Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Curcumin in Cancer Prevention: Insights from Clinical Trials and Strategies to Enhance Bioavailability

Author(s): Shabaz Alam, Jaewon Lee* and Amirhossein Sahebkar*

Volume 30, Issue 23, 2024

Published on: 28 May, 2024

Page: [1838 - 1851] Pages: 14

DOI: 10.2174/0113816128303514240517054617

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer remains a leading cause of death worldwide, and current cancer drugs often have high costs and undesirable side effects. Additionally, the development of drug resistance can reduce their effectiveness over time. Natural products have gained attention as potential sources for the treatment and prevention of various diseases. Curcumin, an extract from turmeric (Curcuma longa), is a natural phenolic compound with diverse pharmacological properties, including antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, antiprotozoal, antidiabetic, antivenom, antiulcer, anticarcinogenic, antimutagenic, anticoagulant, and antifertility activities. Given the increasing interest in curcumin for cancer prevention, this review aims to comprehensively examine clinical trials investigating the use of curcumin in different types of cancer. Additionally, effective techniques and approaches to enhance the bioavailability of curcumin are discussed and summarized. This review article provides insights into the properties of curcumin and its potential as a future anticancer drug.

Keywords: Curcumin, natural product, chronic diseases, apoptosis, cell proliferation, cancer.

[1]
Global Burden of Disease 2019 Cancer Collaboration. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019. JAMA Oncol 2022; 8(3): 420-444.
[http://dx.doi.org/10.1001/jamaoncol.2021.6987]
[2]
Dyba T, Randi G, Bray F, et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur J Cancer 2021; 157: 308-347.
[http://dx.doi.org/10.1016/j.ejca.2021.07.039] [PMID: 34560371]
[3]
Lin L, Li Z, Yan L, Liu Y, Yang H, Li H. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990-2019. J Hematol Oncol 2021; 14(1): 197.
[http://dx.doi.org/10.1186/s13045-021-01213-z] [PMID: 34809683]
[4]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[5]
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer 2021; 149(4): 778-89.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[6]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[7]
Kinslow CJ, Kumar P, Olfson M, et al. Prognosis and risk of suicide after cancer diagnosis. Cancer 2023; 130(4): 588-96.
[http://dx.doi.org/10.1200/JCO.2023.41.16_suppl.6634]
[8]
Hegde M, Girisa S, Naliyadhara N, et al. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42(3): 765-822.
[http://dx.doi.org/10.1007/s10555-022-10068-w] [PMID: 36482154]
[9]
Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[10]
Pizzoli SFM, Renzi C, Arnaboldi P, Russell-Edu W, Pravettoni G. From life-threatening to chronic disease: Is this the case of cancers? A systematic review. Cogent Psychol 2019; 6(1): 1577593.
[http://dx.doi.org/10.1080/23311908.2019.1577593]
[11]
Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 2010; 9(3): 203-14.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[12]
Parama D, Boruah M, Yachna K, et al. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260: 118182.
[http://dx.doi.org/10.1016/j.lfs.2020.118182] [PMID: 32781063]
[13]
Kashyap D, Tuli HS, Yerer MB, et al. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin Cancer Biol 2021; 69: 5-23.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.014] [PMID: 31421264]
[14]
Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 2016; 25(Suppl 2): 41-59.
[http://dx.doi.org/10.1159/000443404]
[15]
Hatefi A, Amsden B. Camptothecin delivery methods. Pharm Res 2002; 19(10): 1389-99.
[http://dx.doi.org/10.1023/A:1020427227285] [PMID: 12425455]
[16]
Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, Cánovas-Díaz M, de Diego Puente T. A compressive review about Taxol®: History and future challenges. Molecules 2020; 25(24): 5986.
[http://dx.doi.org/10.3390/molecules25245986] [PMID: 33348838]
[17]
Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014; 25(18): 2677-81.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[18]
Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin J Cancer 2017; 36(1): 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[19]
Bagherniya M, Nobili V, Blesso CN, Sahebkar A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol Res 2018; 130: 213-40.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[20]
Agarwal A, DeNunzio NJ, Ahuja D, Hirsch AE. Beyond the standard curriculum: A review of available opportunities for medical students to prepare for a career in radiation oncology. Int J Radiation Oncol Biol Phys 2014; 88(1): 39-44.
[http://dx.doi.org/10.1016/j.ijrobp.2013.08.003]
[21]
Stanojević JS, Stanojević LP, Cvetković DJ, Danilović BR. Chemical composition, antioxidant and antimicrobial activity of the turmeric essential oil (Curcuma longa L.). Adv technol 2015; 4(2): 19-25.
[22]
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem 2017; 60(5): 1620-37.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[23]
Soleimani V, Sahebkar A, Hosseinzadeh H. et al. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 2019; 147: 104353.
[http://dx.doi.org/10.1016/j.phrs.2019.104353] [PMID: 31306775]
[24]
Shehzad A, Khan S, Shehzad O, Lee YS. Curcumin therapeutic promises and bioavailability in colorectal cancer. Drugs Today (Barc) 2010; 46(7): 523-32.
[http://dx.doi.org/10.1358/dot.2010.46.7.1509560] [PMID: 20683505]
[25]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41(1): 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[26]
Ahmadi A, Jamialahmadi T, Sahebkar A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol Res 2022; 184: 106414.
[http://dx.doi.org/10.1016/j.phrs.2022.106414] [PMID: 36028188]
[27]
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46(1): 5-20.
[http://dx.doi.org/10.1002/biof.1566] [PMID: 31580521]
[28]
Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur J Nutr 2020; 59(2): 477-83.
[http://dx.doi.org/10.1007/s00394-019-01916-7] [PMID: 30796508]
[29]
Gorabi AM, Hajighasemi S, Kiaie N, et al. Anti-fibrotic effects of curcumin and some of its analogues in the heart. Heart Fail Rev 2020; 25(5): 731-43.
[http://dx.doi.org/10.1007/s10741-019-09854-6] [PMID: 31512150]
[30]
Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 2021; 143: 885-900. Erratum in: Inflammopharmacology. 2019 Aug 19.
[http://dx.doi.org/10.1007/s10787-019-00607-3] [PMID: 31140036]
[31]
Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol 2018; 233(6): 4497-511.
[http://dx.doi.org/10.1002/jcp.26249] [PMID: 29052850]
[32]
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2019; 66: 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.12.005] [PMID: 30660832]
[33]
Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J Cell Physiol 2019; 234(1): 214-22.
[http://dx.doi.org/10.1002/jcp.26848] [PMID: 29968913]
[34]
Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2019; 234(2): 1165-78.
[http://dx.doi.org/10.1002/jcp.27096] [PMID: 30073647]
[35]
Oppenheimer A. Turmeric (curcumin) in biliary diseases. Lancet 1937; 229(5924): 619-21.
[http://dx.doi.org/10.1016/S0140-6736(00)98193-5]
[36]
Schraufstätter E, Bernt H. Antibacterial action of curcumin and related compounds. Nature 1949; 164(4167): 456-7.
[http://dx.doi.org/10.1038/164456a0] [PMID: 18140450]
[37]
Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 1985; 29(2): 197-202.
[http://dx.doi.org/10.1016/0304-3835(85)90159-4] [PMID: 4075289]
[38]
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2014; 66(1): 222-307.
[http://dx.doi.org/10.1124/pr.110.004044] [PMID: 24368738]
[39]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10(1): 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[40]
Sultana S, Munir N, Mahmood Z, et al. Molecular targets for the management of cancer using Curcuma longa linn. Phytoconstituents: A review. Biomed Pharmacother 2021; 135: 111078.
[http://dx.doi.org/10.1016/j.biopha.2020.111078] [PMID: 33433356]
[41]
Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 2010; 17(3-4): 269-73.
[http://dx.doi.org/10.1016/j.phymed.2009.05.020] [PMID: 19577457]
[42]
Marjaneh RM, Rahmani F, Hassanian SM, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 2018; 233(10): 6785-98.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[43]
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2018; 122: 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005] [PMID: 29458788]
[44]
Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 2017; 117: 218-27.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[45]
Kuttan R, Sudheeran PC, Josph CD. Turmeric and curcumin as topical agents in cancer therapy. Tumori 1987; 73(1): 29-31.
[http://dx.doi.org/10.1177/030089168707300105] [PMID: 2435036]
[46]
Ramachandran C, Fonseca HB, Jhabvala P, Escalon EA, Melnick SJ. Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett 2002; 184(1): 1-6.
[http://dx.doi.org/10.1016/S0304-3835(02)00192-1] [PMID: 12104041]
[47]
Ávila-Gálvez MÁ, González-Sarrías A, Martínez-Díaz F, et al. Disposition of dietary polyphenols in breast cancer patients’ tumors, and their associated anticancer activity: The particular case of curcumin. Mol Nutr Food Res 2021; 65(12): 2100163.
[http://dx.doi.org/10.1002/mnfr.202100163] [PMID: 33939887]
[48]
Martínez N, Herrera M, Frías L, et al. A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: Results of a pilot study. Clin Transl Oncol 2019; 21(4): 489-98.
[http://dx.doi.org/10.1007/s12094-018-1950-0] [PMID: 30293230]
[49]
Raymond YCF, Glenda CSL, Meng LK. Effects of high doses of vitamin C on cancer patients in Singapore. Integr Cancer Ther 2016; 15(2): 197-204.
[http://dx.doi.org/10.1177/1534735415622010] [PMID: 26679971]
[50]
Bayet-Robert M, Kwiatowski F, Leheurteur M, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 2010; 9(1): 8-14.
[http://dx.doi.org/10.4161/cbt.9.1.10392] [PMID: 19901561]
[51]
Feng M, Wang H, Zhu Z, et al. Sanhuang decoction controls tumor microenvironment by ameliorating chronic stress in breast cancer: A report of ninety cases. Front Oncol 2021; 11: 677939.
[http://dx.doi.org/10.3389/fonc.2021.677939] [PMID: 34485118]
[52]
Saghatelyan T, Tananyan A, Janoyan N, et al. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2020; 70: 153218.
[http://dx.doi.org/10.1016/j.phymed.2020.153218] [PMID: 32335356]
[53]
Banik U, Parasuraman S, Adhikary AK, Othman NH. Curcumin: The spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res 2017; 36(1): 98.
[http://dx.doi.org/10.1186/s13046-017-0566-5] [PMID: 28724427]
[54]
Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients 2019; 11(12): 2989.
[http://dx.doi.org/10.3390/nu11122989] [PMID: 31817718]
[55]
Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci (Lond) 2017; 131(15): 1781-99.
[http://dx.doi.org/10.1042/CS20160935] [PMID: 28679846]
[56]
Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14(14): 4491-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[57]
Lev-Ari S, Starr A, Katzburg S, et al. Curcumin induces apoptosis and inhibits growth of orthotopic human non-small cell lung cancer xenografts. J Nutr Biochem 2014; 25(8): 843-50.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.014] [PMID: 24835302]
[58]
Szarka CE, Pfeiffer GR, Hum ST, et al. Glutathione S-transferase activity and glutathione S-transferase mu expression in subjects with risk for colorectal cancer. Cancer Res 1995; 55(13): 2789-93.
[PMID: 7796404]
[59]
Sharma RA, McLelland HR, Hill KA, et al. Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer. Clin Cancer Res 2001; 7(7): 1894-900.
[PMID: 11448902]
[60]
Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin Cancer Res 2004; 10(20): 6847-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[61]
He ZY, Shi CB, Wen H, Li FL, Wang BL, Wang J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest 2011; 29(3): 208-13.
[http://dx.doi.org/10.3109/07357907.2010.550592] [PMID: 21314329]
[62]
Cruz-Correa M, Shoskes DA, Sanchez P, et al. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 2006; 4(8): 1035-8.
[http://dx.doi.org/10.1016/j.cgh.2006.03.020] [PMID: 16757216]
[63]
Howells LM, Iwuji COO, Irving GRB, et al. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr 2019; 149(7): 1133-9.
[http://dx.doi.org/10.1093/jn/nxz029] [PMID: 31132111]
[64]
Termini D, Den Hartogh DJ, Jaglanian A, Tsiani E. Curcumin against prostate cancer: Current evidence. Biomolecules 2020; 10(11): 1536.
[http://dx.doi.org/10.3390/biom10111536] [PMID: 33182828]
[65]
Jenster G. The role of the androgen receptor in the development and progression of prostate cancer. Semin Oncol 1999; 26(4): 407-21.
[PMID: 10482183]
[66]
Fabiani A, Morosetti C, Filosa A, et al. Effect on prostatic specific antigen by a short time treatment with a curcuma extract: A real life experience and implications for prostate biopsy. Arch Ital Urol Androl 2018; 90(2): 107-11.
[http://dx.doi.org/10.4081/aiua.2018.2.107] [PMID: 29974729]
[67]
Greil R, Greil-Ressler S, Weiss L, et al. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (Lipocurc) in patients with locally advanced or metastatic cancer. Cancer Chemother Pharmacol 2018; 82(4): 695-706.
[http://dx.doi.org/10.1007/s00280-018-3654-0] [PMID: 30074076]
[68]
Cohen JH, Kristal AR, Stanford JL. Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 2000; 92(1): 61-8.
[http://dx.doi.org/10.1093/jnci/92.1.61] [PMID: 10620635]
[69]
Jeffery EH, Keck AS. Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Mol Nutr Food Res 2008; 52 (Suppl. 1): S7-S17.
[PMID: 18327874]
[70]
Thomas R, Williams M, Sharma H, Chaudry A, Bellamy P. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer-the UK NCRN Pomi-T study. Prostate Cancer Prostatic Dis 2014; 17(2): 180-6.
[http://dx.doi.org/10.1038/pcan.2014.6] [PMID: 24614693]
[71]
van Die MD, Williams SG, Emery J, et al. A placebo-controlled double-blinded randomized pilot study of combination phytotherapy in biochemically recurrent prostate cancer. Prostate 2017; 77(7): 765-75.
[http://dx.doi.org/10.1002/pros.23317] [PMID: 28181675]
[72]
Ide H, Tokiwa S, Sakamaki K, et al. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 2010; 70(10): 1127-33.
[http://dx.doi.org/10.1002/pros.21147] [PMID: 20503397]
[73]
Ledda A, Belcaro G, Dugall M, et al. Meriva®, a lecithinized curcumin delivery system, in the control of benign prostatic hyperplasia: A pilot, product evaluation registry study. Panminerva Med 2012; 54(1) (Suppl. 4): 17-22.
[PMID: 23241931]
[74]
Qiao J, Gan Y, Gong Y, et al. Combination therapy with curcumin plus tamsulosin and finasteride in the treatment of men with benign prostatic hyperplasia: A single center, randomized control study. Transl Androl Urol 2021; 10(8): 3432-9.
[http://dx.doi.org/10.21037/tau-21-567] [PMID: 34532268]
[75]
Saadipoor A, Razzaghdoust A, Simforoosh N, et al. Randomized, double-blind, placebo-controlled phase II trial of nanocurcumin in prostate cancer patients undergoing radiotherapy. Phytother Res 2019; 33(2): 370-8.
[http://dx.doi.org/10.1002/ptr.6230] [PMID: 30427093]
[76]
Choi YH, Han DH, Kim S, et al. A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate 2019; 79(6): 614-21.
[http://dx.doi.org/10.1002/pros.23766] [PMID: 30671976]
[77]
Dützmann S, Schiborr C, Kocher A, et al. Intratumoral concentrations and effects of orally administered micellar curcuminoids in glioblastoma patients. Nutr Cancer 2016; 68(6): 943-8.
[http://dx.doi.org/10.1080/01635581.2016.1187281] [PMID: 27340742]
[78]
Esposito T, Schettino C, Polverino P, et al. Synergistic interplay between curcumin and polyphenol-rich foods in the mediterranean diet: Therapeutic prospects for neurofibromatosis 1 patients. Nutrients 2017; 9(7): 783.
[http://dx.doi.org/10.3390/nu9070783] [PMID: 28754004]
[79]
Hidayat Y, Wagey F, Suardi D, Susanto H, Laihad BJ, Tobing M. Analysis of curcumin as a radiosensitizer in cancer therapy with serum survivin examination: randomised control trial. Asian Pac J Cancer Prev 2021; 22(1): 139-43.
[http://dx.doi.org/10.31557/APJCP.2021.22.1.139] [PMID: 33507691]
[80]
Pastorelli D, Fabricio ASC, Giovanis P, et al. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol Res 2018; 132: 72-9.
[http://dx.doi.org/10.1016/j.phrs.2018.03.013] [PMID: 29614381]
[81]
Stancioiu F, Mihai D, Papadakis G, Tsatsakis A, Spandidos D, Badiu C. Treatment for benign thyroid nodules with a combination of natural extracts. Mol Med Rep 2019; 20(3): 2332-8.
[http://dx.doi.org/10.3892/mmr.2019.10453] [PMID: 31322200]
[82]
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[83]
Caruso F, Hyeon T, Rotello VM. Nanomedicine. Chem Soc Rev 2012; 41(7): 2537-8.
[http://dx.doi.org/10.1039/c2cs90005j] [PMID: 22388450]
[84]
Ban C, Jo M, Park YH, et al. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem 2020; 302: 125328.
[http://dx.doi.org/10.1016/j.foodchem.2019.125328] [PMID: 31404868]
[85]
Sabet S, Rashidinejad A, Melton LD, McGillivray DJ. Recent advances to improve curcumin oral bioavailability. Trends Food Sci Technol 2021; 110: 253-66.
[http://dx.doi.org/10.1016/j.tifs.2021.02.006]
[86]
Liu W, Zhai Y, Heng X, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target 2016; 24(8): 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[87]
Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 2014; 190: 465-76.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.042] [PMID: 24993430]
[88]
Gou M, Men K, Shi H, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 2011; 3(4): 1558-67.
[http://dx.doi.org/10.1039/c0nr00758g] [PMID: 21283869]
[89]
Ma Z, Shayeganpour A, Brocks DR, Lavasanifar A, Samuel J. High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed Chromatogr 2007; 21(5): 546-52.
[http://dx.doi.org/10.1002/bmc.795] [PMID: 17340565]
[90]
Song Z, Zhu W, Song J, et al. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (ɛ-caprolactone) copolymer micelles for the delivery of curcumin. Drug Deliv 2015; 22(1): 58-68.
[http://dx.doi.org/10.3109/10717544.2014.901436] [PMID: 24725028]
[91]
Song Z, Feng R, Sun M, et al. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 2011; 354(1): 116-23.
[http://dx.doi.org/10.1016/j.jcis.2010.10.024] [PMID: 21044788]
[92]
Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 2014; 58(3): 516-27.
[http://dx.doi.org/10.1002/mnfr.201300724] [PMID: 24402825]
[93]
Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MSH. Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech 2018; 19(6): 2719-39.
[http://dx.doi.org/10.1208/s12249-018-1098-9] [PMID: 29978290]
[94]
Gupta A, Costa AP, Xu X, et al. Formulation and characterization of curcumin loaded polymeric micelles produced via continuous processing. Int J Pharm 2020; 583: 119340.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119340] [PMID: 32305363]
[95]
Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int J Pharm 2022; 617: 121622.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121622] [PMID: 35227805]
[96]
Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci Biotechnol 2020; 29(2): 149-68.
[http://dx.doi.org/10.1007/s10068-019-00731-4] [PMID: 32064124]
[97]
Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm 2010; 76(3): 475-85.
[http://dx.doi.org/10.1016/j.ejpb.2010.07.011] [PMID: 20659556]
[98]
Cui J, Yu B, Zhao Y, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm 2009; 371(1-2): 148-55.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.009] [PMID: 19124065]
[99]
Li J, Hwang IC, Chen X, Park HJ. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocoll 2016; 60: 138-47.
[http://dx.doi.org/10.1016/j.foodhyd.2016.03.016]
[100]
Wang S, Chen P, Zhang L, Yang C, Zhai G. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. J Drug Target 2012; 20(10): 831-40.
[http://dx.doi.org/10.3109/1061186X.2012.719230] [PMID: 22934854]
[101]
Kaur K, Kumar R, Mehta SK. Nanoemulsion: A new medium to study the interactions and stability of curcumin with bovine serum albumin. J Mol Liq 2015; 209: 62-70.
[http://dx.doi.org/10.1016/j.molliq.2015.05.018]
[102]
Fu D, Tian Y, Wang Z, et al. Development of an Antarctic krill oil based self-microemulsion drug delivery system and its enhancement of bioaccessibility for curcumin. Food Biosci 2023; 53: 102762.
[http://dx.doi.org/10.1016/j.fbio.2023.102762]
[103]
Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem 2012; 132(2): 799-807.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.039] [PMID: 22868161]
[104]
Mufamadi MS, Pillay V, Choonara YE, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv 2011; 2011: 1-19.
[http://dx.doi.org/10.1155/2011/939851] [PMID: 21490759]
[105]
Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 2009; 125(1): 1-8.
[http://dx.doi.org/10.1002/ijc.24336] [PMID: 19326431]
[106]
Cheng C, Peng S, Li Z, Zou L, Liu W, Liu C. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances 2017; 7(42): 25978-86.
[http://dx.doi.org/10.1039/C7RA02861J]
[107]
Woźniak M, Nowak M, Lazebna A, et al. The comparison of in vitro photosensitizing efficacy of curcumin-loaded liposomes following photodynamic therapy on melanoma MUG-Mel2, squamous cell carcinoma SCC-25, and normal keratinocyte HaCaT cells. Pharmaceuticals 2021; 14(4): 374.
[http://dx.doi.org/10.3390/ph14040374] [PMID: 33920669]
[108]
Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces 2019; 11(19): 17184-92.
[http://dx.doi.org/10.1021/acsami.9b01218] [PMID: 30924639]
[109]
Tai K, Rappolt M, He X, et al. Effect of β-sitosterol on the curcumin-loaded liposomes: Vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food Chem 2019; 293: 92-102.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.077] [PMID: 31151654]
[110]
Tang CH. Nanocomplexation of proteins with curcumin: From interaction to nanoencapsulation (A review). Food Hydrocoll 2020; 109: 106106.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106106]
[111]
Yang M, Wu Y, Li J, Zhou H, Wang X. Binding of curcumin with bovine serum albumin in the presence of ι-carrageenan and implications on the stability and antioxidant activity of curcumin. J Agric Food Chem 2013; 61(29): 7150-5.
[http://dx.doi.org/10.1021/jf401827x] [PMID: 23819626]
[112]
Pan K, Luo Y, Gan Y, Baek SJ, Zhong Q. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter 2014; 10(35): 6820-30.
[http://dx.doi.org/10.1039/C4SM00239C] [PMID: 25082426]
[113]
Taghavi Kevij H, Mohammadian M, Salami M. Complexation of curcumin with whey protein isolate for enhancing its aqueous solubility through a solvent-free pH-driven approach. J Food Process Preserv 2019; 43(12): e14227.
[http://dx.doi.org/10.1111/jfpp.14227]
[114]
Song W, Chen X, Dai C, et al. Comparative study of preparation, evaluation, and pharmacokinetics in beagle dogs of curcumin β- cyclodextrin inclusion complex, curcumin solid dispersion, and curcumin phospholipid complex. Molecules 2022; 27(9): 2998.
[http://dx.doi.org/10.3390/molecules27092998] [PMID: 35566349]
[115]
Gülseren İ, Guri A, Corredig M. Effect of interfacial composition on uptake of curcumin–piperine mixtures in oil in water emulsions by Caco-2 cells. Food Funct 2014; 5(6): 1218-23.
[http://dx.doi.org/10.1039/c3fo60554j] [PMID: 24710007]
[116]
Grill AE, Koniar B, Panyam J. Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv Transl Res 2014; 4(4): 344-52.
[http://dx.doi.org/10.1007/s13346-014-0199-6] [PMID: 25422796]
[117]
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 64(4): 353-6.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[118]
Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother Res 2023; 37(4): 1462-87.
[http://dx.doi.org/10.1002/ptr.7737] [PMID: 36720711]
[119]
Vecchione R, Quagliariello V, Calabria D, et al. Curcumin bioavailability from oil in water nano-emulsions: In vitro and in vivo study on the dimensional, compositional and interactional dependence. J Control Release 2016; 233: 88-100.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.004] [PMID: 27155364]
[120]
Wang R, Han J, Jiang A, et al. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. Int J Pharm 2019; 561: 9-18.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.027] [PMID: 30817985]
[121]
Zhang J, Kulik HJ, Martinez TJ, Klinman JP. Mediation of donor–acceptor distance in an enzymatic methyl transfer reaction. Proc Natl Acad Sci USA 2015; 112(26): 7954-9.
[http://dx.doi.org/10.1073/pnas.1506792112] [PMID: 26080432]
[122]
Smith AD, Page BDG, Collier AC, Coughtrie MWH. Homology modeling of human uridine-5′-diphosphate-glucuronosyltransferase 1A6 reveals insights into factors influencing substrate and cosubstrate binding. ACS Omega 2020; 5(12): 6872-87.
[http://dx.doi.org/10.1021/acsomega.0c00205] [PMID: 32258923]
[123]
Yasuda K, Ikushiro S, Kamakura M, Munetsuna E, Ohta M, Sakaki T. Sequential metabolism of sesamin by cytochrome P450 and UDP-glucuronosyltransferase in human liver. Drug Metab Dispos 2011; 39(9): 1538-45.
[http://dx.doi.org/10.1124/dmd.111.039875] [PMID: 21622626]
[124]
Ruefer CE, Gerhäuser C, Frank N, Becker H, Kulling SE. In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Mol Nutr Food Res 2005; 49(9): 851-6.
[http://dx.doi.org/10.1002/mnfr.200500057] [PMID: 16092069]
[125]
Moorthi C, Kathiresan K. Curcumin-piperine/curcumin-quercetin/curcumin-silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J Med Hypotheses Ideas 2013; 7(1): 15-20.
[http://dx.doi.org/10.1016/j.jmhi.2012.10.005]
[126]
Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother 2018; 105: 274-81.
[http://dx.doi.org/10.1016/j.biopha.2018.05.135] [PMID: 29860219]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy