Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Design and Performance Analysis of Strip Photonic Waveguide with Coating Layer for Multimode Propagation

Author(s): Veer Chandra*

Volume 16, Issue 3, 2024

Published on: 14 June, 2024

Page: [165 - 171] Pages: 7

DOI: 10.2174/0118764029311019240522071835

Price: $65

conference banner
Abstract

Introduction: Photonic devices play a pivotal role in the realm of high-speed data communication due to their inherent capability to expedite the transfer of information. Historically, research efforts in this domain have predominantly concentrated on investigating the fundamental mode propagation within photonic waveguides.

Methods: This study diverges from the conventional approach by delving into the untapped potential of higher-order modes in addition to the fundamental mode of propagation. The exploration of these higher-order modes opens up new possibilities for optimizing and enhancing the performance of photonic devices in high-speed data communication scenarios. As a distinctive aspect of this study, various coating materials were scrutinized for their impact on both fundamental and higher-order mode propagation. The materials under examination included AlN (aluminum nitride), Germanium, and Silicon. These materials were chosen based on their unique optical properties and suitability for influencing different modes of light propagation. The findings from the study reveal that applying a coating of germanium demonstrates advantageous characteristics, particularly in terms of reduced signal loss, even when considering higher-order modes of propagation within photonic devices.

Results: In this context, the results indicate that germanium-coated waveguides exhibit notably low propagation losses, with measurements as minimal as 0.25 dB/cm. This low level of loss is particularly noteworthy, especially when the waveguide has a width of 550 nm and is coated with a thickness of 50 nm. The dimensions and coating specifications play a crucial role in determining the efficiency of light transmission within the waveguide.

Conclusion: The fact that the propagation loss is substantially low under these conditions suggests that the germanium-coated waveguide, even when considering higher-order modes of light propagation, can effectively maintain the integrity of the optical signal.

Keywords: Strip photonic waveguide, aluminum nitride (AlN), propagation loss, germanium, coating, multimode.

[1]
Soref, R.A.; Schmidtchen, J.; Petermann, K. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/. IEEE J. Quantum Electron., 1991, 27(8), 1971-1974.
[http://dx.doi.org/10.1109/3.83406]
[2]
Pogossian, S.P.; Vescan, L.; Vonsovici, A. The single-mode condition for semiconductor rib waveguides with large cross section. J. Lightwave Technol., 1998, 16(10), 1851-1853.
[http://dx.doi.org/10.1109/50.721072]
[3]
Powell, O. Single-mode condition for silicon rib waveguides. J. Lightwave Technol., 2002, 20(10), 1851-1855.
[http://dx.doi.org/10.1109/JLT.2002.804036]
[4]
Müllner, P.; Hainbeger, R. Single-mode criterion for rib waveguides with small cross sections. Proc. SPIE, 2006, 6115, 436-443.
[http://dx.doi.org/10.1117/12.646373]
[5]
Du, W.; Chen, Z.; Zhao, F. Analysis of single‐mode optical rib waveguide in silicon carbide. Microw. Opt. Technol. Lett., 2013, 55(11), 2636-2640.
[http://dx.doi.org/10.1002/mop.27895]
[6]
Huang, H.; Liu, K.; Qi, B.; Sorger, V.J. Re-analysis of single-mode conditions for silicon rib waveguides at 1550 nm wavelength. J. Light. Technol., 2016, 34(16), 3811-3817.
[http://dx.doi.org/10.1109/JLT.2016.2579163]
[7]
Jin, W. Heterogeneous Integration Techniques for Ultra-Low Noise; ChipScale Lasers: Santa Barbara, CA, USA, 2021.
[8]
Xiang, C. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 2022, 99, 1-1.
[http://dx.doi.org/10.1109/JSTQE.2021.3126124]
[9]
Zeng, Z.; Lu, L.; He, P.; Liu, D.; Zhang, M. Demonstration of dual-mode photonic integrated circuit based on inverse-designed photonic components. IEEE Photonics Technol. Lett., 2021, 33(23), 1289-1292.
[http://dx.doi.org/10.1109/LPT.2021.3116765]
[10]
Haines, J. Optical Power Splitters for Integrated Multimode Photonics. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany2023, pp. 1-1.
[http://dx.doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10231790]
[11]
Li, C.; Liu, D.; Dai, D. Multimode silicon photonics. Nanophotonics, 2019, 8(2), 227-247.
[http://dx.doi.org/10.1515/nanoph-2018-0161]
[12]
Jiang, X.; Wu, H.; Dai, D. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt. Express, 2018, 26(13), 17680-17689.
[http://dx.doi.org/10.1364/OE.26.017680] [PMID: 30119578]
[13]
Streshinsky, M.; Ding, R.; Liu, Y. The road to affordable, large-scale silicon photonics. Opt. Photonics News, 2013, 24, 32-39.
[http://dx.doi.org/10.1364/OPN.24.9.000032]
[14]
Jahani, S.; Kim, S.; Atkinson, J.; Wirth, J.C.; Kalhor, F.; Noman, A.A.; Newman, W.D.; Shekhar, P.; Han, K.; Van, V.; DeCorby, R.G.; Chrostowski, L.; Qi, M.; Jacob, Z. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nat. Commun., 2018, 9(1), 1893.
[http://dx.doi.org/10.1038/s41467-018-04276-8] [PMID: 29760394]
[15]
Liu, L. Densely packed waveguide array (DPWA) on a silicon chip for mode division multiplexing. Opt. Express, 2015, 23(9), 12135-12143.
[http://dx.doi.org/10.1364/OE.23.012135] [PMID: 25969301]
[16]
Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R.V.; White, I.H. High-speed data transmission over flexible multimode polymer waveguides under flexure. IEEE Photonics Technol. Lett., 2018, 30(14), 1329-1332.
[http://dx.doi.org/10.1109/LPT.2018.2846362]
[17]
Wu, X.; Huang, C.; Xu, K.; Shu, C.; Tsang, H.K. Mode-division multiplexing for silicon photonic network-on-chip. J. Lightwave Technol., 2017, 35(15), 3223-3228.
[http://dx.doi.org/10.1109/JLT.2017.2677085]
[18]
Bamiedakis, N.; Beals, J.; Penty, R.V.; White, I.H.; DeGroot, J.V.; Clapp, T.V. Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects. IEEE J. Quantum Electron., 2009, 45(4), 415-424.
[http://dx.doi.org/10.1109/JQE.2009.2013111]
[19]
Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Zhang, L.; Pan, B. Silicon photonics for high-capacity data communications. Photon. Res., 2022, 10(9), A106-A134.
[http://dx.doi.org/10.1364/PRJ.456772]
[20]
Li, W.; Chen, J.; Zhu, M.; Dai, D.; Shi, Y. Ultra-compact multimode waveguide bend with optimized dual bezier contours. IEEE Photonics Technol. Lett., 2023, 35(20), 1131-1134.
[http://dx.doi.org/10.1109/LPT.2023.3298631]
[21]
Kaushalram, A.; Samad, S.A.; Hegde, G.; Talabattula, S. Tunable large dispersion in hybrid modes of lithium niobate-on-insulator multimode waveguides. IEEE Photonics J., 2019, 11(3), 1-8.
[http://dx.doi.org/10.1109/JPHOT.2019.2918759]
[22]
Kaushalram, A.; Hegde, G.; Talabattula, S. Comparative analysis of ultra-compact few-mode photonic wires on LNOI and SOI platforms. Integrated Optics: Devices, Materials, and Technologies XXIII, 2019, 109211X.
[http://dx.doi.org/10.1117/12.2508776]
[23]
Liu, S.; Xu, K.; Song, Q.; Cheng, Z.; Tsang, H. Design of Mid-infrared electro-optic modulators based on aluminum nitride waveguides. J. Lightwave Technol., 2016, 34(16), 1.
[http://dx.doi.org/10.1109/JLT.2016.2587319]
[24]
Pao, T.L. Hojoong Jung, Lionel C. Kimerling, Anu Agarwal, and Hong X. Tang ‘Low-loss aluminium nitride thin film for mid-infrared microphotonics’. Laser Photonics Rev., 2014, 8(2), L23-L28.
[25]
Kim, S.; Han, J.H.; Shim, J.P.; Kim, H.; Choi, W.J. Verification of Ge-on-insulator structure for a mid-infrared photonics platform. Opt. Mater. Express, 2018, 8(2), 440-451.
[http://dx.doi.org/10.1364/OME.8.000440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy