Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Research Article

A Quality By Design (QbD) Prospect in Fabrication of PLGA-based Antipsychotic Long-acting Microspheres: An Alternative to Combination Therapy

Author(s): Akanksha Singh, Rajkiran Narkhede and Rajani Athawale*

Volume 7, Issue 1, 2024

Published on: 30 May, 2024

Page: [18 - 32] Pages: 15

DOI: 10.2174/0124522716306759240522112102

conference banner
Abstract

Background: Discontinuation and poor compliance with long-term oral medicine are major therapeutic issues in psychosis treatment. Poorer long-term outcomes may result from non-compliance as well as a higher chance of relapse. In order to sustain therapeutic drug plasma levels, co-administration of oral antipsychotics is necessary for commercially available longacting injections of second-generation antipsychotics, as they have a lag period of approximately three weeks during the drug release process.

Methods: Poly(lactic-co-glycolic acid) (PLGA) encapsulated microspheres loaded with risperidone were fabricated in the current research for intramuscular administration. The single emulsion solvent evaporation technique was applied for the fabrication of microspheres. Risperidone microspheres were prepared using PLGA grade 75:25. Particle size, drug content and entrapment efficiency with a central composite design were the main optimization parameters for the formulation. The microspheres were characterized by different techniques, namely Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The drug content, entrapment efficiency, morphology, particle size, and in vitro release profiles, along with release kinetics of the risperidone microspheres, were studied.

Results and Discussion: The microspheres produced by the single emulsion solvent evaporation approach show smooth and spherical morphology, with particle size ranging from 3 μm to 6 μm, drug content of 99.7%, and entrapment efficiency of 98.2% with little burst release of 3% to 10%, providing drug release for 45 days and exhibiting zero order release kinetics and Korsmeyer- Peppas model for non-fickian drug release from the polymeric matrix. By applying the Quality by Design (QbD) approach and formulation parameters, microspheres with appropriate particle size, morphology, enhanced drug content, entrapment efficiency and desirable drug release profile for depot formulation can be obtained successfully.

Conclusion: The optimized microspheres, in comparison to the marketed Risperdal Consta™, show enhanced potential for a better depot formulation, which can further improve patient compliance.

Keywords: Risperidone, antipsychotic, PLGA, quality by design (QbD), TEM, SEM.

Graphical Abstract
[1]
Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther 2012; 20(1): 1-18.
[http://dx.doi.org/10.4062/biomolther.2012.20.1.001] [PMID: 24116269]
[2]
Rössler W, Joachim Salize H, van Os J, Riecher-Rössler A. Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 2005; 15(4): 399-409.
[http://dx.doi.org/10.1016/j.euroneuro.2005.04.009] [PMID: 15925493]
[3]
Practice guideline for the treatment of patients with schizophrenia. Am J Psychiatry 1997; 154(4): 1-63.
[http://dx.doi.org/10.1176/ajp.154.4.1]
[4]
Su ZX, Shi YN, Teng LS, et al. Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation. Pharm Dev Technol 2011; 16(4): 377-84.
[http://dx.doi.org/10.3109/10837451003739297] [PMID: 20370594]
[5]
Baweja R, Sedky K, Lippmann S. Long-acting antipsychotic medications. Curr Drug Targets 2012; 13(4): 555-60.
[http://dx.doi.org/10.2174/138945012799499785] [PMID: 22250654]
[6]
Kane JM, Aguglia E, Altamura AC, et al. Guidelines for depot antipsychotic treatment in schizophrenia. Eur Neuropsychopharmacol 1998; 8(1): 55-66.
[http://dx.doi.org/10.1016/S0924-977X(97)00045-X] [PMID: 9452941]
[7]
Barnes TRE, Curson DA. Long-term depot antipsychotics. A risk-benefit assessment. Drug Saf 1994; 10(6): 464-79.
[http://dx.doi.org/10.2165/00002018-199410060-00005] [PMID: 7917075]
[8]
Nayak RK, Doose DR, Nair NPV. The bioavailability and pharmacokinetics of oral and depot intramuscular haloperidol in schizophrenic patients. J Clin Pharmacol 1987; 27(2): 144-50.
[http://dx.doi.org/10.1002/j.1552-4604.1987.tb02175.x] [PMID: 3680566]
[9]
Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release 2014; 190: 240-53.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.057] [PMID: 24929039]
[10]
Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016; 498(1-2): 82-95.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.025] [PMID: 26688034]
[11]
Fleischhacker WW. Second-generation antipsychotic long-acting injections: Systematic review. Br J Psychiatry 2009; 195(S52): s29-36.
[http://dx.doi.org/10.1192/bjp.195.52.s29] [PMID: 19880914]
[12]
Chaurasia S, Mounika K, Bakshi V, Prasad V. 3-month parenteral PLGA microsphere formulations of risperidone: Fabrication, characterization and neuropharmacological assessments. Mater Sci Eng C 2017; 75: 1496-505.
[http://dx.doi.org/10.1016/j.msec.2017.03.065] [PMID: 28415443]
[13]
Davis JM, Metalon L, Watanabe MD, Blake L. Depot antipsychotic drugs: Place in therapy. Drugs 1994; 47(5): 741-73.
[http://dx.doi.org/10.2165/00003495-199447050-00004] [PMID: 7520856]
[14]
Kane JM. Pharmacologic treatment of schizophrenia. Biol Psychiatry 1999; 46(10): 1396-408.
[http://dx.doi.org/10.1016/S0006-3223(99)00059-1] [PMID: 10578454]
[15]
Johnson D. Long-term drug treatment of psychosis: Observations on some current issues. Int Rev Psychiatry 1990; 2(3-4): 341-53.
[http://dx.doi.org/10.3109/09540269009026605]
[16]
Wyatt RJ. Neuroleptics and the natural course of schizophrenia. Schizophr Bull 1991; 17(2): 325-51.
[http://dx.doi.org/10.1093/schbul/17.2.325] [PMID: 1679255]
[17]
Kane JM, Eerdekens M, Lindenmayer JP, Keith SJ, Lesem M, Karcher K. Long-acting injectable risperidone: Efficacy and safety of the first long-acting atypical antipsychotic. Am J Psychiatry 2003; 160(6): 1125-32.
[http://dx.doi.org/10.1176/appi.ajp.160.6.1125] [PMID: 12777271]
[18]
Adams CE, Fenton MKP, Quraishi S, David AS. Systematic meta-review of depot antipsychotic drugs for people with schizophrenia. Br J Psychiatry 2001; 179(4): 290-9.
[http://dx.doi.org/10.1192/bjp.179.4.290] [PMID: 11581108]
[19]
Davis JM, Janicak PG, Singla A, Sharma RP. Antipsychotic Drugs and Their Side-Effects Chap Maintenance medication. London: Academic Press 1993; pp. 183-203.
[http://dx.doi.org/10.1016/B978-0-12-079035-7.50019-1]
[20]
Ramstack M, Grandolfi GP, Mannaert E, D’Hoore P, Lasser RA. Long-acting risperidone: Prolonged-release injectable delivery of risperidone using medisorbò microsphere technology. Schizophr Res 2003; 60(1): 314.
[http://dx.doi.org/10.1016/S0920-9964(03)80260-8]
[21]
Davis SS, Hardy JG, Newman SP, Wilding IR. Gamma scintigraphy in the evaluation of pharmaceutical dosage forms. Eur J Nucl Med 1992; 19(11): 971-86.
[http://dx.doi.org/10.1007/BF00175865] [PMID: 1425786]
[22]
Cheng YH, Illum L, Davis SS. A poly(d,l-lactide-co-glycolide) microsphere depot system for delivery of haloperidol. J Control Release 1998; 55(2-3): 203-12.
[http://dx.doi.org/10.1016/S0168-3659(98)00056-X] [PMID: 9795060]
[23]
Knox ED, Stimmel GL. Clinical review of a long-acting, injectable formulation of risperidone. Clin Ther 2004; 26(12): 1994-2002.
[http://dx.doi.org/10.1016/j.clinthera.2004.12.009] [PMID: 15823763]
[24]
Love RC, Conley RJ. Long-acting risperidone injection. Am J Health Syst Pharm 2004; 61(17): 1792-800.
[http://dx.doi.org/10.1093/ajhp/61.17.1792] [PMID: 15462250]
[25]
Leal A, Rosillon D, Mehnert A, Jarema M, Remington G. Healthcare resource utilization during 1‐year treatment with long‐acting, injectable risperidone. Pharmacoepidemiol Drug Saf 2004; 13(11): 811-6.
[http://dx.doi.org/10.1002/pds.978] [PMID: 15386706]
[26]
D’Souza S, Faraj JA, Giovagnoli S, DeLuca PP. Development of risperidone PLGA microspheres. J Drug Deliv 2014; 620464.
[http://dx.doi.org/10.1155/2014/620464]
[27]
Orkoula MG, Kontoyannis CG. Non-destructive quantitative analysis of risperidone in film-coated tablets. J Pharm Biomed Anal 2008; 47(3): 631-5.
[http://dx.doi.org/10.1016/j.jpba.2008.01.049] [PMID: 18359600]
[28]
Giovagnoli S, Blasi P, Ricci M, Rossi C. Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery. AAPS PharmSciTech 2004; 5(4): 1-9.
[http://dx.doi.org/10.1208/pt050451] [PMID: 15760048]
[29]
Gref R, Quellec P, Sanchez A, Calvo P, Dellacherie E, Alonso MJ. Development and characterization of CyA-loaded poly(lactic acid)–poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur J Pharm Biopharm 2001; 51(2): 111-8.
[http://dx.doi.org/10.1016/S0939-6411(00)00143-0] [PMID: 11226817]
[30]
Khang G, Rhee JM, Jeong JK, et al. Local drug delivery system using biodegradable polymers. Macromol Res 2003; 11(4): 207-23.
[http://dx.doi.org/10.1007/BF03218355]
[31]
Hausberger AG, DeLuca PP. Characterization of biodegradable poly(d,l-lactide-co-glycolide) polymers and microspheres. J Pharm Biomed Anal 1995; 13(6): 747-60.
[http://dx.doi.org/10.1016/0731-7085(95)01276-Q] [PMID: 7669829]
[32]
Edlund U, Albertsson AC. Degradable polymer microspheres for controlled drug delivery. Degradable aliphatic polyesters 2002; 67-112.
[http://dx.doi.org/10.1007/3-540-45734-8_3]
[33]
Okada H. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev 1997; 28(1): 43-70.
[http://dx.doi.org/10.1016/S0169-409X(97)00050-1] [PMID: 10837564]
[34]
D’Souza SS, Selmin F, Murty SB, Qiu W, Thanoo BC, DeLuca PP. Assessment of fertility in male rats after extended chemical castration with a GnRH antagonist. AAPS PharmSci 2004; 6(1): 94-9.
[http://dx.doi.org/10.1208/ps060110] [PMID: 15198511]
[35]
Okada H, Doken Y, Ogawa Y, Toguchi H. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers. Pharm Res 1994; 11(8): 1143-7.
[http://dx.doi.org/10.1023/A:1018936815654] [PMID: 7971715]
[36]
Woo BH, Kostanski JW, Gebrekidan S, Dani BA, Thanoo BC, DeLuca PP. Preparation, characterization and in vivo evaluation of 120-day poly(d,l-lactide) leuprolide microspheres. J Control Release 2001; 75(3): 307-15.
[http://dx.doi.org/10.1016/S0168-3659(01)00403-5] [PMID: 11489318]
[37]
Woo BH, Na KH, Dani BA, Jiang G, Thanoo BC, DeLuca PP. In vitro characterization and in vivo testosterone suppression of 6-month release poly(D,L-lactide) leuprolide microspheres. Pharm Res 2002; 19(4): 546-50.
[http://dx.doi.org/10.1023/A:1015168301339] [PMID: 12033393]
[38]
Chue P, Eerdekens M, Augustyns I, et al. Comparative efficacy and safety of long-acting risperidone and risperidone oral tablets. Eur Neuropsychopharmacol 2005; 15(1): 111-7.
[http://dx.doi.org/10.1016/j.euroneuro.2004.07.003] [PMID: 15572280]
[39]
Burgess D, Hickey A. Microspheres. Drugs and the Pharmaceutical Sciences 2005; 149: 305-53.
[http://dx.doi.org/10.1201/9780849350610.ch9]
[40]
Hickey T, Kreutzer D, Burgess DJ, Moussy F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials 2002; 23(7): 1649-56.
[http://dx.doi.org/10.1016/S0142-9612(01)00291-5] [PMID: 11922468]
[41]
Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 1995; 16(15): 1123-30.
[http://dx.doi.org/10.1016/0142-9612(95)93575-X] [PMID: 8562787]
[42]
Beg S, Rahman M, Panda SS. Pharmaceutical QbD: Omnipresence in the product development lifecycle. Eur Pharm Rev 2017; 22(1): 58-64.
[43]
Singh B, Beg S. Quality by design in product development life cycle. Chronicle Pharmabiz 2013; 22: 72-9.
[44]
Bhoop BS, Raza K, Beg S. Developing “optimized” drug products employing “designed” experiments. Chemical Industry Digest 2013; 23: 70-6.
[45]
Rose F, Wern JE, Ingvarsson PT, et al. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach. J Control Release 2015; 210: 48-57.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.004] [PMID: 25957906]
[46]
Chu D, Tian J, Liu W, Li Z, Li Y. Poly(lactic-co-glycolic acid) microspheres for the controlled release of huperzine A: In vitro and in vivo studies and the application in the treatment of the impaired memory of mice. Chem Pharm Bull 2007; 55(4): 625-8.
[http://dx.doi.org/10.1248/cpb.55.625] [PMID: 17409558]
[47]
Su Z, Sun F, Shi Y, et al. Effects of formulation parameters on encapsulation efficiency and release behavior of risperidone poly(D,L-lactide-co-glycolide) microsphere. Chem Pharm Bull 2009; 57(11): 1251-6.
[http://dx.doi.org/10.1248/cpb.57.1251] [PMID: 19881277]
[48]
Al-Kassas R. Design and in vitro evaluation of gentamicin–Eudragit microspheres intended for intra-ocular administration. J Microencapsul 2004; 21(1): 71-81.
[http://dx.doi.org/10.1080/02652040310001619992] [PMID: 14718187]
[49]
Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008; 10(5): 845-62.
[http://dx.doi.org/10.1007/s11051-008-9357-4]
[50]
Liu WH, Song JL, Liu K, Chu DF, Li YX. Preparation and in vitro and in vivo release studies of Huperzine A loaded microspheres for the treatment of Alzheimer’s disease. J Control Release 2005; 107(3): 417-27.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.025] [PMID: 16154224]
[51]
Berkland C, Kipper MJ, Narasimhan B, Kim KK, Pack DW. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release 2004; 94(1): 129-41.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.011] [PMID: 14684277]
[52]
Yildiz BC, Kayan A. Ti(IV)-silyliminophenolate catalysts for ϵ-caprolactone and L-Lactide polymerization. Sustain Chem Pharm 2021; 21100416.
[http://dx.doi.org/10.1016/j.scp.2021.100416]
[53]
Kayan GÖ, Kayan A. Polycaprolactone composites/blends and their applications especially in water treatment. ChemEngineering 2023; 7(6): 104.
[http://dx.doi.org/10.3390/chemengineering7060104]
[54]
Daniel JSP, Veronez IP, Rodrigues LL, Trevisan MG, Garcia JS. Risperidone – Solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques. Thermochim Acta 2013; 568: 148-55.
[http://dx.doi.org/10.1016/j.tca.2013.06.032]
[55]
Karavelidis V, Giliopoulos D, Karavas E, Bikiaris D. Nanoencapsulation of a water soluble drug in biocompatible polyesters. Effect of polyesters melting point and glass transition temperature on drug release behavior. Eur J Pharm Sci 2010; 41(5): 636-43.
[http://dx.doi.org/10.1016/j.ejps.2010.09.004] [PMID: 20863892]
[56]
Karavelidis V, Bikiaris D, Avgoustakis K. New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment. J Pharm Pharmacol 2015; 67(2): 215-30.
[http://dx.doi.org/10.1111/jphp.12337] [PMID: 25616209]
[57]
Beslikas T, Gigis I, Goulios V, Christoforides J, Papageorgiou GZ, Bikiaris DN. Crystallization study and comparative in vitro-in vivo hydrolysis of PLA reinforcement ligament. Int J Mol Sci 2011; 12(10): 6597-618.
[http://dx.doi.org/10.3390/ijms12106597] [PMID: 22072906]
[58]
Papageorgiou GZ, Beslikas T, Gigis J, Christoforides J, Bikiaris DN. Crystallization and enzymatic hydrolysis of PLA grade for orthopedics. Adv Polym Technol 2010; 29(4): 280-99.
[http://dx.doi.org/10.1002/adv.20194]
[59]
Raman C, Berkland C, Kim KK, Pack DW. Modeling small-molecule release from PLG microspheres: Effects of polymer degradation and nonuniform drug distribution. J Control Release 2005; 103(1): 149-58.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.012] [PMID: 15773062]
[60]
Ramstack J, Grandolfi G, Mannaert E, D’Hoore P, Lasser RA. Risperdal Consta TM: prolonged-release injectable delivery of risperidone using Medisorb VR microsphere technology. Abstr Am Assoc Pharm Sci 2002; 4: S1.
[61]
Siafaka PI, Barmpalexis P, Lazaridou M, et al. Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: Data analysis and modelling. Eur J Pharm Biopharm 2015; 94: 473-84.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.027] [PMID: 26159838]
[62]
Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008; 132(3): 153-63.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.012] [PMID: 18817820]
[63]
Wu F, Jin T. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS PharmSciTech 2008; 9(4): 1218-29.
[http://dx.doi.org/10.1208/s12249-008-9148-3] [PMID: 19085110]
[64]
Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat Rev Drug Discov 2014; 13(9): 655-72.
[http://dx.doi.org/10.1038/nrd4363] [PMID: 25103255]
[65]
Fu X, Ping Q, Gao Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J Microencapsul 2005; 22(7): 705-14.
[http://dx.doi.org/10.1080/02652040500162196] [PMID: 16421082]
[66]
Huang Z, Chen X, Fu H, et al. Formation mechanism and in vitro evaluation of risperidone-containing PLGA microspheres fabricated by ultrafine particle processing system. J Pharm Sci 2017; 106(11): 3363-71.
[http://dx.doi.org/10.1016/j.xphs.2017.07.010] [PMID: 28736289]
[67]
Hu Z, Liu Y, Yuan W, Wu F, Su J, Jin T. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres. Colloids Surf B Biointerfaces 2011; 86(1): 206-11.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.043] [PMID: 21524893]
[68]
Georgiadis MC, Kostoglou M. On the optimization of drug release from multi-laminated polymer matrix devices. J Control Release 2001; 77(3): 273-85.
[http://dx.doi.org/10.1016/S0168-3659(01)00510-7] [PMID: 11733095]
[69]
Iordanskii AL, Zaikov GE, Berlin AA. Diffusion kinetics of hydrolysis of biodegradable polymers. Weight loss and control of the release of low molecular weight substances. Polym Sci Ser D Glues Sealing Mater 2015; 8(3): 211-8.
[http://dx.doi.org/10.1134/S1995421215030053]
[70]
Nanaki S, Barmpalexis P, Iatrou A, Christodoulou E, Kostoglou M, Bikiaris D. Risperidone controlled release microspheres based on poly (lactic acid)-poly (propylene adipate) novel polymer blends appropriate for long acting injectable formulations. Pharmaceutics 2018; 10(3): 130.
[http://dx.doi.org/10.3390/pharmaceutics10030130] [PMID: 30104505]
[71]
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 1983; 15(1): 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]
[72]
Crank J. The mathematics of diffusion. Oxford University Press 1979.
[73]
Barmpalexis P, Kachrimanis K, Malamataris S. Statistical moments in modelling of swelling, erosion and drug release of hydrophilic matrix-tablets. Int J Pharm 2018; 540(1-2): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.052] [PMID: 29407874]

© 2024 Bentham Science Publishers | Privacy Policy