Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Activation of Src Kinase Mediates the Disruption of Adherens Junction in the Blood-labyrinth Barrier after Acoustic Trauma

Author(s): Jianbin Sun, Tong Zhang, Chaoying Tang, Shuhang Fan, Qin Wang, Da Liu, Na Sai, Qi Ji, Weiwei Guo* and Weiju Han*

Volume 21, Issue 3, 2024

Published on: 24 June, 2024

Page: [274 - 285] Pages: 12

DOI: 10.2174/0115672026320884240620070951

Price: $65

Abstract

Background: Adherens junction in the blood-labyrinth barrier is largely unexplored because it is traditionally thought to be less important than the tight junction. Since increasing evidence indicates that it actually functions upstream of tight junction adherens junction may potentially be a better target for ameliorating the leakage of the blood-labyrinth barrier under pathological conditions such as acoustic trauma.

Aims: This study was conducted to investigate the pathogenesis of the disruption of adherens junction after acoustic trauma and explore potential therapeutic targets.

Methods: Critical targets that regulated the disruption of adherens junction were investigated by techniques such as immunofluorescence and Western blotting in C57BL/6J mice.

Results: Upregulation of Vascular Endothelial Growth Factor (VEGF) and downregulation of Pigment Epithelium-derived Factor (PEDF) coactivated VEGF-PEDF/VEGF receptor 2 (VEGFR2) signaling pathway in the stria vascularis after noise exposure. Downstream effector Src kinase was then activated to degrade VE-cadherin and dissociate adherens junction, which led to the leakage of the blood-labyrinth barrier. By inhibiting VEGFR2 or Src kinase, VE-cadherin degradation and blood-labyrinth barrier leakage could be attenuated, but Src kinase represented a better target to ameliorate blood-labyrinth barrier leakage as inhibiting it would not interfere with vascular endothelium repair, neurotrophy and pericytes proliferation mediated by upstream VEGFR2.

Conclusion: Src kinase may represent a promising target to relieve noise-induced disruption of adherens junction and hyperpermeability of the blood-labyrinth barrier.

Keywords: Stria vascularis, blood-labyrinth barrier, hyperpermeability, VE-cadherin, adherens junction, noise exposure.

[1]
Hibino H, Nin F, Tsuzuki C, Kurachi Y. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch 2010; 459(4): 521-33.
[http://dx.doi.org/10.1007/s00424-009-0754-z] [PMID: 20012478]
[2]
Cosentino A, Agafonova A, Modafferi S, et al. Blood–labyrinth barrier in health and diseases: Effect of hormetic nutrients. Antioxid Redox Signal 2024; 40(7-9): 542-63.
[http://dx.doi.org/10.1089/ars.2023.0251] [PMID: 37565276]
[3]
Ke Y, Ma X, Jing Y, Diao T, Yu L. The breakdown of blood-labyrinth barrier makes it easier for drugs to enter the inner ear. Laryngoscope 2024; 134(5): 2377-86.
[http://dx.doi.org/10.1002/lary.31194] [PMID: 37987231]
[4]
Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338: 52-63.
[http://dx.doi.org/10.1016/j.heares.2016.01.010] [PMID: 26802581]
[5]
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of “leakage” at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17: 1368058.
[http://dx.doi.org/10.3389/fnmol.2024.1368058] [PMID: 38486963]
[6]
Wu J, Han W, Chen X, et al. Matrix metalloproteinase-2 and −9 contribute to functional integrity and noise-induced damage to the blood-labyrinth-barrier. Mol Med Rep 2017; 16(2): 1731-8.
[http://dx.doi.org/10.3892/mmr.2017.6784] [PMID: 28627704]
[7]
Wu YX, Zhu GX, Liu XQ, et al. Noise alters guinea pig’s blood-labyrinth barrier ultrastructure and permeability along with a decrease of cochlear Claudin-5 and Occludin. BMC Neurosci 2014; 15(1): 136.
[http://dx.doi.org/10.1186/s12868-014-0136-0] [PMID: 25539640]
[8]
Bahloul A, Simmler MC, Michel V, et al. Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells. EMBO Mol Med 2009; 1(2): 125-38.
[http://dx.doi.org/10.1002/emmm.200900015] [PMID: 20049712]
[9]
Sai N, Zhang T, Wu J, Han WJ. Noise-induced blood-labyrinth-barrier trauma of guinea pig and the protective effect of matrix metalloproteinase inhibitors. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2020; 55(4): 363-70.
[PMID: 32306634]
[10]
Liu X, Zheng G, Wu Y, et al. Lead exposure results in hearing loss and disruption of the cochlear blood–labyrinth barrier and the protective role of iron supplement. Neurotoxicology 2013; 39: 173-81.
[http://dx.doi.org/10.1016/j.neuro.2013.10.002] [PMID: 24144481]
[11]
Gu J, Tong L, Lin X, et al. The disruption and hyperpermeability of blood-labyrinth barrier mediates cisplatin-induced ototoxicity. Toxicol Lett 2022; 354: 56-64.
[http://dx.doi.org/10.1016/j.toxlet.2021.10.015] [PMID: 34757176]
[12]
Garcia MA, Nelson WJ, Chavez N. Cell–cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol 2018; 10(4): a029181.
[http://dx.doi.org/10.1101/cshperspect.a029181] [PMID: 28600395]
[13]
Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 2015; 209(4): 493-506.
[http://dx.doi.org/10.1083/jcb.201412147] [PMID: 26008742]
[14]
Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res 2017; 358(1): 39-44.
[http://dx.doi.org/10.1016/j.yexcr.2017.03.061] [PMID: 28372972]
[15]
Li W, Chen Z, Chin I, Chen Z, Dai H. The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions. Curr Neuropharmacol 2018; 16(9): 1375-84.
[http://dx.doi.org/10.2174/1570159X16666180222164809] [PMID: 29473514]
[16]
Ninchoji T, Love DT, Smith RO, et al. eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin. eLife 2021; 10: e64944.
[http://dx.doi.org/10.7554/eLife.64944] [PMID: 33908348]
[17]
Shen D, Ye X, Li J, et al. Metformin preserves VE–Cadherin in choroid plexus and attenuates hydrocephalus via VEGF/VEGFR2/p-Src in an intraventricular hemorrhage rat model. Int J Mol Sci 2022; 23(15): 8552.
[http://dx.doi.org/10.3390/ijms23158552] [PMID: 35955686]
[18]
Bielefeld EC. Protection from noise-induced hearing loss with Src inhibitors. Drug Discov Today 2015; 20(6): 760-5.
[http://dx.doi.org/10.1016/j.drudis.2015.01.010] [PMID: 25637168]
[19]
Bielefeld EC, Hangauer D, Henderson D. Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors. Neurosci Res 2011; 71(4): 348-54.
[http://dx.doi.org/10.1016/j.neures.2011.07.1836] [PMID: 21840347]
[20]
Bielefeld EC, Tanaka C, Chen G, et al. An Src-protein tyrosine kinase inhibitor to reduce cisplatin ototoxicity while preserving its antitumor effect. Anticancer Drugs 2013; 24(1): 43-51.
[http://dx.doi.org/10.1097/CAD.0b013e32835739fd] [PMID: 22828384]
[21]
Harris KC, Hu B, Hangauer D, Henderson D. Prevention of noise-induced hearing loss with Src-PTK inhibitors. Hear Res 2005; 208(1-2): 14-25.
[http://dx.doi.org/10.1016/j.heares.2005.04.009] [PMID: 15950415]
[22]
Fetoni AR, Bielefeld EC, Paludetti G, Nicotera T, Henderson D. A putative role of p53 pathway against impulse noise induced damage as demonstrated by protection with pifithrin-alpha and a Src inhibitor. Neurosci Res 2014; 81-82: 30-7.
[http://dx.doi.org/10.1016/j.neures.2014.01.006] [PMID: 24472721]
[23]
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019; 176(6): 1248-64.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[24]
Zhou W, Liu K, Zeng L, et al. Targeting VEGF-A/VEGFR2 Y949 signaling-mediated vascular permeability alleviates hypoxic pulmonary hypertension. Circulation 2022; 146(24): 1855-81.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.122.061900] [PMID: 36384284]
[25]
Zhang SX, Wang JJ, Gao G, Parke K, Ma J. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF–VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 2006; 37(1): 1-12.
[http://dx.doi.org/10.1677/jme.1.02008] [PMID: 16901919]
[26]
Zhang M, Tombran-Tink J, Yang S, Zhang X, Li X, Barnstable CJ. PEDF is an endogenous inhibitor of VEGF-R2 angiogenesis signaling in endothelial cells. Exp Eye Res 2021; 213: 108828.
[http://dx.doi.org/10.1016/j.exer.2021.108828] [PMID: 34742690]
[27]
Picciotti PM, Fetoni AR, Paludetti G, et al. Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss. Hear Res 2006; 214(1-2): 76-83.
[http://dx.doi.org/10.1016/j.heares.2006.02.004] [PMID: 16603326]
[28]
Zhang F, Dai M, Neng L, et al. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma-a salient feature of strial barrier associated hearing loss. FASEB J 2013; 27(9): 3730-40.
[http://dx.doi.org/10.1096/fj.13-232892] [PMID: 23729595]
[29]
Yan Y, Ma L, Zhou X, et al. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int 2016; 89(1): 68-81.
[http://dx.doi.org/10.1038/ki.2015.293] [PMID: 26444028]
[30]
Huang TH, Sun CK, Chen YL, et al. Shock wave therapy enhances angiogenesis through VEGFR2 activation and recycling. Mol Med 2016; 22(1): 850-62.
[http://dx.doi.org/10.2119/molmed.2016.00108] [PMID: 27925633]
[31]
Chetty S, Engquist EN, Mehanna E, Lui KO, Tsankov AM, Melton DA. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation. J Cell Biol 2015; 210(7): 1257-68.
[http://dx.doi.org/10.1083/jcb.201502035] [PMID: 26416968]
[32]
Rutledge CA, Ng FS, Sulkin MS, et al. c-Src kinase inhibition reduces arrhythmia inducibility and connexin43 dysregulation after myocardial infarction. J Am Coll Cardiol 2014; 63(9): 928-34.
[http://dx.doi.org/10.1016/j.jacc.2013.10.081] [PMID: 24361364]
[33]
Lipovsek M, Elgoyhen AB. The evolutionary tuning of hearing. Trends Neurosci 2023; 46(2): 110-23.
[http://dx.doi.org/10.1016/j.tins.2022.12.002] [PMID: 36621369]
[34]
Juhn SK, Rybak LP. Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 1981; 91(1-6): 529-34.
[http://dx.doi.org/10.3109/00016488109138538] [PMID: 6791457]
[35]
Schmutzhard J, Kositz CH, Glueckert R, Schmutzhard E, Schrott-Fischer A, Lackner P. Apoptosis of the fibrocytes type 1 in the spiral ligament and blood labyrinth barrier disturbance cause hearing impairment in murine cerebral malaria. Malar J 2012; 11(1): 30.
[http://dx.doi.org/10.1186/1475-2875-11-30] [PMID: 22297132]
[36]
Neng L, Zhang J, Yang J, et al. Structural changes in thestrial blood–labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 2015; 361(3): 685-96.
[http://dx.doi.org/10.1007/s00441-015-2147-2] [PMID: 25740201]
[37]
Zhang J, Chen S, Cai J, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage like melanocytes from the young mouse vestibular system. Hear Res 2017; 345: 10-22.
[http://dx.doi.org/10.1016/j.heares.2016.12.012] [PMID: 28087417]
[38]
Shi X. Research advances in cochlear pericytes and hearing loss. Hear Res 2023; 438: 108877.
[http://dx.doi.org/10.1016/j.heares.2023.108877] [PMID: 37651921]
[39]
Morini MF, Giampietro C, Corada M, et al. VE-cadherin–mediated epigenetic regulation of endothelial gene expression. Circ Res 2018; 122(2): 231-45.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312392] [PMID: 29233846]
[40]
Sekulic M, Puche R, Bodmer D, Petkovic V. Human blood-labyrinth barrier model to study the effects of cytokines and inflammation. Front Mol Neurosci 2023; 16: 1243370.
[http://dx.doi.org/10.3389/fnmol.2023.1243370] [PMID: 37808472]
[41]
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Dev Cell 2009; 16(2): 209-21.
[http://dx.doi.org/10.1016/j.devcel.2009.01.004] [PMID: 19217423]
[42]
Vestweber D, Winderlich M, Cagna G, Nottebaum AF. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 2009; 19(1): 8-15.
[http://dx.doi.org/10.1016/j.tcb.2008.10.001] [PMID: 19010680]
[43]
Cai J, Wu L, Qi X, et al. PEDF regulates vascular permeability by a γ-secretase-mediated pathway. PLoS One 2011; 6(6): e21164.
[http://dx.doi.org/10.1371/journal.pone.0021164] [PMID: 21695048]
[44]
Kaur C, Ling E. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 2008; 5(1): 71-81.
[http://dx.doi.org/10.2174/156720208783565645] [PMID: 18289024]
[45]
Shi X, Doycheva DM, Xu L, Tang J, Yan M, Zhang JH. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiol Dis 2016; 95: 111-21.
[http://dx.doi.org/10.1016/j.nbd.2016.07.016] [PMID: 27425892]
[46]
Yang D, Zhou H, Zhang J, Liu L. Increased endothelial progenitor cell circulation and VEGF production in a rat model of noise-induced hearing loss. Acta Otolaryngol 2015; 135(6): 622-8.
[http://dx.doi.org/10.3109/00016489.2014.1003092] [PMID: 25720428]
[47]
Yamashita T, Abe K. Mechanisms of endogenous endothelial repair in stroke. Curr Pharm Des 2012; 18(25): 3649-52.
[http://dx.doi.org/10.2174/138161212802002832] [PMID: 22574978]
[48]
Monge Naldi A, Gassmann M, Bodmer D. Erythropoietin but not VEGF has a protective effect on auditory hair cells in the inner ear. Cell Mol Life Sci 2009; 66(22): 3595-9.
[http://dx.doi.org/10.1007/s00018-009-0144-x] [PMID: 19763398]
[49]
Zhang J, Hou Z, Wang X, et al. VEGFA165 gene therapy ameliorates blood-labyrinth barrier breakdown and hearing loss. JCI Insight 2021; 6(8): e143285.
[http://dx.doi.org/10.1172/jci.insight.143285] [PMID: 33690221]
[50]
Ueda S, Yamagishi SI, Okuda S. Anti-vasopermeability effects of PEDF in retinal-renal disorders. Curr Mol Med 2010; 10(3): 279-83.
[http://dx.doi.org/10.2174/156652410791065291] [PMID: 20236056]
[51]
Hui HL, Jiang B, Zhou YY, et al. PEDF inhibits VEGF-induced vascular leakage through binding to VEGFR2 in acute myocardial infarction. J Biomol Struct Dyn 2024; 12(2): 1-13.
[http://dx.doi.org/10.1080/07391102.2024.2314260] [PMID: 38345053]
[52]
Zhang J, Fan W, Neng L, Chen B, Zuo B, Lu W. Long non-coding RNA Rian promotes the expression of tight junction proteins in endothelial cells by regulating perivascular-resident macrophage like melanocytes and PEDF secretion. Hum Cell 2021; 34(4): 1093-102.
[http://dx.doi.org/10.1007/s13577-021-00521-3] [PMID: 33768511]
[53]
Yu Q, Liu S, Guo R, et al. Complete restoration of hearing loss and cochlear synaptopathy via minimally invasive, single-dose, and controllable middle ear delivery of brain-derived neurotrophic Factor–Poly( DL -lactic acid- co -glycolic acid)-loaded Hydrogel. ACS Nano 2024; 18(8): 6298-313.
[http://dx.doi.org/10.1021/acsnano.3c11049] [PMID: 38345574]
[54]
Ingersoll MA, Lutze RD, Kelmann RG, et al. KSR1 knockout mouse model demonstrates MAPK pathway’s key role in cisplatin- and noise-induced hearing loss. J Neurosci 2024; 44(18): e2174232024.
[http://dx.doi.org/10.1523/JNEUROSCI.2174-23.2024] [PMID: 38548338]
[55]
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434: 108783.
[http://dx.doi.org/10.1016/j.heares.2023.108783] [PMID: 37167889]
[56]
Feng B, Dong T, Song X, et al. Personalized porous gelatin methacryloyl sustained-release nicotinamide protects against noise-induced hearing loss. Adv Sci (Weinh) 2024; 11(12): 2305682.
[http://dx.doi.org/10.1002/advs.202305682] [PMID: 38225752]
[57]
Chen MB, Li MH, Wu LY, et al. Oridonin employs interleukin 1 receptor type 2 to treat noise-induced hearing loss by blocking inner ear inflammation. Biochem Pharmacol 2023; 210: 115457.
[http://dx.doi.org/10.1016/j.bcp.2023.115457] [PMID: 36806583]
[58]
Lye J, Delaney DS, Leith FK, et al. Recent therapeutic progress and future perspectives for the treatment of hearing loss. Biomedicines 2023; 11(12): 3347.
[http://dx.doi.org/10.3390/biomedicines11123347] [PMID: 38137568]
[59]
Saidia AR, François F, Casas F, et al. Oxidative stress plays an important role in glutamatergic excitotoxicity-induced cochlear synaptopathy: Implication for therapeutic molecules screening. Antioxidants 2024; 13(2): 149.
[http://dx.doi.org/10.3390/antiox13020149] [PMID: 38397748]
[60]
Xu K, Xu B, Gu J, Wang X, Yu D, Chen Y. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss. Theranostics 2023; 13(11): 3524-49.
[http://dx.doi.org/10.7150/thno.83383] [PMID: 37441605]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy