Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Nafion/ZrO2 Modified NiTi Orthodontic Wire: Preparation, Material Characterization, and Corrosion Studies

Author(s): Raja Rajamanikkam San Chitta Raj, Keerthana Madhivanan, Dhanraj Ganapathy and Ashok K. Sundramoorthy*

Volume 16, Issue 3, 2024

Published on: 14 June, 2024

Page: [183 - 189] Pages: 7

DOI: 10.2174/0118764029310829240610110634

Price: $65

conference banner
Abstract

Background: Nickel-titanium (NiTi) orthodontic wires are widely used in dental corrective procedures due to their high mechanical properties and cost-effectiveness. However, they are prone to oral corrosion, leading to mechanical deterioration, aesthetic issues, and potential health concerns.

Objective: This study aims to improve the corrosion resistance and durability of NiTi orthodontic wires by employing zirconium dioxide (ZrO2) and Nafion coating with the goal of enhancing wire performance.

Methods: Two types of NiTi wires were evaluated: a standard, unmodified wire as a control and another wire treated with electrodeposited ZrO2 film and Nafion (Naf) coating. Surface analysis was conducted using various techniques, including Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray Spectroscopy (EDX) analysis.

Results: The uncoated NiTi wire exhibited a corrosion rate of 4.436× 10-1 mm/year, whereas the NAF/ZrO2-coated NiTi wire showed a corrosion rate of 4.068× 10-1 mm/year, indicating that the NAF/ZrO2 coating acted as a protective layer. Additionally, the ZrO2 layer provided poor electrical conductivity, resulting in slightly higher impedance compared to bare NiTi. The coating served as a barrier, which significantly enhanced corrosion resistance and improved the wire lifespan.

Conclusion: Electro-modification through ZrO2 deposition and Nafion coating significantly improved the corrosion resistance and overall durability of NiTi orthodontic wires, offering a promising advancement for their use in dental orthodontics. This study underscores the potential of ZrO2 and Nafion coating to enhance the corrosion resistance and longevity of NiTi orthodontic wires.

Keywords: ZrO2/Nafion, NiTi orthodontic wire, stability, corrosion resistance, polarisation test, Nafion coating.

« Previous
Graphical Abstract
[1]
Oshida, Y. Bioscience and Bioengineering of Titanium Materials; Elsevier, 2010.
[2]
Materials and Coatings for Medical Devices: Cardiovascular, Publisher: ASM International, Published: 2009, Pages: 450, ISBN: 978-1-61503-000-2.
[3]
Ahmed, W.; Jackson, M.J. Surgical Tools and Medical Devices; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-33489-9]
[4]
Eliades, T.; Brantley, W.A. Orthodontic Applications of Biomaterials: A Clinical Guide; Woodhead Publishing, 2016.
[5]
Greenfield, L.J.; Proctor, M.C.; Roberts, K.R. An improved process for development and testing of vena caval filters: The percutaneous steel Greenfield filter. Surgery, 1997, 121(1), 50-57.
[http://dx.doi.org/10.1016/S0039-6060(97)90182-3] [PMID: 9001551]
[6]
Wang, Y.; Long, Y.; Yang, Z.; Zhang, D. A novel ion-exchange strategy for the fabrication of high strong BiOI/BiOBr heterostructure film coated metal wire mesh with tunable visible-light-driven photocatalytic reactivity. J. Hazard. Mater., 2018, 351, 11-19.
[http://dx.doi.org/10.1016/j.jhazmat.2018.02.027] [PMID: 29506001]
[7]
Tian, K.V.; Passaretti, F.; Nespoli, A.; Placidi, E.; Condò, R.; Andreani, C.; Licoccia, S.; Chass, G.A.; Senesi, R.; Cozza, P. Composition—nanostructure steered performance predictions in steel wires. Nanomaterials, 2019, 9(8), 1119.
[http://dx.doi.org/10.3390/nano9081119] [PMID: 31382607]
[8]
Oshida, Y.; Tominaga, T. NiTi Materials: Biomedical Applications; Walter de Gruyter GmbH & Co KG, 2020.
[9]
Oshida, Y.; Tominaga, T. Nickel-Titanium Materials: Biomedical Applications; Walter de Gruyter GmbH & Co KG, 2020.
[http://dx.doi.org/10.1515/9783110666113]
[10]
Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S. A resonant force sensor based on ionic polymer metal composites. Smart Mater. Struct., 2008, 17(1), 015014.
[http://dx.doi.org/10.1088/0964-1726/17/01/015014]
[11]
Sridharan, G.; Godwin, C.J.T.; Atchudan, R.; Arya, S.; Govindasamy, M.; Osman, S.M.; Sundramoorthy, A.K. Iron oxide decorated hexagonal boron nitride modified electrochemical sensor for the detection of nitrofurantoin in human urine samples. J. Taiwan Inst. Chem. Eng., 2024, 105320.
[http://dx.doi.org/10.1016/j.jtice.2023.105320]
[12]
Magesh, V.; Kothari, V.S.; Ganapathy, D.; Atchudan, R.; Arya, S.; Nallaswamy, D.; Sundramoorthy, A.K. Using sparfloxacin-capped gold nanoparticles to modify a screen-printed carbon electrode sensor for ethanol determination. Sensors, 2023, 23(19), 8201.
[http://dx.doi.org/10.3390/s23198201] [PMID: 37837031]
[13]
Musa Trolić, I.; Turco, G.; Contardo, L.; Serdarević, N.L.; Otmačić Ćurković, H.; Špalj, S.; Špalj, S. Corrosion of nickel-titanium orthodontic archwires in saliva and oral probiotic supplements. Acta Stomatol. Croat., 2017, 51(4), 316-325.
[http://dx.doi.org/10.15644/asc51/4/6] [PMID: 29872237]
[14]
Kamalasekaran, K.; Magesh, V.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Development of electrochemical sensor using iron (III) phthalocyanine/gold nanoparticle/graphene hybrid film for highly selective determination of nicotine in human salivary samples. Biosensors, 2023, 13(9), 839.
[http://dx.doi.org/10.3390/bios13090839] [PMID: 37754073]
[15]
Balasamy, S.; Sundramoorthy, A.K. EGFR-targeted fluorescence imaging for precision margin assessment in oral cancer surgery. Oral Oncol., 2024, 150, 106712.
[http://dx.doi.org/10.1016/j.oraloncology.2024.106712] [PMID: 38306756]
[16]
Murugan, P.; Sivaperumal, P.; Balu, S.; Arya, S.; Atchudan, R.; Sundramoorthy, A.K. Recent advances on the methods developed for the identification and detection of emerging contaminant microplastics: A review. RSC Advances, 2023, 13(51), 36223-36241.
[http://dx.doi.org/10.1039/D3RA05420A] [PMID: 38090077]
[17]
Murugan, R.V.; Magesh, V.; Vijayalakshmi, K.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Electrochemical sensing of Vitamin C using graphene/poly-thionine composite film modified electrode. Micro Nanosyst., 2024, 16(1), 57-64.
[http://dx.doi.org/10.2174/0118764029290865240209072023]
[18]
Murugan, R.V.; Sridharan, G.; Atchudan, R.; Arya, S.; Nallaswamy, D.; Sundramoorthy, A. A facile synthesis of bimetallic copper-silver nanocomposite and their application in ascorbic acid detection. Curr. Nanosci., 2024, 20. [Internet].
[http://dx.doi.org/10.2174/0115734137281377240103062220]
[19]
Miller, R.H.B.; Wei, Y.; Ma, C.; Li, L.; Shao, J.; Hu, S.; Weamie, S.J.Y. Bioinspired super-hydrophobic fractal array via a facile electrochemical route: preparation and corrosion inhibition for Cu. RSC Advances, 2021, 12(1), 265-276.
[http://dx.doi.org/10.1039/D1RA06473H] [PMID: 35424520]
[20]
Agarwal, N.; Gallagher, K.A.; Keaveny, S.; Carton, J.G.; Brabazon, D.; Obeidi, M.A. Influence of processing parameters on the corrosion resistance of additively manufactured nitinol parts for biomedical applications. Results in Materials, 2024, 21(100536), 100536.
[http://dx.doi.org/10.1016/j.rinma.2024.100536]
[21]
Šćepanović, J.; Radonjić, D.; Vuksanović, D. Investigation of AlMgCu alloy corrosion in 0.5M NaCl: Polarization and EIS studies. Int. J. Electrochem. Sci., 2018, 13(9), 8623-8632.
[http://dx.doi.org/10.20964/2018.09.45]
[22]
Viswanathan, S.; Mohan, L.; Bera, P.; Anandan, C. Effect of oxygen plasma immersion ion implantation on the formation of nanostructures over Ni–Ti alloy. RSC Advances, 2016, 6(78), 74493-74499.
[http://dx.doi.org/10.1039/C6RA11541A]
[23]
De Motte, R.; Basilico, E.; Mingant, R.; Kittel, J.; Ropital, F.; Combrade, P.; Necib, S.; Deydier, V.; Crusset, D.; Marcelin, S. A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel. Corros. Sci., 2020, 172, 108666.
[http://dx.doi.org/10.1016/j.corsci.2020.108666]
[24]
Clarke, B.; Carroll, W.; Rochev, Y.; Hynes, M.; Bradley, D.; Plumley, D. Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. J. Biomed. Mater. Res. A, 2006, 79A(1), 61-70.
[http://dx.doi.org/10.1002/jbm.a.30720] [PMID: 16758455]
[25]
Liu, J.; Li, H.; Yan, B.; Zhong, C.; Zhao, Y.; Guo, X.; Zhong, J. Rational design of a Zr-MOF@Curli-polyelectrolyte hybrid membrane toward efficient chemical protection, moisture permeation, and catalytic detoxification. ACS Appl. Mater. Interfaces, 2022, 14(47), 53421-53432.
[http://dx.doi.org/10.1021/acsami.2c16711] [PMID: 36384285]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy