC Biotechnol 2012; 12(1): 82.
[http://dx.doi.org/10.1186/1472-6750-12-82] [PMID: 23126227]
[16]
Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016; 54: 1.30.1-1.30.33.
[http://dx.doi.org/10.1002/cpbi.5]
[17]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[18]
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55.
[PMID: 31680165]
[19]
Gao CH, Yu G, Cai P. ggVennDiagram: An intuitive, easy-to-use, and highly customizable R package to generate venn diagram. Front Genet 2021; 12: 706907.
[http://dx.doi.org/10.3389/fgene.2021.706907] [PMID: 34557218]
[20]
Sherman BT, Huang DW, Tan Q, et al. DAVID Knowledgebase: A gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 2007; 8(1): 426.
[http://dx.doi.org/10.1186/1471-2105-8-426] [PMID: 17980028]
[21]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[22]
Liu Z, Li Y, Han L, et al. PDB-wide collection of binding data: Current status of the PDBbind database. Bioinformatics 2015; 31(3): 405-12.
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[23]
Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and AutoDock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[24]
Mooers BHM. Shortcuts for faster image creation in PyMOL. Protein Sci 2020; 29(1): 268-76.
[http://dx.doi.org/10.1002/pro.3781] [PMID: 31710740]
[25]
Shuyuan L, Haoyu C. Mechanism of Nardostachyos Radix et Rhizoma-Salidroside in the treatment of premature ventricular beats based on network pharmacology and molecular docking. Sci Rep 2023; 13(1): 20741.
[http://dx.doi.org/10.1038/s41598-023-48277-0] [PMID: 38007574]
[26]
Kawada J, Takeuchi S, Imai H, et al. Immune cell infiltration landscapes in pediatric acute myocarditis analyzed by CIBERSORT. J Cardiol 2021; 77(2): 174-8.
[http://dx.doi.org/10.1016/j.jjcc.2020.08.004] [PMID: 32891480]
[27]
Abdel Razek AAK, ElKhamary S, Al-Mesfer S, AlKatan HM. Correlation of apparent diffusion coefficient at 3T with prognostic parameters of retinoblastoma. AJNR Am J Neuroradiol 2012; 33(5): 944-8.
[http://dx.doi.org/10.3174/ajnr.A2892] [PMID: 22241394]
[28]
Lay AC, Hale LJ, Stowell-Connolly H, et al. IGFBP-1 expression is reduced in human Type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes. Diabetologia 2021; 64(7): 1690-702.
[http://dx.doi.org/10.1007/s00125-021-05427-1] [PMID: 33758952]
[29]
Zhou X, Du J, Liu C, et al. A pan-cancer analysis of CD161, a potential new immune checkpoint. Front Immunol 2021; 12: 688215.
[http://dx.doi.org/10.3389/fimmu.2021.688215] [PMID: 34305920]
[30]
Fornes O, Castro-Mondragon JA, Khan A, et al. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2020; 48(D1): D87-92.
[PMID: 31701148]
[31]
Coutinho de Almeida R, Ramos YFM, Mahfouz A, et al. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis 2019; 78(2): 270-7.
[http://dx.doi.org/10.1136/annrheumdis-2018-213882] [PMID: 30504444]
[32]
Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 2019; 47(W1): W234-41.
[http://dx.doi.org/10.1093/nar/gkz240] [PMID: 30931480]
[33]
Wu J, Zhang H, Li L, et al. A nomogram for predicting overall survival in patients with low‐grade endometrial stromal sarcoma: A population‐based analysis. Cancer Commun (Lond) 2020; 40(7): 301-12.
[http://dx.doi.org/10.1002/cac2.12067] [PMID: 32558385]
[34]
Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12(1): 77.
[http://dx.doi.org/10.1186/1471-2105-12-77] [PMID: 21414208]
[35]
Võsa U, Claringbould A, Westra HJ, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet 2021; 53(9): 1300-10.
[http://dx.doi.org/10.1038/s41588-021-00913-z] [PMID: 34475573]
[36]
Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 2021; 53(10): 1415-24.
[http://dx.doi.org/10.1038/s41588-021-00931-x] [PMID: 34594039]
[37]
Liu B, Lyu L, Zhou W, et al. Associations of the circulating levels of cytokines with risk of amyotrophic lateral sclerosis: A mendelian randomization study. BMC Med 2023; 21(1): 39.
[http://dx.doi.org/10.1186/s12916-023-02736-7] [PMID: 36737740]
[38]
Zou M, Zhang W, Shen L, Xu Y, Zhu Y. Causal association between inflammatory bowel disease and herpes virus infections: a two-sample bidirectional Mendelian randomization study. Front Immunol 2023; 14: 1203707.
[http://dx.doi.org/10.3389/fimmu.2023.1203707] [PMID: 37465669]
[39]
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 2010; 1(2): 97-111.
[http://dx.doi.org/10.1002/jrsm.12] [PMID: 26061376]
[40]
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 2017; 46(6): 1985-98.
[http://dx.doi.org/10.1093/ije/dyx102] [PMID: 29040600]
[41]
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44(2): 512-25.
[http://dx.doi.org/10.1093/ije/dyv080] [PMID: 26050253]
[42]
Li L, Ren Q, Zheng Q, et al. Causal associations between gastroesophageal reflux disease and lung cancer risk: A Mendelian randomization study. Cancer Med 2023; 12(6): 7552-9.
[http://dx.doi.org/10.1002/cam4.5498] [PMID: 36479899]
[43]
Tang Y, Wan F, Tang X, et al. Celastrol attenuates diabetic nephropathy by upregulating SIRT1-mediated inhibition of EZH2 related Wnt/β-catenin signaling. Int Immunopharmacol 2023; 122: 110584.
[http://dx.doi.org/10.1016/j.intimp.2023.110584] [PMID: 37454630]
[44]
Liu L, Sheng C, Lyu Z, Dai H, Chen K. Association between genetically proxied lipid-lowering drug targets and renal cell carcinoma: a mendelian randomization study. Front Nutr 2021; 8: 755834.
[http://dx.doi.org/10.3389/fnut.2021.755834] [PMID: 34712689]
[45]
Liu HX, Lian L, Hou LL, et al. Herb pair of Huangqi‐Danggui exerts anti‐tumor immunity to breast cancer by upregulatingPIK3R1. Animal Model Exp Med 2024; 7(3): 234-58.
[http://dx.doi.org/10.1002/ame2.12434] [PMID: 38863309]
[46]
Fang J, Wang C, Zheng J, Liu Y. Network pharmacology study of Yishen capsules in the treatment of diabetic nephropathy. PLoS One 2022; 17(9): e0273498.
[http://dx.doi.org/10.1371/journal.pone.0273498] [PMID: 36094934]
[47]
Matboli M, Ibrahim D, Hasanin AH, et al. Epigenetic modulation of autophagy genes linked to diabetic nephropathy by administration of isorhamnetin in Type 2 diabetes mellitus rats. Epigenomics 2021; 13(3): 187-202.
[http://dx.doi.org/10.2217/epi-2020-0353] [PMID: 33406900]
[48]
Wang L, Xie Y, Xiao B, et al. Isorhamnetin alleviates cisplatin-induced acute kidney injury via enhancing fatty acid oxidation. Free Radic Biol Med 2024; 212: 22-33.
[http://dx.doi.org/10.1016/j.freeradbiomed.2023.12.010] [PMID: 38101584]
[49]
Xu M, Wang R, Fan H, Ni Z. Nobiletin ameliorates streptozotocin-cadmium-induced diabetic nephropathy via NF-κB signalling pathway in rats. Arch Physiol Biochem 2024; 130(1): 29-37.
[http://dx.doi.org/10.1080/13813455.2021.1959617] [PMID: 34346259]
[50]
Qin Y, Yang J, Li H, Li J. Recent advances in the therapeutic potential of nobiletin against respiratory diseases. Phytomedicine 2024; 128: 155506.
[http://dx.doi.org/10.1016/j.phymed.2024.155506] [PMID: 38522319]
[51]
Yosri H, El-Kashef DH, El-Sherbiny M, Said E, Salem HA. Calycosin modulates NLRP3 and TXNIP-mediated pyroptotic signaling and attenuates diabetic nephropathy progression in diabetic rats; An insight. Biomed Pharmacother 2022; 155: 113758.
[http://dx.doi.org/10.1016/j.biopha.2022.113758] [PMID: 36271546]
[52]
Lei D, Chengcheng L, Xuan Q, et al. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res 2019; 146: 104320.
[http://dx.doi.org/10.1016/j.phrs.2019.104320] [PMID: 31220559]
[53]
Li T, Li Y. Quercetin acts as a novel anti-cancer drug to suppress cancer aggressiveness and cisplatin-resistance in nasopharyngeal carcinoma (NPC) through regulating the yes-associated protein/Hippo signaling pathway. Immunobiology 2023; 228(2): 152324.
[http://dx.doi.org/10.1016/j.imbio.2022.152324] [PMID: 36608594]
[54]
Wang X, Jiang L, Liu X, et al. Paeoniflorin binds to VEGFR2 to restore autophagy and inhibit apoptosis for podocyte protection in diabetic kidney disease through PI3K-AKT signaling pathway. Phytomedicine 2022; 106: 154400.
[http://dx.doi.org/10.1016/j.phymed.2022.154400] [PMID: 36049428]
[55]
Xuan C, Xi YM, Zhang YD, Tao CH, Zhang LY, Cao WF. Yiqi Jiedu Huayu decoction alleviates renal injury in rats with diabetic nephropathy by promoting autophagy. Front Pharmacol 2021; 12: 624404.
[http://dx.doi.org/10.3389/fphar.2021.624404] [PMID: 33912044]
[56]
Harris RC. The role of the epidermal growth factor receptor in diabetic kidney disease. Cells 2022; 11(21): 3416.
[http://dx.doi.org/10.3390/cells11213416] [PMID: 36359813]
[57]
Wang Y, Liu T, Ma F, et al. A Network pharmacology-based strategy for unveiling the mechanisms of Tripterygium wilfordii Hook F against diabetic kidney disease. J Diabetes Res 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/2421631] [PMID: 33274236]
[58]
Mao C, Gu Z. Puerarin reduces increased c-fos, c-jun, and type IV collagen expression caused by high glucose in glomerular mesangial cells. Acta Pharmacol Sin 2005; 26(8): 982-6.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00133.x] [PMID: 16038632]
[59]
Chen X, Cobbs A, George J, Chima A, Tuyishime F, Zhao X. Endocytosis of albumin induces matrix metalloproteinase-9 by activating the ERK signaling pathway in renal tubule epithelial cells. Int J Mol Sci 2017; 18(8): 1758.
[http://dx.doi.org/10.3390/ijms18081758] [PMID: 28805677]
[60]
Du B, Yin Y, Wang Y, et al. Calcium dobesilate efficiency in the treatment of diabetic kidney disease through suppressing MAPK and chemokine signaling pathways based on clinical evaluation and network pharmacology. Front Pharmacol 2022; 13: 850167.
[http://dx.doi.org/10.3389/fphar.2022.850167] [PMID: 36160448]
[61]
Zhang SJ, Zhang YF, Bai XH, et al. Integrated network pharmacology analysis and experimental validation to elucidate the mechanism of acteoside in treating diabetic kidney disease. Drug Des Devel Ther 2024; 18: 1439-57.
[http://dx.doi.org/10.2147/DDDT.S445254] [PMID: 38707616]
[62]
Ahluwalia TS, Rönkkö TKE, Eickhoff MK, et al. Randomized trial of SGLT2 inhibitor identifies target proteins in diabetic kidney disease. Kidney Int Rep 2023; 9(2): 334-46.
[http://dx.doi.org/10.1016/j.ekir.2023.11.020] [PMID: 38344728]
[63]
Gonzalez FJ, Xie C, Jiang C. The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol 2019; 15(1): 21-32.
[http://dx.doi.org/10.1038/s41574-018-0096-z] [PMID: 30275460]
[64]
Zhou XF, Zhou WE, Liu WJ, et al. A network pharmacology approach to explore the mechanism of HuangZhi YiShen capsule for treatment of diabetic kidney disease. J Transl Int Med 2021; 9(2): 98-113.
[http://dx.doi.org/10.2478/jtim-2021-0020] [PMID: 34497749]
[65]
Fawaz S, Martin Alonso A, Qiu Y, et al. Adiponectin reduces glomerular endothelial glycocalyx disruption and restores glomerular barrier function in a mouse model of Type 2 diabetes. Diabetes 2024; 73(6): 964-76.
[http://dx.doi.org/10.2337/db23-0455] [PMID: 38530908]
[66]
Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol 2018; 833: 158-64.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.001] [PMID: 29883668]
[67]
Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in mouse Type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney Int 2004; 65(1): 116-28.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00367.x] [PMID: 14675042]
[68]
Bessho R, Takiyama Y, Takiyama T, et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 2019; 9(1): 14754.
[http://dx.doi.org/10.1038/s41598-019-51343-1] [PMID: 31611596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy