Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Resistance Distance and Kirchhoff Index in Windmill Graphs

Author(s): Muhammad Shoaib Sardar* and Shou-Jun Xu*

Volume 22, Issue 2, 2025

Published on: 04 July, 2024

Page: [159 - 168] Pages: 10

DOI: 10.2174/0115701794299562240606054510

Price: $65

TIMBC 2025
Abstract

Introduction: The objective of this study is to compute the Kirchhoff index and resistance distance for two classes of windmill graphs, namely the French windmill graph and the Dutch windmill graph.

Methods: In this study, G is considered a simple connected graph with vertex set V (G) and edge set E(G). N is supposed to represent a network derived from G by substituting a 1-ohm resistor for each edge of G. In that case, the resistance between υ,ν ∈ V (G) is considered analogous to the resistance between two equivalent nodes in network N. We employed techniques from electrical network theory to compute the resistance distance and Kirchhoff index.

Results: The Kirchhoff index of G is the sum of the resistance distances between all pairs of vertices in G. Our computations revealed specific patterns and relationships in the resistance distances and Kirchhoff indices across different classes of windmill graphs.

Conclusion: In addition, the Kirchhoff index and resistance distance are computed in this study for specific generalizations of these graphs. The derived equations can inspire further investigation into the resistance distance and Kirchhoff index in real-world windmill networks. Additionally, they offer a chemical framework for future research, aiding in the determination of molecular structures and characteristics.

Keywords: Distance, resistance distance, network, star-mesh transformation, kirchhoff index, windmill graphs.

Graphical Abstract
[1]
Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem., 1993, 12(1), 81-95.
[http://dx.doi.org/10.1007/BF01164627]
[2]
Klein, D.J. Resistance-distance sum rules. Croat. Chem. Acta, 2002, 75, 633-649.
[3]
Bonchev, D.; Balaban, A.T.; Liu, X.; Klein, D.J. Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances. Int. J. Quantum Chem., 1994, 50(1), 1-20.
[http://dx.doi.org/10.1002/qua.560500102]
[4]
Xiao, W.; Gutman, I. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 2003, 110(4), 284-289.
[http://dx.doi.org/10.1007/s00214-003-0460-4]
[5]
McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 2008, 89(10), 2712-2724.
[http://dx.doi.org/10.1890/07-1861.1] [PMID: 18959309]
[6]
Zhou, B.; Trinajstić, N. On resistance-distance and Kirchhoff index. J. Math. Chem., 2009, 46(1), 283-289.
[http://dx.doi.org/10.1007/s10910-008-9459-3]
[7]
Gutman, I.; Mohar, B. The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci., 1996, 36(5), 982-985.
[http://dx.doi.org/10.1021/ci960007t]
[8]
Lib En-Nowell, D.; Kleinberg, J. The link prediction problem for social networks. Proceedings of the Twelfth Annual ACM International Conference on Information and Knowledge Management (CIKM’03); November, 2003, pp. 556-559.
[9]
Lu, B.C.Y. Liu, Y. H. Wang, Discovery of community structure in complex networks based on resistance distance and center nodes. J. Comput. Inf. Syst., 2012, 8(23), 9807-9814.
[10]
Qiu, H.; Hancock, E.R. Image segmentation using commute times. Proceedings of the 16th British Machine Vision Conference (BMVC); Oxford, UK, September, 2005, pp. 929-938.
[11]
Qiu, H.; Hancook, E.R. Robust multi-body motion tracking using commute time clustering. Computer Vision - ECCV 2006, 9th European Conference on Computer Vision, Graz, AustriaMay 7-13, 2006, pp. 1-16.
[12]
Kennelly, A.E. Equivalence of triangles and stars in conducting networks. Electr. World Engineer, 1899, 34, 413-414.
[13]
van Lier, M.; Otten, R. Planarization by transformation. IEEE Trans. Circuit Theory, 1973, 20(2), 169-171.
[http://dx.doi.org/10.1109/TCT.1973.1083633]
[14]
Sardar, M.S.; Liu, J.B.; Siddique, I.; Jaradat, M.M.M. A novel and efficient method for computing the resistance distance. IEEE Access, 2021, 9, 107104-107110.
[http://dx.doi.org/10.1109/ACCESS.2021.3099570]
[15]
Klein, D.J. Graph geometry, graph metrics and Wiener, MATCH COmmun. Math. Comput. Chem., 1997, 25, 7-27.
[16]
Chen, H.; Zhang, F. Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math., 2007, 155(5), 654-661.
[http://dx.doi.org/10.1016/j.dam.2006.09.008]
[17]
Shapiro, L.W. An electrical lemma. Math. Mag., 1987, 60(1), 36-38.
[http://dx.doi.org/10.1080/0025570X.1987.11977274]
[18]
Fotuler, P.W. Resistance distances in fullerene graphs. Croat. Chem. Acta, 2002, 75(2), 401-408.
[19]
Zhang, H.; Yang, Y. Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem., 2007, 107(2), 330-339.
[http://dx.doi.org/10.1002/qua.21068]
[20]
Bapat, R.B.; Gupta, S. Resistance distance in wheels and fans. Indian J. Pure Appl. Math., 2010, 41(1), 1-13.
[http://dx.doi.org/10.1007/s13226-010-0004-2]
[21]
Jafarizadeh, S.; Sufiani, R.; Jafarizadeh, M.A. Evaluation of effective resistances in pseudo-distanceregular resistor networks. J. Stat. Phys., 2010, 139(1), 177-199.
[http://dx.doi.org/10.1007/s10955-009-9909-8]
[22]
Tu, J.; Du, J.; Su, G. The unicyclic graphs with maximum degree resistance distance. Appl. Math. Comput., 2015, 268, 859-864.
[http://dx.doi.org/10.1016/j.amc.2015.06.063]
[23]
Gervacio, S.V. Resistance distance in complete n -partite graphs. Discrete Appl. Math., 2016, 203, 53-61.
[http://dx.doi.org/10.1016/j.dam.2015.09.017]
[24]
Yang, Y.; Klein, D.J. Resistance distance-based graph invariants of subdivisions and triangulations of graphs. Discrete Appl. Math., 2015, 181, 260-274.
[http://dx.doi.org/10.1016/j.dam.2014.08.039]
[25]
Liu, J.B.; Pan, X.F. Minimizing Kirchhoff index among graphs with a given vertex bipartiteness. Appl. Math. Comput., 2016, 291, 84-88.
[http://dx.doi.org/10.1016/j.amc.2016.06.017]
[26]
Fei, J.; Tu, J. Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index. Appl. Math. Comput., 2018, 330, 118-124.
[http://dx.doi.org/10.1016/j.amc.2018.02.025]
[27]
Jiang, Z.; Yan, W. Some two-point resistances of the Sierpinski gasket network. J. Stat. Phys., 2018, 172(3), 824-832.
[http://dx.doi.org/10.1007/s10955-018-2067-0]
[28]
Yang, Y.; Cao, Y.; Yao, H.; Li, J. Solution to a conjecture on a Nordhaus-Gaddum type result for the Kirchhoff index. Appl. Math. Comput., 2018, 332, 241-249.
[http://dx.doi.org/10.1016/j.amc.2018.03.070]
[29]
Yang, Y.; Rosenfeld, V.R. Some spectral invariants of the neighborhood corona of graphs. Discrete Appl. Math., 2018, 247, 300-308.
[http://dx.doi.org/10.1016/j.dam.2018.03.052]
[30]
Liu, Q. The resistance distance and Kirchhoff index on quadrilateral graph and pentagonal graph. IEEE Access, 2019, 7, 36617-36622.
[http://dx.doi.org/10.1109/ACCESS.2019.2902012]
[31]
Huang, G.; He, W.; Tan, Y. Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness. Appl. Math. Comput., 2019, 341, 348-357.
[http://dx.doi.org/10.1016/j.amc.2018.09.002]
[32]
Zhu, Z.; Liu, J.B. The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes. Discrete Appl. Math., 2019, 254, 256-267.
[http://dx.doi.org/10.1016/j.dam.2018.06.026]
[33]
Sardar, M.S.; Hua, H.; Pan, X.F.; Raza, H. On the resistance diameter of hypercubes. Physica A, 2020, 540, 123076.
[http://dx.doi.org/10.1016/j.physa.2019.123076]
[34]
Fan, J.; Zhu, J.; Tian, L.; Wang, Q. Resistance distance in potting networks. Physica A, 2020, 540, 123053.
[http://dx.doi.org/10.1016/j.physa.2019.123053]
[35]
Sardar, M.S.; Pan, X.F.; Xu, S.A. Computation of resistance distance and Kirchhoff index of the two classes of silicate networks. Appl. Math. Comput., 2020, 381, 125283.
[http://dx.doi.org/10.1016/j.amc.2020.125283]
[36]
Huang, J. Resistance distance and Kirchhoff index in dihedral Cayley graphs. Discrete Appl. Math., 2022, 307, 125-134.
[http://dx.doi.org/10.1016/j.dam.2021.10.009]
[37]
Sun, W.; Yang, Y. Extremal pentagonal chains with respect to the Kirchhoff index. Appl. Math. Comput., 2023, 437, 127534.
[http://dx.doi.org/10.1016/j.amc.2022.127534]
[38]
Zaman, S.; Kamboh, A.; Ullah, A.; Liu, J.B. Development of some novel resistance distance based topological indices for certain special types of graph networks. Phys. Scr., 2023, 98(12), 125250.
[http://dx.doi.org/10.1088/1402-4896/ad0d95]
[39]
Doyle, P.G.; Snell, J.L. Random walks and electrical networks. arXiv:math/0001057, 1984.
[http://dx.doi.org/10.5948/UPO9781614440222]
[40]
Li, S.; Tian, T. Resistance between two nodes of a ring clique network. Circuits Syst. Signal Process., 2022, 41(3), 1287-1298.
[http://dx.doi.org/10.1007/s00034-021-01859-7]
[41]
Sajjad, W.; Sardar, M.S.; Pan, X.F. Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron. Appl. Math. Comput., 2024, 461, 128313.
[http://dx.doi.org/10.1016/j.amc.2023.128313]
[42]
Sardar, M.S.; Pan, X.F.; Xu, S.J. Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs. Appl. Math. Comput., 2024, 473, 128670.
[http://dx.doi.org/10.1016/j.amc.2024.128670]
[43]
Hayat, S.; Khan, A.; Ali, K.; Liu, J.B. Structure-property modeling for thermodynamic properties of benzenoid hydrocarbons by tempera-ture-based topological indices. Ain Shams Eng. J., 2024, 15(3), 102586.
[http://dx.doi.org/10.1016/j.asej.2023.102586]
[44]
Liu, H.; You, L. Extremal Kirchhoff index in polycyclic chains. Discrete Appl. Math., 2024, 348, 292-300.
[http://dx.doi.org/10.1016/j.dam.2024.01.046]
[45]
Hayat, S.; Suhaili, N.; Jamil, H. Statistical significance of valency-based topological descriptors for correlating thermodynamic properties of benzenoid hydrocarbons with applications. Comput. Theor. Chem., 2023, 1227, 114259.
[http://dx.doi.org/10.1016/j.comptc.2023.114259]
[46]
Malik, M.Y.H.; Hayat, S.; Khan, S.; Binyamin, M.A. Predictive potential of spectrum‐based topological descriptors for measuring the π ‐electronic energy of benzenoid hydrocarbons with applications to boron triangular and boron α ‐nanotubes. Math. Methods Appl. Sci., 2021, mma.7161.
[http://dx.doi.org/10.1002/mma.7161]
[47]
Liu, J.B.; Wang, K. The multiplicative degree-Kirchhoff index and complexity of a class of linear networks. AIMS Math., 2024, 9(3), 7111-7130.
[http://dx.doi.org/10.3934/math.2024347]
[48]
Hayat, S.; Mahadi, H.; Alanazi, S.J.F.; Wang, S. Predictive potential of eigenvalues-based graphical indices for determining thermodynamic properties of polycyclic aromatic hydrocarbons with applications to polyacenes. Comput. Mater. Sci., 2024, 238, 112944.
[http://dx.doi.org/10.1016/j.commatsci.2024.112944]
[49]
Shi, Z.Y.; Liu, J.B. Topological indices of linear crossed phenylenes with respect to their Laplacian and normalized Laplacian spectrum. AIMS Math., 2024, 9(3), 5431-5450.
[http://dx.doi.org/10.3934/math.2024262]
[50]
Sajjad, W.; Pan, X.F. tul Ain, Q. Computation of resistance distance with Kirchhoff index of body centered cubic structure. J. Math. Chem., 2024, 62(4), 902-921.
[http://dx.doi.org/10.1007/s10910-023-01573-6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy