Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Assessment of the Anti-adipogenic Effect of Crateva religiosa Bark Extract for Molecular Regulation of Adipogenesis: In Silico and In Vitro Approaches for Management of Hyperlipidemia Through the 3T3-L1 Cell Line

Author(s): Monika Singh*, Monika Sachdeva and Nitin Kumar

Volume 26, Issue 5, 2025

Published on: 28 August, 2024

Page: [778 - 794] Pages: 17

DOI: 10.2174/0113892010314594240816050240

Price: $65

Abstract

Aims: This study aimed to determine the phytoconstituents of Crateva religiosa bark (CRB) and evaluate the hypolipidemic effect of bioactive CRB extract by preventing adipocyte differentiation and lipogenesis.

Background: After performing the preliminary phytochemicals screening, the antioxidant activity of CRB extracts was determined through a DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay. Ethyl acetate extract (CREAE) and ethanol extract (CRETE) of CRB were selected for chromatographic evaluation.

Methods: The antihyperlipidemic potential was analyzed by molecular docking through the PKCMS software platform. Further, a 3T3-L1 cell line study via in vitro sulforhodamine B assay and western blotting was performed to confirm the prevention of adipocyte differentiation and lipogenesis.

Results: The total phenolic contents in CREAE and CRETE were estimated as 29.47 and 81.19 μg/mg equivalent to gallic acid, respectively. The total flavonoid content was found to be 8.78 and 49.08 μg/mg, equivalent to quercetin in CREAE and CRETE, respectively. CRETE exhibited greater scavenging activity with the IC50 value of 61.05 μg/ mL. GC-MS analysis confirmed the presence of three bioactive molecules, stigmasterol, gamma sitosterol, and lupeol, in CRETE. Molecular docking studies predicted that the bioactive molecules interact with HMG-CoA reductase, PPARγ, and CCAAT/EBP, which are responsible for lipid metabolism. In vitro, Sulforhodamine B assays revealed that CRETE dose-dependently reduced cell differentiation and viability. Cellular staining using ‘Oil Red O’ revealed a decreased lipid content in the CRETE-treated cell lines. CRETE significantly inhibited the induction of PPARγ and CCAAT/EBP expression, as determined through protein expression via western blotting.

Conclusion: The influence of CRETE on lipid metabolism in 3T3-L1 cells is potentially suggesting a new approach to managing hyperlipidemia.

Keywords: 3T3-L1 cell lines, in vitro, in silico, antihyperlipidemic, adipocyte, GC-MS analysis.

« Previous
Graphical Abstract
[1]
Nelson, R.H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care, 2013, 40(1), 195-211.
[http://dx.doi.org/10.1016/j.pop.2012.11.003] [PMID: 23402469]
[2]
Bachheti, R.K.; Worku, L.A.; Gonfa, Y.H.; Zebeaman, M. Deepti; Pandey, D.P.; Bachheti, A. Prevention and treatment of cardiovascular diseases with plant phytochemicals: A review. Evid. Based Complement. Alternat. Med., 2022, 2022(1), 1-21.
[http://dx.doi.org/10.1155/2022/5741198] [PMID: 35832515]
[3]
Duarte, M.M.M.F.; Moresco, R.N.; Duarte, T.; Santi, A.; Bagatini, M.D.; Da Cruz, I.B.M.; Schetinger, M.R.C.; Loro, V.L. Oxidative stress in hypercholesterolemia and its association with Ala16Val superoxide dismutase gene polymorphism. Clin. Biochem., 2010, 43(13-14), 1118-1123.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.07.002] [PMID: 20627099]
[4]
Rizzatti, V; Boschi, F; Pedrotti, M; Zoico, E; Sbarbati, A; Zamboni, M Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: Size and optical density distribution. European journal of histochemistry. EJH, 2013, 57(3)
[5]
Etesami, B.; Ghaseminezhad, S.; Nowrouzi, A.; Rashidipour, M.; Yazdanparast, R. Investigation of 3T3-L1 cell differentiation to adipocyte, affected by aqueous seed extract of Phoenix Dactylifera L. Rep. Biochem. Mol. Biol., 2020, 9(1), 14-25.
[http://dx.doi.org/10.29252/rbmb.9.1.14] [PMID: 32821747]
[6]
Wang, Q.A.; Scherer, P.E.; Gupta, R.K. Improved methodologies for the study of adipose biology: Insights gained and opportunities ahead. J. Lipid Res., 2014, 55(4), 605-624.
[http://dx.doi.org/10.1194/jlr.R046441] [PMID: 24532650]
[7]
Garattini, S.; Grignaschi, G. Animal testing is still the best way to find new treatments for patients. Eur. J. Intern. Med., 2017, 39, 32-35.
[http://dx.doi.org/10.1016/j.ejim.2016.11.013] [PMID: 27916437]
[8]
Baumer, Y.; McCurdy, S.; Weatherby, T.M.; Mehta, N.N.; Halbherr, S.; Halbherr, P.; Yamazaki, N.; Boisvert, W.A. Hyperlipidemia-induced cholesterol crystal production by endothelial cells promotes atherogenesis. Nat. Commun., 2017, 8(1), 1129.
[http://dx.doi.org/10.1038/s41467-017-01186-z] [PMID: 29066718]
[9]
Zhang, D.; Wei, Y.; Huang, Q.; Chen, Y.; Zeng, K.; Yang, W.; Chen, J.; Chen, J. Important hormones regulating lipid metabolism. Molecules, 2022, 27(20), 7052.
[http://dx.doi.org/10.3390/molecules27207052] [PMID: 36296646]
[10]
Khalil, A.S.; Jaenisch, R.; Mooney, D.J. Engineered tissues and strategies to overcome challenges in drug development. Adv. Drug Deliv. Rev., 2020, 158, 116-139.
[http://dx.doi.org/10.1016/j.addr.2020.09.012] [PMID: 32987094]
[11]
Polli, J.E. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J., 2008, 10(2), 289-299.
[http://dx.doi.org/10.1208/s12248-008-9027-6] [PMID: 18500564]
[12]
Tsang, H.G.; Rashdan, N.A.; Whitelaw, C.B.A.; Corcoran, B.M.; Summers, K.M.; MacRae, V.E. Large animal models of cardiovascular disease. Cell Biochem. Funct., 2016, 34(3), 113-132.
[http://dx.doi.org/10.1002/cbf.3173] [PMID: 26914991]
[13]
Festing, S.; Wilkinson, R. The ethics of animal research. EMBO Rep., 2007, 8(6), 526-530.
[http://dx.doi.org/10.1038/sj.embor.7400993] [PMID: 17545991]
[14]
Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep., 2023, 13(1), 13398.
[http://dx.doi.org/10.1038/s41598-023-40160-2] [PMID: 37592012]
[15]
Song, J.; Zaidi, S.A.A.; He, L.; Zhang, S.; Zhou, G. Integrative analysis of machine learning and molecule docking simulations for ischemic stroke diagnosis and therapy. Molecules, 2023, 28(23), 7704.
[http://dx.doi.org/10.3390/molecules28237704] [PMID: 38067435]
[16]
Kumar, D.; Sharma, S.; Kumar, S. Botanical description, phytochemistry, traditional uses, and pharmacology of crataeva nurvala buch. Future J. Pharm. Sci., 2020, 6(113), 1-0.
[17]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3]
[18]
Vidhya Rekha, U.; Rajagopal, P.; Varadhachariyar, R.; Harie Priya, P.; Shazia Fathima, J.H.; Govindan, R.; Palanisamy, C.; Aswini Brindha, K.B.; Veeraraghavan, V.P.; Jayaraman, S. Molecular docking analysis of bioactive compounds from Cissampelos pareira with PPAR gamma. Bioinformation, 2022, 18(3), 265-268.
[http://dx.doi.org/10.6026/97320630018265] [PMID: 36518143]
[19]
Saravanan, R.; Raja, K.; Shanthi, D. GC–MS analysis, molecular docking and pharmacokinetic properties of phytocompounds from Solanum torvum unripe fruits and its effect on breast cancer target protein. Appl. Biochem. Biotechnol., 2022, 194(1), 529-555.
[http://dx.doi.org/10.1007/s12010-021-03698-3] [PMID: 34643844]
[20]
Arbianti, R.; Larasati, A.; Utami, T.S.; Muharam, Y.; Slamet, S. Molecular docking bioactive compound from Strobilanthes crispus to decrease cholesterol levels. AIP Conference Proceedings, 2021, 2376(1), 050001.
[http://dx.doi.org/10.1063/5.0064599]
[21]
Ballav, S.; Biswas, B.; Sahu, V.K.; Ranjan, A.; Basu, S. PPAR-γ partial agonists in disease-fate decision with special reference to cancer. Cells, 2022, 11(20), 3215.
[http://dx.doi.org/10.3390/cells11203215] [PMID: 36291082]
[22]
Choucry, M.A.; Khalil, M.N.A.; El Awdan, S.A. Protective action of crateva nurvala buch. Ham extracts against renal ischaemia reperfusion injury in rats via antioxidant and anti-inflammatory activities. J. Ethnopharmacol., 2018, 214, 47-57.
[http://dx.doi.org/10.1016/j.jep.2017.11.034] [PMID: 29217496]
[23]
Abubakar, A.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci., 2020, 12(1), 1-10.
[http://dx.doi.org/10.4103/jpbs.JPBS_175_19] [PMID: 32801594]
[24]
Nortjie, E.; Basitere, M.; Moyo, D.; Nyamukamba, P. Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: A review. Plants, 2022, 11(15), 2011.
[http://dx.doi.org/10.3390/plants11152011] [PMID: 35956489]
[25]
Blainski, A.; Lopes, G.; De Mello, J. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 2013, 18(6), 6852-6865.
[http://dx.doi.org/10.3390/molecules18066852] [PMID: 23752469]
[26]
Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid. Based Complement. Alternat. Med., 2014, 2014(1), 1-9.
[http://dx.doi.org/10.1155/2014/253875] [PMID: 24782905]
[27]
Akar, Z.; Küçük, M.; Doğan, H. A new colorimetric DPPH • scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 640-647.
[http://dx.doi.org/10.1080/14756366.2017.1284068] [PMID: 28262029]
[28]
Bajpai, V.K.; Majumder, R.; Park, J.G. Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh J. Pharmacol., 2016, 11(4), 844-848.
[http://dx.doi.org/10.3329/bjp.v11i4.28185]
[29]
Sloan, K.M.; Mustacich, R.V.; Eckenrode, B.A. Development and evaluation of a low thermal mass gas chromatograph for rapid forensic GC–MS analyses. Field Anal. Chem. Technol., 2001, 5(6), 288-301.
[http://dx.doi.org/10.1002/fact.10011]
[30]
Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One, 2021, 16(7), e0254035.
[http://dx.doi.org/10.1371/journal.pone.0254035] [PMID: 34260631]
[31]
Eswaramoorthy, R.; Hailekiros, H.; Kedir, F.; Endale, M. In silico molecular docking, DFT analysis and ADMET studies of carbazole alkaloid and coumarins from roots of clausena anisata: A potent inhibitor for quorum sensing. Adv. Appl. Bioinform. Chem., 2021, 14, 13-24.
[http://dx.doi.org/10.2147/AABC.S290912] [PMID: 33584098]
[32]
Yang, H.; Sun, L.; Li, W.; Liu, G.; Tang, Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem., 2018, 6, 30.
[http://dx.doi.org/10.3389/fchem.2018.00030] [PMID: 29515993]
[33]
Orellana, E.; Kasinski, A.; Sulforhodamine, B. SRB) assay in cell culture to investigate cell proliferation. Bio Protoc., 2016, 6(21), e1984.
[http://dx.doi.org/10.21769/BioProtoc.1984] [PMID: 28573164]
[34]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[35]
Ji, S.; Doumit, M.E.; Hill, R.A. Regulation of adipogenesis and key adipogenic gene expression by 1, 25-dihydroxyvitamin D in 3T3-L1 cells. PLoS One, 2015, 10(6), e0126142.
[http://dx.doi.org/10.1371/journal.pone.0126142] [PMID: 26030589]
[36]
Kraus, N.A.; Ehebauer, F.; Zapp, B.; Rudolphi, B.; Kraus, B.J.; Kraus, D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte, 2016, 5(4), 351-358.
[http://dx.doi.org/10.1080/21623945.2016.1240137] [PMID: 27994948]
[37]
Yu, Z.K.; Hausman, G.J. Expression of CCAAT/enhancer binding proteins during porcine preadipocyte differentiation. Exp. Cell Res., 1998, 245(2), 343-349.
[http://dx.doi.org/10.1006/excr.1998.4260] [PMID: 9851875]
[38]
Rosen, E.D.; Hsu, C.H.; Wang, X.; Sakai, S.; Freeman, M.W.; Gonzalez, F.J.; Spiegelman, B.M. C/EBPα induces adipogenesis through PPARγ: A unified pathway. Genes Dev., 2002, 16(1), 22-26.
[http://dx.doi.org/10.1101/gad.948702] [PMID: 11782441]
[39]
Poulos, S.P.; Sisk, M.; Hausman, D.B.; Azain, M.J.; Hausman, G.J. Pre- and postnatal dietary conjugated linoleic acid alters adipose development, body weight gain and body composition in Sprague-Dawley rats. J. Nutr., 2001, 131(10), 2722-2731.
[http://dx.doi.org/10.1093/jn/131.10.2722] [PMID: 11584096]
[40]
Mishra, M.; Tiwari, S.; Gomes, A.V. Protein purification and analysis: Next generation Western blotting techniques. Expert Rev. Proteomics, 2017, 14(11), 1037-1053.
[http://dx.doi.org/10.1080/14789450.2017.1388167] [PMID: 28974114]
[41]
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA, 1979, 76(9), 4350-4354.
[http://dx.doi.org/10.1073/pnas.76.9.4350] [PMID: 388439]
[42]
Radziejewska, I.; Supruniuk, K.; Jakimiuk, K.; Tomczyk, M.; Bielawska, A.; Galicka, A. Tiliroside combined with anti-muc1 monoclonal antibody as promising anti-cancer strategy in AGS Cancer Cells. Int. J. Mol. Sci., 2023, 24(17), 13036.
[http://dx.doi.org/10.3390/ijms241713036] [PMID: 37685842]
[43]
Maiuolo, J.; Musolino, V.; Gliozzi, M.; Carresi, C.; Oppedisano, F.; Nucera, S.; Scarano, F.; Scicchitano, M.; Guarnieri, L.; Bosco, F.; Macrì, R.; Ruga, S.; Cardamone, A.; Coppoletta, A.R.; Ilari, S.; Mollace, A.; Muscoli, C.; Cognetti, F.; Mollace, V. The employment of genera Vaccinium, Citrus, Olea, and Cynara polyphenols for the reduction of selected anti-cancer drug side effects. Nutrients, 2022, 14(8), 1574.
[http://dx.doi.org/10.3390/nu14081574] [PMID: 35458136]
[44]
Kristiningrum, N.; Wulandari, L.E.; Zuhriyah, A.I. Phytochemical screening, total phenolic content, and antioxidant activity of water, ethyl acetate, and n-hexane fractions from mistletoe moringa oleifera lam. (dendrophthoe pentandra (l.) miq.). Asian Journal of Pharmaceutical and Clinical Research, 2018, 11(10), 104.
[45]
Sulaiman, C.T.; Balachandran, I. Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J. Pharm. Sci., 2012, 74(3), 258-260.
[http://dx.doi.org/10.4103/0250-474X.106069] [PMID: 23439764]
[46]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[47]
Wagay, N.A.; Khan, N.A.; Rothe, S.P. Profiling of secondary metabolites and antimicrobial activity of Crateva religiosa G. Forst. Bark – A rare medicinal plant of Maharashtra India. Int. J. Biosci., 2017, 10(5), 343-354.
[http://dx.doi.org/10.12692/ijb/10.5.343-354]
[48]
Rathinavel, T.; Iqbal, M.N.; Kumarasamy, S. Lupeol from Crateva adansonii DC exhibits promising enzymes inhibition: Play a crucial role in inflammation and diabetes. S. Afr. J. Bot., 2021, 143, 449-456.
[http://dx.doi.org/10.1016/j.sajb.2021.08.023]
[49]
Pang, M.; He, W.; Lu, X.; She, Y.; Xie, L.; Kong, R.; Chang, S. CoDock-Ligand: Combined template-based docking and CNN-based scoring in ligand binding prediction. BMC Bioinformatics, 2023, 24(1), 444.
[http://dx.doi.org/10.1186/s12859-023-05571-y] [PMID: 37996806]
[50]
Steinberg, D. Thematic review series: The pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: Part I. J. Lipid Res., 2004, 45(9), 1583-1593.
[http://dx.doi.org/10.1194/jlr.R400003-JLR200] [PMID: 15102877]
[51]
Curiel-Pedraza, D.A.; Villaseñor-Tapia, E.C.; Márquez-Aguirre, A.L.; Morales-Martínez, C.E.; Diaz-Vidal, T.; Basulto-Padilla, G.C.; Mateos-Díaz, J.C.; López-Munguía, A.; Canales-Aguirre, A.; Rodríguez, J.A. Olvanil inhibits adipocyte differentiation in 3T3-L1 cells, reduces fat accumulation and improves lipidic profile on mice with diet-induced obesity. Food Chemistry Advances, 2023, 3, 100438.
[http://dx.doi.org/10.1016/j.focha.2023.100438]
[52]
Senamontree, S.; Lakthan, T.; Charoenpanich, P.; Chanchao, C.; Charoenpanich, A. Betulinic acid decreases lipid accumulation in adipogenesis-induced human mesenchymal stem cells with upregulation of PGC-1α and UCP-1 and post-transcriptional downregulation of adiponectin and leptin secretion. PeerJ, 2021, 9, e12321.
[http://dx.doi.org/10.7717/peerj.12321] [PMID: 34721992]
[53]
Jakab, J.; Miškić, B.; Mikšić, Š.; Juranić, B.; Ćosić, V.; Schwarz, D.; Včev, A. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes Metab. Syndr. Obes., 2021, 14, 67-83.
[http://dx.doi.org/10.2147/DMSO.S281186] [PMID: 33447066]
[54]
Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 2019, 8(4), 96.
[http://dx.doi.org/10.3390/plants8040096] [PMID: 30978964]
[55]
Andjic, M.; Božin, B.; Draginic, N.; Kocovic, A.; Jeremic, J.N.; Tomovic, M. Milojevic Šamanovic. Pharmaceuticals., 2021, 14, 813.
[PMID: 34451910]
[56]
Poma, A; Fontecchio, G; Carlucci, G; Chichiricco, G Anti-inflammatory properties of drugs from saffron crocus. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents)., 2012, 11(1), 37-51.
[http://dx.doi.org/10.2174/187152312803476282]
[57]
Vassallo, A.; Caddeo, C.; Manconi, M.; Manca, M.L.; Armentano, M.F.; Carbone, C.; Puglisi, G.; Fadda, A.M. Liposomes for the co-delivery of naturally occurring polyphenols (quercetin and resveratrol): characterization andin vitro/in vivo evaluation. InXXVI–SILAE 2017 SOCIETÀ ITALO-LATINOAMERICANA DI ETNOMEDICINA IX CONGRESO COLOMBIANO DE CROMATOGRAFÍA–COCOCRO 2017; Sociedad Colombiana de Ciencias Químicas, 2017, pp. 88-88.
[58]
Phytochemicals in Goji Berries. Applications in Functional Foods; CRC Press, 2020.
[http://dx.doi.org/10.1201/9780429021749]
[59]
Bouwman, AC; Nugroho, JE; Wongso, D; van Schelt, J; Pannebakker, BA; Zwaan, BJ; Ellen, ED A full sib design is a practically feasible way to estimate genetic parameters in Black Soldier Fly (Hermetia illucens). InInsects to feed the world, 2022, 8(1), S53-S53.
[60]
Moreno, J.M.; Meyer-Rochow, B.; Olsen, B.; Paoletti, M.G.; Schneider, J.; Schlüter, O. Editorial board: Prof. Jérôme Casas In: University of Tours, France Dr Adrian Charlton, FERA: United Kingdom; Dr Florence Dunkel;
[61]
Deruytter, D.; Gasco, L.; Gligorescu, A.; Yakti, W.; Coudron, C.L.; Meneguz, M.; Grosso, F.; Shumo, M.; Frooninckx, L.; Noyens, I.; Oddon, S.B. The (im) possible standardisation of insect feed experiments: A BSF case study. J. Insects Food Feed, 2022, 8(Suppl. 1), S144-S144.
[62]
Kar, S.; Leszczynski, J. Recent advances of computational modeling for predicting drug metabolism: A perspective. Curr. Drug Metab., 2018, 18(12), 1106-1122.
[http://dx.doi.org/10.2174/1389200218666170607102104] [PMID: 28595533]
[63]
Clancy, C.E.; An, G.; Cannon, W.R.; Liu, Y.; May, E.E.; Ortoleva, P.; Popel, A.S.; Sluka, J.P.; Su, J.; Vicini, P.; Zhou, X.; Eckmann, D.M. Multiscale modeling in the clinic: Drug design and development. Ann. Biomed. Eng., 2016, 44(9), 2591-2610.
[http://dx.doi.org/10.1007/s10439-016-1563-0] [PMID: 26885640]
[64]
Gan, J.; Bolon, B.; Van Vleet, T.; Wood, C. Alternative models in biomedical research:In silico, in vitro, ex vivo.and nontraditional in vivo approaches. In: InHaschek and Rousseaux’s handbook of toxicologic pathology; Academic Press, 2022; pp. 925-966.
[65]
Tosca, E.M.; Ronchi, D.; Facciolo, D.; Magni, P. Replacement, reduction, and refinement of animal experiments in anticancer drug development: The contribution of 3D in vitro cancer models in the drug efficacy assessment. Biomedicines, 2023, 11(4), 1058.
[http://dx.doi.org/10.3390/biomedicines11041058] [PMID: 37189676]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy