Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

A Comprehensive Review on Transformative Role of Polymer in Advancing Pharmaceutical Drug Delivery System

Author(s): Sandesh Bole*, Sachin Kothawade, Vaibhav Wagh and Vishal Pande

Volume 7, Issue 1, 2024

Published on: 21 June, 2024

Page: [2 - 17] Pages: 16

DOI: 10.2174/0124522716311647240613050008

conference banner
Abstract

The present analysis study emphasizes the polymers that are used to deliver therapeutic agents through pharmaceutical drugs. Among such dosage forms are tablets, patches, cassettes, films, semi-solids, and powders. The use of biodegradable polymers is becoming more and more common. They can degrade into non-toxic monomers, and, more significantly, they can be used to make controlled-release devices that release medications at a steady rate. Natural polymers may facilitate the distribution of medications at predetermined rates. Their readily available nature and advantageous physico-chemical characteristics make them a good candidate for use in drug delivery systems. Due to their well-established biocompatibility and biodegradability, biodegradable polymers possess extensive application within the biomedical field. In the biomedical sector, polymers are typically utilized as implants because of their ability to provide long-term capabilities. These advancements help to lessen adverse effects and other side effects while simultaneously increasing the effectiveness of healthcare. The suffering that the sick endure. Polymers are mainly used to extend the release period of pharmaceuticals and shield them against physiological circumstances. The polymer releases medication to promote swelling, breakdown, and diffusion. The review also presents mucoadhesive functions and characteristics. Systems for delivering medications already make use of plant-based polymers.

Keywords: Polymers, pharmaceutical drug delivery, biodegradable polymers, controlled release, natural polymers, mucoadhesive.

Graphical Abstract
[1]
Joseph T, Kar Mahapatra D, Esmaeili A, et al. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023; 13(3): 574.
[http://dx.doi.org/10.3390/nano13030574] [PMID: 36770535]
[2]
Machtakova M, Thrien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2022; 51(1): 128-52.
[http://dx.doi.org/10.1039/D1CS00686J] [PMID: 34762084]
[3]
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. React Funct Polym 2020; 148: 104501.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104501]
[4]
Askarizadeh M, Esfandiari N, Honarvar B, Sajadian SA, Azdarpour A. Kinetic modeling to explain the release of medicine from drug delivery systems. ChemBioEng Rev 2023; 10(6): 1006-49.
[http://dx.doi.org/10.1002/cben.202300027]
[5]
Adepu S, Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021; 26(19): 5905.
[http://dx.doi.org/10.3390/molecules26195905] [PMID: 34641447]
[6]
Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. A critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers 2021; 13(16): 2623.
[http://dx.doi.org/10.3390/polym13162623] [PMID: 34451161]
[7]
Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020; 10(10): 1970.
[http://dx.doi.org/10.3390/nano10101970] [PMID: 33027891]
[8]
Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release 2022; 341: 132-46.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.025] [PMID: 34813879]
[9]
Braatz D, Cherri M, Tully M, et al. Chemical approaches to synthetic drug delivery systems for systemic applications. Angew Chem Int Ed 2022; 61(49): e202203942.
[http://dx.doi.org/10.1002/anie.202203942] [PMID: 35575255]
[11]
Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58(15): 1655-70.
[http://dx.doi.org/10.1016/j.addr.2006.09.020] [PMID: 17125884]
[12]
Wu J, Zhang Z, Gu J, et al. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J Control Release 2020; 320: 337-46.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.020] [PMID: 31931048]
[13]
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022; 8(1): e08674.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08674] [PMID: 35028457]
[14]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[15]
Yang R, Mann AKP, Van Duong T, et al. Drug release and nanodroplet formation from amorphous solid dispersions: Insight into the roles of drug physicochemical properties and polymer selection. Mol Pharm 2021; 18(5): 2066-81.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00055] [PMID: 33784104]
[16]
Song W, Zhang Y, Varyambath A, Kim I. Guided assembly of well-defined hierarchical nanoporous polymers by lewis acid base interactions. ACS Nano 2019; 13(10): 11753-69.
[http://dx.doi.org/10.1021/acsnano.9b05727] [PMID: 31560521]
[17]
Yolsal U, Horton TAR, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020; 111: 101313.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101313]
[18]
Pallerlaand S, Prabhakar B. Review on polymers in drug delivery. Am J Pharmtech Res 2013; 3: 901-17.
[19]
Park K, Shalaby W, Paark H. Biodegradable hydrogels for drug delivery. Lancaster, PA: Technomic 1993.
[http://dx.doi.org/10.1201/9780429259098]
[20]
Raizada A. Polymers in drug delivery. Int J Pharma Res Devel 2010; 2(8): 9-20.
[21]
Weng J, Tong HHY, Chow SF. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics 2020; 12(8): 732.
[http://dx.doi.org/10.3390/pharmaceutics12080732] [PMID: 32759786]
[22]
Spiridonova TI, Tverdokhlebov SI, Anissimov YG. Investigation of the size distribution for diffusion-controlled drug release from drug delivery systems of various geometries. J Pharm Sci 2019; 108(8): 2690-7.
[http://dx.doi.org/10.1016/j.xphs.2019.03.036] [PMID: 30980858]
[23]
Yahya I, Atif R, Ahmed L, Eldeen TS, Omara A, Eltayeb M. Mathematical modeling of diffusion controlled drug release profiles from nanoparticles. Int J Res Sci Innov 2019; 6: 287-91.
[24]
Pandey SP, Shukla T, Dhote VK, Mishra DK, Maheshwari R, Tekade RK. Use of polymers in controlled release of active agents. In: Basic Fundamentals of Drug Delivery. Academic Press 2019.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00004-2]
[25]
Visan AI, Popescu-Pelin G, Socol G. Degradation behavior of polymers used as coating materials for drug delivery: A basic review. Polymers 2021; 13(8): 1272.
[http://dx.doi.org/10.3390/polym13081272] [PMID: 33919820]
[26]
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327: 316-49.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[27]
Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 2019; 40(10): 1800917.
[http://dx.doi.org/10.1002/marc.201800917] [PMID: 30835923]
[28]
Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. J Drug Deliv Sci Technol 2022; 70: 102987.
[http://dx.doi.org/10.1016/j.jddst.2021.102987]
[29]
Werzer O, Tumphart S, Keimel R, Christian P, Coclite AM. Drug release from thin films encapsulated by a temperature-responsive hydrogel. Soft Matter 2019; 15(8): 1853-9.
[http://dx.doi.org/10.1039/C8SM02529K] [PMID: 30698598]
[30]
Kou Z, Dou D, Mo H, et al. Preparation and application of a polymer with pH/temperature-responsive targeting. Int J Biol Macromol 2020; 165(Pt A): 995-1001.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.248] [PMID: 33022350]
[31]
Chandel P. Polymers – A boon to controlled drug delivery system. Int Res J Pharm 2013; 4(4): 28-34.
[32]
Sanghi DK, Borkar DS, Rakesh T. The use of novel polymers in a drug delivery & its pharmaceutical application. Asian J Biochemical Pharmaceut Res 2013; 2(3): 169-78.
[33]
Rajpurohit H, Sharma S, Sharma P, Bhandari A. Polymers for colon targeted drug delivery. Indian J Pharm Sci 2010; 72(6): 689-96.
[http://dx.doi.org/10.4103/0250-474X.84576] [PMID: 21969739]
[34]
Wilson CG, Mukherji G, Sha HK. Modified-release drug delivery technology boca raton. CRC Press 2008.
[35]
Advantages and disadvantages of polymers. Available from: https://aspiringyouths.com/advantages-disadvantages/polymers/ (accessed on 28-5-2024)
[36]
Haque RM. Textbook on Novel Drug Delivery System. 2022; p. 242.
[37]
Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019; 37(1): 109-31.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.008] [PMID: 30472307]
[38]
Kuno N, Fujii S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging 2010; 27(2): 117-34.
[http://dx.doi.org/10.2165/11530970-000000000-00000] [PMID: 20104938]
[39]
Paolini MS, Fenton OS, Bhattacharya C, Andresen JL. Polymers for extended-release administration. Biomed Microdevi 2019; 21(2): 45.
[http://dx.doi.org/10.1007/s10544-019-0386-9]
[40]
Haghjou N, Soheilian M. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res 2011; 6: 317-29.
[PMID: 22454753]
[41]
Flory PJ. Fundamental principles of condensation polymerization. Chem Rev 1946; 39(1): 137-97.
[http://dx.doi.org/10.1021/cr60122a003] [PMID: 21000141]
[42]
Garca-Estrada P, Garca-Bon MA, Lpez-Naranjo EJ, Basalda-Prez DN, Santos A. Polymeric implants for the treatment of intraocular eye diseases: Trends in biodegradable and non-biodegradable materials. Pharmaceutics 2021; 13(5): 701.
[http://dx.doi.org/10.3390/pharmaceutics13050701]
[43]
Sovadinova I, Palermo EF, Urban M, Mpiga P, Caputo GA, Kuroda K. Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers 2011; 3(3): 1512-32.
[http://dx.doi.org/10.3390/polym3031512]
[44]
Ali U, Karim KJBA, Buang NA. Review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 2015; 55(4): 678-705.
[http://dx.doi.org/10.1080/15583724.2015.1031377]
[45]
Kiddee W, Trope GE, Sheng L, Beltran-Agullo L, Smith M, Strungaru MH, et al. Intraocular pressure monitoring post intravitreal steroids: A systematic review. Surv Ophthalmol 2013; 58(4): 291-310.
[http://dx.doi.org/10.1016/j.survophthal.2012.08.003]
[46]
Ubani-Ukoma U, Gibson D, Schultz G, Silva BO, Chauhan A. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int J Pharm 2019; 565: 499-508.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.031] [PMID: 31085257]
[47]
Pereira-da-Mota AF, Vivero-Lopez M, Topete A, Serro AP, Concheiro A, Alvarez-Lorenzo C. Atorvastatin-eluting contact lenses: Effects of molecular imprinting and sterilization on drug loading and release. Pharmaceutics 2021; 13(5): 606.
[http://dx.doi.org/10.3390/pharmaceutics13050606] [PMID: 33922123]
[48]
Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 2012; 33(3): 979-88.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.010] [PMID: 22048009]
[49]
Wang J, Williamson GS, Lancina MG, Yang H. Mildly cross-linked dendrimer hydrogel prepared via aza-Michael addition reaction for topical brimonidine delivery. J Biomed Nanotechnol 2017; 13(9): 1089-96.
[http://dx.doi.org/10.1166/jbn.2017.2436] [PMID: 29479294]
[50]
Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural Polymers. Nat Synth Biomed Polym 2014; 2014: 67-89.
[http://dx.doi.org/10.1016/B978-0-12-396983-5.00004-1]
[51]
Swindle-Reilly KE, Maxwell CJ, Soltisz AM, Choi A, Rich W. Injectable alginate hydrogels for traumatic optic neuropathy. Invest Ophthalmol Vis Sci 2021; 62: 2682.
[52]
Reilly MA, Swindle-Reilly KE. Hydrogels for intraocular lenses and other ophthalmic prostheses. In: Biomedical Hydrogels. 2011; pp. 118-48.
[http://dx.doi.org/10.1533/9780857091383.2.118]
[53]
Rathnam C, Chueng STD, Ying YLM, Lee KB, Kwan K. Developments in bio-inspired nanomaterials for therapeutic delivery to treat hearing loss. Front Cell Neurosci 2019; 13: 493.
[http://dx.doi.org/10.3389/fncel.2019.00493] [PMID: 31780898]
[54]
Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon 2017; 3(8): e00390.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00390] [PMID: 28920092]
[55]
Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics 2019; 11(12): 671.
[http://dx.doi.org/10.3390/pharmaceutics11120671] [PMID: 31835628]
[56]
Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017; 3(1): 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[57]
Gausterer JC, Saidov N, Ahmadi N, et al. Intratympanic application of poloxamer 407 hydrogels results in sustained N-acetylcysteine delivery to the inner ear. Eur J Pharm Biopharm 2020; 150: 143-55.
[http://dx.doi.org/10.1016/j.ejpb.2020.03.005] [PMID: 32173603]
[58]
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7: 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[59]
Pyykk I, Zou J, Zhang Y, Zhang W, Feng H, Kinnunen P. Nanoparticle based inner ear therapy. World J Otorhinolaryngol 2013; 3(4): 114-33.
[http://dx.doi.org/10.5319/wjo.v3.i4.114]
[60]
Zhang L, Xu Y, Cao W, Xie S, Wen L, Chen G. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: A guideline for inner ear drug delivery based on nanomedicine. Int J Nanomedicine 2018; 13: 479-92.
[http://dx.doi.org/10.2147/IJN.S154968] [PMID: 29403277]
[61]
Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: A new platform for nanomedicine. Int J Pharm 2009; 379(2): 201-9.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.026] [PMID: 19409468]
[62]
Li L, Chao T, Brant J, OMalley B Jr, Tsourkas A, Li D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev 2017; 108: 2-12.
[http://dx.doi.org/10.1016/j.addr.2016.01.004] [PMID: 26796230]
[63]
Scheper V, Wolf M, Scholl M, et al. Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules. Nanomedicine 2009; 4(6): 623-35.
[http://dx.doi.org/10.2217/nnm.09.41] [PMID: 19663591]
[64]
Mittal R, Pena SA, Zhu A, et al. Nanoparticle-based drug delivery in the inner ear: Current challenges, limitations and opportunities. Artif Cells Nanomed Biotechnol 2019; 47(1): 1312-20.
[http://dx.doi.org/10.1080/21691401.2019.1573182] [PMID: 30987439]
[65]
Okano T, Nakagawa T, Kita T, Endo T, Ito J. Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther 2006; 14(6): 866-71.
[http://dx.doi.org/10.1016/j.ymthe.2006.06.012] [PMID: 16956795]
[66]
Ge X, Jackson RL, Liu J, et al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol Head Neck Surg 2007; 137(4): 619-23.
[http://dx.doi.org/10.1016/j.otohns.2007.04.013] [PMID: 17903580]
[67]
Avasthi A, Caro C, Pozo-Torres E, Leal MP, Garca-Martn ML. Magnetic nanoparticles as MRI contrast agents. Top Curr Chem 2020; 378(3): 40.
[http://dx.doi.org/10.1007/s41061-020-00302-w] [PMID: 32382832]
[68]
Kopke RD, Wassel RA, Mondalek F, et al. Magnetic nanoparticles: Inner ear targeted molecule delivery and middle ear implant. Curr Drug Metab 2010; 11: 886-97.
[69]
Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties. Molecules 2021; 26(4): 1077.
[http://dx.doi.org/10.3390/molecules26041077] [PMID: 33670668]
[70]
Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv Mater 2020; 32(18): 1904106.
[http://dx.doi.org/10.1002/adma.201904106] [PMID: 31799752]
[71]
Sharma K. Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 2011; 3(2): 85-103.
[72]
Aikawa K, Mitsutake N, Uda H, et al. Drug release from pH-response polyvinylacetal diethylaminoacetate hydrogel, and application to nasal delivery. Int J Pharm 1998; 168(2): 181-8.
[http://dx.doi.org/10.1016/S0378-5173(98)00096-9]
[73]
Aikawa K, Matsumoto K, Uda H, Tanaka S, Shimamura H, Aramaki Y. Hydrogel formation of the pH response polymer polyvinyl acetal diethylamino acetate (AEA). Int J Pharm 1998; 167: 97-197.
[74]
Nakamura K, Maitani Y, Lowman AM, Takayama K, Peppas NA, Nagai T. Uptake and release of budesonide from mucoadhesive, pH-sensitive copolymers and their application to nasal delivery. J Control Release 1999; 61(3): 329-35.
[http://dx.doi.org/10.1016/S0168-3659(99)00150-9] [PMID: 10477805]
[75]
Jeong B, Kim SW, Bae YH. Thermosensitive sol gel reversible hydrogels. Adv Drug Deliv Rev 2002; 54(1): 37-51.
[http://dx.doi.org/10.1016/S0169-409X(01)00242-3] [PMID: 11755705]
[76]
Rydn L, Edman P. Effect of polymers and microspheres on the nasal absorption of insulin in rats. Int J Pharm 1992; 83(1-3): 1-10.
[http://dx.doi.org/10.1016/0378-5173(82)90002-3]
[77]
Gonzlez-Chomn C, Silva M, Concheiro A, Alvarez-Lorenzo C. Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis. Acta Biomater 2016; 41: 302-11.
[http://dx.doi.org/10.1016/j.actbio.2016.05.032] [PMID: 27221794]
[78]
Brannigan RP. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery. Colloids Surf B Biointer 155: 538-43.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.050] [PMID: 28494432]
[79]
Soni V, Pandey V, Tiwari R, Asati S, Tekade RK. Design and evaluation of ophthalmic delivery formulations.Basic Fundamentals of Drug Delivery. New York: Academic Press 2019.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00013-3]
[80]
Chen S, Huang X, Xue Y, et al. Nanotechnology-based mRNA vaccines. Nat Rev Meth Primers 2023; 3(1): 63.
[http://dx.doi.org/10.1038/s43586-023-00246-7]
[81]
Verma C, Ebenso EE, Quraishi MA. Transition metal nanoparticles in ionic liquids: Synthesis and stabilization. J Mol Liq 2019; 276: 826-49.
[http://dx.doi.org/10.1016/j.molliq.2018.12.063]
[82]
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 2020; 12(2): 102.
[http://dx.doi.org/10.3390/pharmaceutics12020102] [PMID: 32013049]
[83]
Gmez-Aguado I, Rodrguez-Castejn J, Vicente-Pascual M. Rodr;guez-Gascn A, Solins M, del Pozo-Rodrguez A. Nanomedicines to deliver mRNA: State of the art and future perspectives. Nanomaterials 2020; 10(2): 364.
[http://dx.doi.org/10.3390/nano10020364] [PMID: 32093140]
[84]
Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med 2023; 55(10): 2085-96.
[http://dx.doi.org/10.1038/s12276-023-01086-x] [PMID: 37779140]
[85]
Shi D, Beasock D, Fessler A, et al. To PEGylate or not to PEGylate: Immunological properties of nanomedicines most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180: 114079.
[http://dx.doi.org/10.1016/j.addr.2021.114079] [PMID: 34902516]
[86]
Tenchov R, Sasso JM, Zhou QA. PEGylated lipid nanoparticle formulations: Immunological safety and efficiency perspective. Bioconjug Chem 2023; 34(6): 941-60.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00174] [PMID: 37162501]
[87]
Nguyen DD, Lai JY. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem 2020; 11(44): 6988-7008.
[http://dx.doi.org/10.1039/D0PY00919A]
[88]
Prasannan A, Tsai HC, Chen YS, Hsiue GH. A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B Mater Biol Med 2014; 2(14): 1988-97.
[http://dx.doi.org/10.1039/c3tb21360a] [PMID: 32261635]
[89]
Prasannan A, Tsai HC, Hsiue G-H. Formulation and evaluation of epinephrine-loaded poly(acrylic acid-co-N-isopropylacrylamide) gel for sustained ophthalmic drug delivery. React Funct Polym 2018; 124: 40-7.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.01.001]
[90]
Mah F, Milner M, Yiu S, Donnenfeld E, Conway TM. PERSIST: Physician's Evaluation of Restasis(®) Satisfaction in Second Trial of topical cyclosporine ophthalmic emulsion 0.05% for dry eye: A retrospective review. Clin Ophthalmol 6: 1971-6.
[http://dx.doi.org/10.2147/OPTH.S30261]
[91]
Lancina MG, Yang H. Dendrimers for ocular drug delivery. Can J Chem 2017; 95(9): 897-902.
[http://dx.doi.org/10.1139/cjc-2017-0193] [PMID: 29147035]

© 2024 Bentham Science Publishers | Privacy Policy