Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Drug Delivery and Monitoring through Wearable Devices with Microneedles in the Field of the Health Care System

Author(s): K.C. Kumarswamy*, B.K. Madhu, N. Raghavendra Naveen, Prakash S. Goudanavar and K.N. Purushotham

Volume 16, Issue 3, 2024

Published on: 18 June, 2024

Page: [155 - 164] Pages: 10

DOI: 10.2174/0118764029311292240603050113

Price: $65

conference banner
Abstract

Microneedles represent a revolutionary advancement in drug delivery and diagnostics, offering a minimally invasive approach to accessing the intricate biological environment of the human body. These micron-sized needles, typically ranging from 25 to 1000 micrometers in length, penetrate the outermost layer of the skin, creating microchannels that facilitate the transdermal administration of therapeutics or the extraction of interstitial fluid for analysis. This innovative technology holds great promise for enhancing patient compliance, reducing side effects, and improving the overall efficiency of drug delivery. Integrating microneedles with wearable devices further amplifies their potential impact. Wearable devices provide a seamless interface for monitoring and controlling microneedle-based systems, fostering real-time data collection and personalized healthcare. Such devices can be designed to administer precise drug doses at predetermined intervals, adapting treatment regimens to individual patient needs.

Additionally, the combination of microneedles and wearable devices enables continuous monitoring of biomarkers through the extraction of interstitial fluid, offering a non-invasive method for disease diagnosis and management. The review also provides a detailed overview of the mechanisms, types, fabrication techniques, applications, and patents for integrating microneedles with wearable devices. This symbiotic relationship between microneedles and wearables opens new paths for patient-centric healthcare, with the potential to transform chronic disease management and streamline therapeutic interventions. As these technologies continue to evolve, their integration may pave the way for personalized, on-demand healthcare solutions, accompanying a new era of patient well-being and treatment efficacy.

Keywords: Wearable devices, non-invasive, integrating microneedles, chronic disease, therapeutic intervention, delivery patches.

Graphical Abstract
[1]
Bronaugh, R.L.; Maibach, H.I. Percutaneous Absorption: Drugs – Cosmetics-Mechanisms-Methodology; Marcel Dekker: New York, 1999.
[2]
Touitou, E. Drug delivery across the skin. Expert Opin. Biol. Ther., 2002, 2(7), 723-733.
[http://dx.doi.org/10.1517/14712598.2.7.723] [PMID: 12387671]
[3]
Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2004, 56(5), 603-618.
[http://dx.doi.org/10.1016/j.addr.2003.10.025] [PMID: 15019749]
[4]
Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev., 2004, 56(5), 675-711.
[http://dx.doi.org/10.1016/j.addr.2003.10.028] [PMID: 15019752]
[5]
Kalia, Y.N.; Naik, A.; Garrison, J.; Guy, R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev., 2004, 56(5), 619-658.
[6]
Denet, A.R.; Vanbever, R.; Préat, V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev., 2004, 56(5), 659-674.
[http://dx.doi.org/10.1016/j.addr.2003.10.027] [PMID: 15019751]
[7]
Doukas, A.G.; Kollias, N. Transdermal drug delivery with a pressure wave. Adv. Drug Deliv. Rev., 2004, 56(5), 559-579.
[http://dx.doi.org/10.1016/j.addr.2003.10.031] [PMID: 15019746]
[8]
Mitragotri, S.; Kost, J. Low-frequency sonophoresis. Adv. Drug Deliv. Rev., 2004, 56(5), 589-601.
[http://dx.doi.org/10.1016/j.addr.2003.10.024] [PMID: 15019748]
[9]
Champion, R.H.; Burton, J.L.; Burns, D.A.; Breathnach, S.M. Textbook of Dermatology; Blackwell Science: London, 1998.
[10]
Pahal, S.; Badnikar, K.; Ghate, V.; Bhutani, U.; Nayak, M.M.; Subramanyam, D.N.; Vemula, P.K. Microneedles for extended transdermal therapeutics: A route to advanced healthcare. Eur. J. Pharm. Biopharm., 2021, 159, 151-169.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.020] [PMID: 33388372]
[11]
Cárcamo-Martínez, Á.; Mallon, B.; Domínguez-Robles, J.; Vora, L.K.; Anjani, Q.K.; Donnelly, R.F. Hollow microneedles: A perspective in biomedical applications. Int. J. Pharm., 2021, 599, 120455.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120455] [PMID: 33676993]
[12]
Dalvi, M.; Kharat, P.; Thakor, P.; Bhavana, V.; Singh, S.B.; Mehra, N.K. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci., 2021, 284, 119877.
[http://dx.doi.org/10.1016/j.lfs.2021.119877] [PMID: 34384832]
[13]
Sharma, D. Microneedles: An approach in transdermal drug delivery: A Review. Pharmatutor, 2018, 6(1), 07.
[http://dx.doi.org/10.29161/PT.v6.i1.2018.7]
[14]
Akhtar, N. Microneedles: An innovative approach to transdermal delivery-a review. Int. J. Pharm. Pharm. Sci., 2014, 6(4), 18-25.
[15]
Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother., 2019, 109, 1249-1258.
[http://dx.doi.org/10.1016/j.biopha.2018.10.078] [PMID: 30551375]
[16]
Li, J.; Zeng, M.; Shan, H.; Tong, C. Microneedle patches as drug and vaccine delivery platform. Curr. Med. Chem., 2017, 24(22), 2413-2422.
[PMID: 28552053]
[17]
Ita, K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics, 2015, 7(3), 90-105.
[http://dx.doi.org/10.3390/pharmaceutics7030090] [PMID: 26131647]
[18]
Cheung, K.; Han, T.; Das, D.B. Effect of force of microneedle insertion on the permeability of insulin in skin. J. Diabetes Sci. Technol., 2014, 8(3), 444-452.
[http://dx.doi.org/10.1177/1932296813519720] [PMID: 24876604]
[19]
Sun, C.; Bu, N.; Hu, X. Recent trends in electronic skin for transdermal drug delivery. Intelligent Pharmacy, 2023, 1(4), 183-191.
[http://dx.doi.org/10.1016/j.ipha.2023.08.001]
[20]
Faraji Rad, Z.; Prewett, P.D.; Davies, G.J. An overview of microneedle applications, materials, and fabrication methods. Beilstein J. Nanotechnol., 2021, 12(1), 1034-1046.
[http://dx.doi.org/10.3762/bjnano.12.77] [PMID: 34621614]
[21]
Pérennès, F.; Marmiroli, B.; Matteucci, M.; Tormen, M.; Vaccari, L.; Fabrizio, E.D. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J. Micromech. Microeng., 2006, 16(3), 473-479.
[http://dx.doi.org/10.1088/0960-1317/16/3/001]
[22]
Yoon, Y.K.; Park, J.H.; Allen, M.G. Multidirectional UV lithography for complex 3-D MEMS structures. J. Microelectromech. Syst., 2006, 15(5), 1121-1130.
[http://dx.doi.org/10.1109/JMEMS.2006.879669]
[23]
Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.C.; Kearney, M.C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release, 2018, 285, 142-151.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.009] [PMID: 29990526]
[24]
Chen, X.; Villa, N.S.; Zhuang, Y.; Chen, L.; Wang, T.; Li, Z.; Kong, T. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater., 2020, 10(4), 1902769.
[http://dx.doi.org/10.1002/aenm.201902769]
[25]
Zhang, X.; Lu, M.; Cao, X.; Zhao, Y. Functional microneedles for wearable electronics. Smart Medicine, 2023, 2(1), e20220023.
[http://dx.doi.org/10.1002/SMMD.20220023]
[26]
Abbasiasl, T.; Mirlou, F.; Mirzajani, H.; Bathaei, M.J.; Istif, E.; Shomalizadeh, N.; Cebecioğlu, R.E.; Özkahraman, E.E.; Yener, U.C.; Beker, L. A wearable touch‐activated device integrated with hollow microneedles for continuous sampling and sensing of dermal interstitial fluid. Adv. Mater., 2023, 36(2), 2304704.
[PMID: 37709513]
[27]
Wang, Y.; Yu, Y.; Guo, J.; Zhang, Z.; Zhang, X.; Zhao, Y. Bio‐inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Adv. Funct. Mater., 2020, 30(32), 2000151.
[http://dx.doi.org/10.1002/adfm.202000151]
[28]
Meng, S.; Zhang, Y.; Wang, H.; Wang, L.; Kong, T.; Zhang, H.; Meng, S. Recent advances on TMDCs for medical diagnosis. Biomaterials, 2021, 269, 120471.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120471] [PMID: 33160702]
[29]
Jindal, A.B.; Bhide, A.R.; Salave, S.; Rana, D.; Benival, D. Long-acting parenteral drug delivery systems for the treatment of chronic diseases. Adv. Drug Deliv. Rev., 2023, 198, 114862.
[http://dx.doi.org/10.1016/j.addr.2023.114862] [PMID: 37160247]
[30]
Amjadi, M.; Sheykhansari, S.; Nelson, B.J.; Sitti, M. Recent advances in wearable transdermal delivery systems. Adv. Mater., 2018, 30(7), 1704530.
[http://dx.doi.org/10.1002/adma.201704530] [PMID: 29315905]
[31]
Ghate, V.; Renjith, A.; Badnikar, K.; Pahal, S.; Jayadevi, S.N.; Nayak, M.M.; Vemula, P.K.; Subramanyam, D.N. Single step fabrication of hollow microneedles and an experimental package for controlled drug delivery. Int. J. Pharm., 2023, 632, 122546.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122546] [PMID: 36574913]
[32]
Zhang, X.; Chen, G.; Wang, Y.; Fan, L.; Zhao, Y. Arrowhead composite microneedle patches with anisotropic surface adhesion for preventing intrauterine adhesions. Adv. Sci. (Weinh.), 2022, 9(12), 2104883.
[http://dx.doi.org/10.1002/advs.202104883] [PMID: 35187857]
[33]
Ruan, H.; Cui, W. A removable bio-orthogonal catalytic patch: A local “landmine”. Matter, 2021, 4(8), 2601-2602.
[http://dx.doi.org/10.1016/j.matt.2021.06.002]
[34]
Fan, L.; Zhang, X.; Nie, M.; Xu, Y.; Wang, Y.; Shang, L.; Zhao, Y.; Zhao, Y. Photothermal responsive microspheres‐triggered separable microneedles for versatile drug delivery. Adv. Funct. Mater., 2022, 32(13), 2110746.
[http://dx.doi.org/10.1002/adfm.202110746]
[35]
Lin, F.; Wang, Z.; Xiang, L.; Wu, L.; Liu, Y.; Xi, X.; Deng, L.; Cui, W. Transporting hydrogel via Chinese acupuncture needles for lesion positioning therapy. Adv. Sci. (Weinh.), 2022, 9(17), 2200079.
[http://dx.doi.org/10.1002/advs.202200079] [PMID: 35404511]
[36]
Zhang, X.; Chen, G.; Sun, L.; Ye, F.; Shen, X.; Zhao, Y. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem. Eng. J., 2021, 406, 126741.
[http://dx.doi.org/10.1016/j.cej.2020.126741]
[37]
Teymourian, H.; Tehrani, F.; Mahato, K.; Wang, J. Lab under the skin: Microneedle based wearable devices. Adv. Healthc. Mater., 2021, 10(17), 2002255.
[http://dx.doi.org/10.1002/adhm.202002255] [PMID: 33646612]
[38]
Zhang, X.; Chen, G.; Bian, F.; Cai, L.; Zhao, Y. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv. Mater., 2019, 31(37), 1902825.
[http://dx.doi.org/10.1002/adma.201902825] [PMID: 31271485]
[39]
Ma, W.; Zhang, X.; Liu, Y.; Fan, L.; Gan, J.; Liu, W.; Zhao, Y.; Sun, L. Polydopamine decorated microneedles with Fe‐MSC‐derived nanovesicles encapsulation for wound healing. Adv. Sci. (Weinh.), 2022, 9(13), 2103317.
[http://dx.doi.org/10.1002/advs.202103317] [PMID: 35266637]
[40]
Wolkowicz, K.L.; Aiello, E.M.; Vargas, E.; Teymourian, H.; Tehrani, F.; Wang, J.; Pinsker, J.E.; Doyle, F.J., III; Patti, M.E.; Laffel, L.M.; Dassau, E. A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioeng. Transl. Med., 2021, 6(2), e10201.
[http://dx.doi.org/10.1002/btm2.10201] [PMID: 34027090]
[41]
Jina, A.; Tierney, M.J.; Tamada, J.A.; McGill, S.; Desai, S.; Chua, B.; Chang, A.; Christiansen, M. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol., 2014, 8(3), 483-487.
[http://dx.doi.org/10.1177/1932296814526191] [PMID: 24876610]
[42]
Ye, Y.; Yu, J.; Wang, C.; Nguyen, N.Y.; Walker, G.M.; Buse, J.B.; Gu, Z. Microneedle integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv. Mater., 2016, 28(16), 3115-3121.
[http://dx.doi.org/10.1002/adma.201506025] [PMID: 26928976]
[43]
Jayaneththi, V.R.; Aw, K.; Sharma, M.; Wen, J.; Svirskis, D.; McDaid, A.J. Controlled transdermal drug delivery using a wireless magnetic microneedle patch: Preclinical device development. Sens. Actuators B Chem., 2019, 297, 126708.
[http://dx.doi.org/10.1016/j.snb.2019.126708]
[44]
Tran, K.T.M.; Gavitt, T.D.; Farrell, N.J.; Curry, E.J.; Mara, A.B.; Patel, A.; Brown, L.; Kilpatrick, S.; Piotrowska, R.; Mishra, N.; Szczepanek, S.M.; Nguyen, T.D. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat. Biomed. Eng., 2020, 5(9), 998-1007.
[http://dx.doi.org/10.1038/s41551-020-00650-4] [PMID: 33230304]
[45]
DeMuth, P.C.; Min, Y.; Irvine, D.J.; Hammond, P.T. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv. Healthc. Mater., 2014, 3(1), 47-58.
[http://dx.doi.org/10.1002/adhm.201300139] [PMID: 23847143]
[46]
Venugopal, M.; Feuvrel, K.E.; Mongin, D.; Bambot, S.; Faupel, M.; Panangadan, A.; Talukder, A.; Pidva, R. Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring. IEEE Sens. J., 2008, 8(1), 71-80.
[http://dx.doi.org/10.1109/JSEN.2007.912544]
[47]
Fabbrocini, G.; De Vita, V.; Monfrecola, A.; De Padova, M.P.; Brazzini, B.; Teixeira, F.; Chu, A. Percutaneous collagen induction: An effective and safe treatment for post-acne scarring in different skin phototypes. J. Dermatolog. Treat., 2014, 25(2), 147-152.
[http://dx.doi.org/10.3109/09546634.2012.742949] [PMID: 23216209]
[48]
Cachafeiro, T.; Escobar, G.; Maldonado, G.; Cestari, T.; Corleta, O. Comparison of nonablative fractional erbium laser 1,340 nm and microneedling for the treatment of atrophic acne scars: A randomized clinical trial. Dermatol. Surg., 2016, 42(2), 232-241.
[http://dx.doi.org/10.1097/DSS.0000000000000597] [PMID: 26845539]
[49]
Kim, M.; Yang, H.; Kim, H.; Jung, H.; Jung, H. Novel cosmetic patches for wrinkle improvement: Retinyl retinoate‐ and ascorbic acid‐loaded dissolving microneedles. Int. J. Cosmet. Sci., 2014, 36(3), 207-212.
[http://dx.doi.org/10.1111/ics.12115] [PMID: 24910870]
[50]
Prausnitz, M.R. Engineering microneedle patches for vaccination and drug delivery to skin. Annu. Rev. Chem. Biomol. Eng., 2017, 8(1), 177-200.
[http://dx.doi.org/10.1146/annurev-chembioeng-060816-101514] [PMID: 28375775]
[51]
Rape, A. A digitally controlled degradeable microneedle array for intradermal drug delivery. US20210060323A1, 2020.
[52]
Wang, J.; Ray, J.; Narayan, R.; Miller, P. Microneedle arrays for biosensing and drug delivery US9743870B2, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy