Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Nature's Remedy: Exploring Herbal Treatments for Polycystic Ovarian Syndrome

Author(s): Meenakshi Attri, Asha Raghav* and Hema Chaudhary

Volume 5, 2024

Published on: 23 May, 2024

Article ID: e230524230248 Pages: 17

DOI: 10.2174/0126659786282036240503112128

Price: $65

TIMBC 2025
Abstract

Polycystic Ovarian Syndrome (PCOS) is a complex condition characterized by chronic ovulation issues and hyperandrogenism, affecting approximately 6% to 20% of women of reproductive age, depending on diagnostic criteria. Symptoms typically manifest during early adolescence, presenting as irregular menstrual cycles, anovulation, and acne. While some mechanisms underlying PCOS development have been identified, its precise etiology and pathophysiology remain elusive.

This article delves into the pathogenesis and management of PCOS by exploring relevant literature on PubMed. Various contributing factors to PCOS were meticulously examined, including epigenetics, environmental toxins, stress, diet, inflammation, oxidative stress, hyperandrogenism, insulin resistance, and obesity. This review examines the importance of herbal remedies in addressing Polycystic Ovarian Syndrome (PCOS), focusing on the chemical makeup, mode of action, and therapeutic uses of specific herbal medications targeting PCOS. However, despite this investigation, there remains a significant gap in completed clinical trials on repurposed drugs for PCOS, often with small sample sizes and inconclusive outcomes. Given the limited research in this area, further studies and carefully planned clinical trials are warranted to understand PCOS and its management better. Additionally, gaining deeper insights into PCOS could facilitate the development of novel drugs targeting newly discovered pathways, thereby improving treatment options for individuals affected by this syndrome.

Keywords: Polycystic ovarian syndrome, insulin resistance, hyperandrogenism, pathogenesis, herbal medicine, menstrual cycles.

[1]
Deans, R. Polycystic ovary syndrome in adolescence. Med. Sci., 2019, 7(10), 101.
[http://dx.doi.org/10.3390/medsci7100101 ] [PMID: 31581747]
[2]
Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls. J. Endocr. Soc., 2019, 3(8), 1545-1573.
[http://dx.doi.org/10.1210/js.2019-00078] [PMID: 31384717]
[3]
Polycystic Ovary Syndrome. Available online: https://www.womenshealth.gov/a-z-topics/polycystic-ovary-syndrome (accessed on 22 September 2021).
[4]
Bednarska, S.; Siejka, A. The pathogenesis and treatment of polycystic ovary syndrome: What’s new? Adv. Clin. Exp. Med., 2017, 26(2), 359-367.
[http://dx.doi.org/10.17219/acem/59380] [PMID: 28791858]
[5]
Ganie, M.; Vasudevan, V.; Wani, I.; Baba, M.; Arif, T.; Rashid, A. Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India. Indian J. Med. Res., 2019, 150(4), 333-344.
[http://dx.doi.org/10.4103/ijmr.IJMR_1937_17] [PMID: 31823915]
[6]
Glueck, C.J.; Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism, 2019, 92, 108-120.
[http://dx.doi.org/10.1016/j.metabol.2018.11.002] [PMID: 30445140]
[7]
Damone, A.L.; Joham, A.E.; Loxton, D.; Earnest, A.; Teede, H.J.; Moran, L.J. Depression, anxiety and perceived stress in women with and without PCOS: a community-based study. Psychol. Med., 2019, 49(9), 1510-1520.
[http://dx.doi.org/10.1017/S0033291718002076] [PMID: 30131078]
[8]
Escobar-Morreale, H.F. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol., 2018, 14(5), 270-284.
[http://dx.doi.org/10.1038/nrendo.2018.24] [PMID: 29569621]
[9]
Mohammad Sadeghi, H.; Adeli, I.; Mousavi, T.; Daniali, M.; Nikfar, S.; Abdollahi, M. Drug repurposing for the management of depression: Where Do We Stand Currently? Life, 2021, 11(8), 774.
[http://dx.doi.org/10.3390/life11080774] [PMID: 34440518]
[10]
Differential Diagnosis of PCOS. Available online: https://www.verywellhealth.com/what-is-the-differential-diagnosis-of-pcos2616642 (accessed on 6 December 2021).
[11]
Witchel, S.F.; Burghard, A.C.; Tao, R.H.; Oberfield, S.E. The diagnosis and treatment of PCOS in adolescents: An update. Curr. Opin. Pediatr., 2019, 31(4), 562-569.
[http://dx.doi.org/10.1097/MOP.0000000000000778 ] [PMID: 31299022]
[12]
Polycystic Ovary Syndrome (PCOS). Available online: https://www.mayoclinic.org/diseases-conditions/pcos/diagnosistreatment/drc-20353443(accessed on 6 December 2021).
[13]
Diagnosis of Polycystic Ovary Syndrome. Available online: https://www.nhs.uk/conditions/polycystic-ovary-syndrome-pcos/diagnosis/(accessed on 22 September 2021).
[14]
European Society of Human Reproduction and Embryology. International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome., 2018. Available online: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/(accessed on 22 September 2021).
[15]
Ilie, I.R.; Georgescu, C.E. Polycystic ovary syndrome-epigenetic mechanisms and aberrant MicroRNA. Adv. Clin. Chem., 2015, 71, 25-45.
[http://dx.doi.org/10.1016/bs.acc.2015.06.001] [PMID: 26411410]
[16]
Casadesús, J.; Noyer-Weidner, M. Epigenetics.Brenner’s Encyclopedia of Genetics; 2nd ed; Maloy, S.; Hughes, K., Eds.; Academic Press: San Diego, CA, USA, 2013, pp. 500-503.
[http://dx.doi.org/10.1016/B978-0-12-374984-0.00480-0]
[17]
Sagvekar, P.; Dadachanji, R.; Patil, K.; Mukherjee, S. Pathomechanisms of polycystic ovary syndrome: Multidimensional approaches. Front. Biosci. (Elite Ed.), 2018, 10(3), 384-422.
[PMID: 29293465]
[18]
Ibáñez, L.; Oberfield, S.E.; Witchel, S.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.S.; Gambineri, A.; Garcia Rudaz, C.; Hoeger, K.M.; López-Bermejo, A.; Ong, K.; Peña, A.S.; Reinehr, T.; Santoro, N.; Tena-Sempere, M.; Tao, R.; Yildiz, B.O.; Alkhayyat, H.; Deeb, A.; Joel, D.; Horikawa, R.; de Zegher, F.; Lee, P.A. An international consortium update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr., 2017, 88(6), 371-395.
[http://dx.doi.org/10.1159/000479371] [PMID: 29156452]
[19]
Fenichel, P.; Rougier, C.; Hieronimus, S.; Chevalier, N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both? Ann. Endocrinol. (Paris), 2017, 78(3), 176-185.
[http://dx.doi.org/10.1016/j.ando.2017.04.024] [PMID: 28606381]
[20]
Abbott, D.H.; Dumesic, D.A.; Levine, J.E. Hyperandrogenic origins of polycystic ovary syndrome implications for pathophysiology and therapy. Expert Rev. Endocrinol. Metab., 2019, 14(2), 131-143.
[http://dx.doi.org/10.1080/17446651.2019.1576522 ] [PMID: 30767580]
[21]
Rutkowska, A.Z.; Diamanti-Kandarakis, E. Polycystic ovary syndrome and environmental toxins. Fertil. Steril., 2016, 106(4), 948-958.
[http://dx.doi.org/10.1016/j.fertnstert.2016.08.031] [PMID: 27559705]
[22]
Qu, F.; Wang, F.F.; Yin, R.; Ding, G.L.; El-prince, M.; Gao, Q.; Shi, B.W.; Pan, H.H.; Huang, Y.T.; Jin, M.; Leung, P.C.K.; Sheng, J.Z.; Huang, H.F. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J. Mol. Med., 2012, 90(8), 911-923.
[http://dx.doi.org/10.1007/s00109-012-0881-4] [PMID: 22349439]
[23]
Li, Y.; Chen, C.; Ma, Y.; Xiao, J.; Luo, G.; Li, Y.; Wu, D. Multi-system reproductive metabolic disorder: Significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci., 2019, 228, 167-175.
[http://dx.doi.org/10.1016/j.lfs.2019.04.046] [PMID: 31029778]
[24]
Rocha, A.L.; Oliveira, F.R.; Azevedo, R.C.; Silva, V.A.; Peres, T.M.; Candido, A.L.; Gomes, K.B.; Reis, F.M. Recent advances in the understanding and management of polycystic ovary syndrome. F1000 Res., 2019, 8, 565.
[http://dx.doi.org/10.12688/f1000research.15318.1 ] [PMID: 31069057]
[25]
Jones, L.; Regan, F. Endocrine Disrupting Chemicals. Encyclopedia of Analytical Science; 3rd ed; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds.; Academic Press: Oxford, UK, , 2019, pp. 31-38.
[26]
Merkin, S.S.; Phy, J.L.; Sites, C.K.; Yang, D. Environmental determinants of polycystic ovary syndrome. Fertil. Steril., 2016, 106(1), 16-24.
[http://dx.doi.org/10.1016/j.fertnstert.2016.05.011] [PMID: 27240194]
[27]
Calina, D.; Docea, A.; Golokhvast, K.; Sifakis, S.; Tsatsakis, A.; Makrigiannakis, A. Management of endocrinopathies in pregnancy: A review of current evidence. Int. J. Environ. Res. Public Health, 2019, 16(5), 781.
[http://dx.doi.org/10.3390/ijerph16050781] [PMID: 30836653]
[28]
Sobolewski, M.; Barrett, E. Polycystic ovary syndrome: do endocrine-disrupting chemicals play a role? Semin. Reprod. Med., 2014, 32(3), 166-176.
[http://dx.doi.org/10.1055/s-0034-1371088] [PMID: 24715511]
[29]
Soave, I.; Occhiali, T.; Assorgi, C.; Marci, R.; Caserta, D. Environmental toxin exposure in polycystic ovary syndrome women and possible ovarian neoplastic repercussion. Curr. Med. Res. Opin., 2020, 36(4), 693-703.
[http://dx.doi.org/10.1080/03007995.2020.1729108 ] [PMID: 32046531]
[30]
Palioura, E.; Diamanti-Kandarakis, E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev. Endocr. Metab. Disord., 2015, 16(4), 365-371.
[http://dx.doi.org/10.1007/s11154-016-9326-7] [PMID: 26825073]
[31]
Palioura, E.; Diamanti-Kandarakis, E. Industrial endocrine disruptors and polycystic ovary syndrome. J. Endocrinol. Invest., 2013, 36(11), 1105-1111.
[http://dx.doi.org/10.1007/BF03346762] [PMID: 24445124]
[32]
Wang, J.; Wu, D.; Guo, H.; Li, M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci., 2019, 236, 116940.
[http://dx.doi.org/10.1016/j.lfs.2019.116940] [PMID: 31604107]
[33]
Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: Implications for health and disease. Hormones, 2018, 17(1), 33-43.
[http://dx.doi.org/10.1007/s42000-018-0023-7] [PMID: 29858868]
[34]
Steegers-Theunissen, R.P.M.; Wiegel, R.E.; Jansen, P.W.; Laven, J.S.E.; Sinclair, K.D. Polycystic ovary syndrome: A brain disorder characterized by eating problems originating during puberty and adolescence. Int. J. Mol. Sci., 2020, 21(21), 8211.
[http://dx.doi.org/10.3390/ijms21218211] [PMID: 33153014]
[35]
Yang, S.; Yang, C.; Pei, R.; Li, C.; Li, X.; Huang, X.; Wu, S.; Liu, D. Investigation on the association of occupational stress with risk of polycystic ovary syndrome and mediating effects of HOMA-IR. Gynecol. Endocrinol., 2018, 34(11), 961-964.
[http://dx.doi.org/10.1080/09513590.2018.1460340 ] [PMID: 30044172]
[36]
Szczuko, M.; Kikut, J.; Szczuko, U. Szydłowska, I.; Nawrocka-Rutkowska, J.; Ziętek, M.; Verbanac, D.; Saso, L. Nutrition strategy and life style in polycystic ovary syndrome—narrative review. Nutrients, 2021, 13(7), 2452.
[http://dx.doi.org/10.3390/nu13072452] [PMID: 34371961]
[37]
Faghfoori, Z.; Fazelian, S.; Shadnoush, M.; Goodarzi, R. Nutritional management in women with polycystic ovary syndrome: A review study. Diabetes Metab. Syndr., 2017, 11(Suppl. 1), S429-S432.
[http://dx.doi.org/10.1016/j.dsx.2017.03.030] [PMID: 28416368]
[38]
Muscogiuri, G.; Altieri, B.; de Angelis, C.; Palomba, S.; Pivonello, R.; Colao, A.; Orio, F. Shedding new light on female fertility: The role of vitamin D. Rev. Endocr. Metab. Disord., 2017, 18(3), 273-283.
[http://dx.doi.org/10.1007/s11154-017-9407-2] [PMID: 28102491]
[39]
Ciebiera, M.; Esfandyari, S.; Siblini, H.; Prince, L.; Elkafas, H. Wojtyła, C.; Al-Hendy, A.; Ali, M. Nutrition in gynecological diseases: Current perspectives. Nutrients, 2021, 13(4), 1178.
[http://dx.doi.org/10.3390/nu13041178] [PMID: 33918317]
[40]
Greenwood, E.A.; Huddleston, H.G. Insulin resistance in polycystic ovary syndrome: Concept versus cutoff. Fertil. Steril., 2019, 112(5), 827-828.
[http://dx.doi.org/10.1016/j.fertnstert.2019.08.100] [PMID: 31731944]
[41]
Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A. Endocrine disruptors leading to obesity and related diseases. Int. J. Environ. Res. Public Health, 2017, 14(10), 1282.
[http://dx.doi.org/10.3390/ijerph14101282] [PMID: 29064461]
[42]
Shang, Y.; Zhou, H.; Hu, M.; Feng, H. Effect of diet on insulin resistance in polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2020, 105(10), 3346-3360.
[http://dx.doi.org/10.1210/clinem/dgaa425] [PMID: 32621748]
[43]
Dabadghao, P. Polycystic ovary syndrome in adolescents. Best Pract. Res. Clin. Endocrinol. Metab., 2019, 33(3), 101272.
[http://dx.doi.org/10.1016/j.beem.2019.04.006] [PMID: 31027973]
[44]
Rosenfield, R.L.; Ehrmann, D.A. The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev., 2016, 37(5), 467-520.
[http://dx.doi.org/10.1210/er.2015-1104 ] [PMID: 27459230]
[45]
Rothenberg, S.S.; Beverley, R.; Barnard, E.; Baradaran-Shoraka, M.; Sanfilippo, J.S. Polycystic ovary syndrome in adolescents. Best Pract. Res. Clin. Obstet. Gynaecol., 2018, 48, 103-114.
[http://dx.doi.org/10.1016/j.bpobgyn.2017.08.008] [PMID: 28919160]
[46]
Jeanes, Y.M.; Reeves, S. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: Diagnostic and methodological challenges. Nutr. Res. Rev., 2017, 30(1), 97-105.
[http://dx.doi.org/10.1017/S0954422416000287] [PMID: 28222828]
[47]
Polak, K.; Czyzyk, A.; Simoncini, T.; Meczekalski, B. New markers of insulin resistance in polycystic ovary syndrome. J. Endocrinol. Invest., 2017, 40(1), 1-8.
[http://dx.doi.org/10.1007/s40618-016-0523-8] [PMID: 27473078]
[48]
Zhang, C.; Hu, J.; Wang, W.; Sun, Y.; Sun, K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J., 2020, 34(7), 9563-9574.
[http://dx.doi.org/10.1096/fj.202000605RR] [PMID: 32469087]
[49]
He, F.; Li, Y. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J. Ovarian Res., 2020, 13(1), 73.
[http://dx.doi.org/10.1186/s13048-020-00670-3] [PMID: 32552864]
[50]
Bannigida, D.M.; Nayak, B.S.; Vijayaraghavan, R. Insulin resistance and oxidative marker in women with PCOS. Arch. Physiol. Biochem., 2020, 126(2), 183-186.
[http://dx.doi.org/10.1080/13813455.2018.1499120 ] [PMID: 30450993]
[51]
Avery, P.J.; Jorgensen, A.; Hamberg, A.K.; Wadelius, M.; Pirmohamed, M.; Kamali, F. A proposal for an individualized pharmacogenetics-based warfarin initiation dose regimen for patients commencing anticoagulation therapy. Clin. Pharmacol. Ther., 2011, 90(5), 701-706.
[http://dx.doi.org/10.1038/clpt.2011.186] [PMID: 22012312]
[52]
Zeng, X.; Xie, Y.; Liu, Y.; Long, S.; Mo, Z. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta, 2020, 502, 214-221.
[http://dx.doi.org/10.1016/j.cca.2019.11.003] [PMID: 31733195]
[53]
Docea, A.O.; Vassilopoulou, L.; Fragou, D.; Arsene, A.L.; Fenga, C.; Kovatsi, L.; Petrakis, D.; Rakitskii, V.N.; Nosyrev, A.E.; Izotov, B.N.; Golokhvast, K.S.; Zakharenko, A.M.; Vakis, A.; Tsitsimpikou, C.; Drakoulis, N. CYP polymorphisms and pathological conditions related to chronic exposure to organochlorine pesticides. Toxicol. Rep., 2017, 4, 335-341.
[http://dx.doi.org/10.1016/j.toxrep.2017.05.007] [PMID: 28959657]
[54]
Cassar, S.; Misso, M.L.; Hopkins, W.G.; Shaw, C.S.; Teede, H.J.; Stepto, N.K. Insulin resistance in polycystic ovary syndrome: A systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum. Reprod., 2016, 31(11), 2619-2631.
[http://dx.doi.org/10.1093/humrep/dew243] [PMID: 27907900]
[55]
Condorelli, R.A.; Calogero, A.E.; Di Mauro, M.; La Vignera, S. PCOS and diabetes mellitus: From insulin resistance to altered beta pancreatic function, a link in evolution. Gynecol. Endocrinol., 2017, 33(9), 665-667.
[http://dx.doi.org/10.1080/09513590.2017.1342240] [PMID: 28644709]
[56]
Lizneva, D.; Gavrilova-Jordan, L.; Walker, W.; Azziz, R. Androgen excess: Investigations and management. Best Pract. Res. Clin. Obstet. Gynaecol., 2016, 37, 98-118.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.05.003] [PMID: 27387253]
[57]
Macut, D. Bjekić-Macut, J.; Rahelić, D.; Doknić, M. Insulin and the polycystic ovary syndrome. Diabetes Res. Clin. Pract., 2017, 130, 163-170.
[http://dx.doi.org/10.1016/j.diabres.2017.06.011] [PMID: 28646699]
[58]
Baskind, N.E.; Balen, A.H. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol., 2016, 37, 80-97.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.03.005] [PMID: 27137106]
[59]
Ianoşi, S.; Ianoşi, G.; Neagoe, D.; Ionescu, O.; Zlatian, O.; Docea, A.O.; Badiu, C.; Sifaki, M.; Tsoukalas, D.; Tsatsakis, A.M.; Spandidos, D.A.; Călina, D. Age-dependent endocrine disorders involved in the pathogenesis of refractory acne in women. Mol. Med. Rep., 2016, 14(6), 5501-5506.
[http://dx.doi.org/10.3892/mmr.2016.5924 ] [PMID: 27840992]
[60]
Moore, A.M.; Campbell, R.E. Polycystic ovary syndrome: Understanding the role of the brain. Front. Neuroendocrinol., 2017, 46, 1-14.
[http://dx.doi.org/10.1016/j.yfrne.2017.05.002] [PMID: 28551304]
[61]
Coyle, C.; Campbell, R.E. Pathological pulses in PCOS. Mol. Cell. Endocrinol., 2019, 498, 110561.
[http://dx.doi.org/10.1016/j.mce.2019.110561] [PMID: 31461666]
[62]
Ruddenklau, A.; Campbell, R.E. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology, 2019, 160(10), 2230-2242.
[http://dx.doi.org/10.1210/en.2019-00428] [PMID: 31265059]
[63]
Zhu, J.; Chen, Z.; Feng, W.; Long, S.; Mo, Z.C. Sex hormone-binding globulin and polycystic ovary syndrome. Clin. Chim. Acta, 2019, 499, 142-148.
[http://dx.doi.org/10.1016/j.cca.2019.09.010] [PMID: 31525346]
[64]
Li, Y.; Zheng, Q.; Sun, D.; Cui, X.; Chen, S.; Bulbul, A.; Liu, S.; Yan, Q. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J. Cell. Physiol., 2019, 234(5), 7435-7447.
[http://dx.doi.org/10.1002/jcp.27501] [PMID: 30580448]
[65]
Sanchez-Garrido, M.A.; Tena-Sempere, M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol. Metab., 2020, 35, 100937.
[http://dx.doi.org/10.1016/j.molmet.2020.01.001] [PMID: 32244180]
[66]
Liu, Y.; Liu, H.; Li, Z.; Fan, H.; Yan, X.; Liu, X.; Xuan, J.; Feng, D.; Wei, X. The release of peripheral immune inflammatory cytokines promote an inflammatory cascade in PCOS patients via altering the follicular microenvironment. Front. Immunol., 2021, 12, 685724.
[http://dx.doi.org/10.3389/fimmu.2021.685724] [PMID: 34079559]
[67]
Zuo, T.; Zhu, M.; Xu, W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid. Med. Cell. Longev., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/8589318] [PMID: 26770659]
[68]
Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic low grade inflammation in pathogenesis of PCOS. Int. J. Mol. Sci., 2021, 22(7), 3789.
[http://dx.doi.org/10.3390/ijms22073789] [PMID: 33917519]
[69]
Shorakae, S.; Ranasinha, S.; Abell, S.; Lambert, G.; Lambert, E.; de Courten, B.; Teede, H. Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clin. Endocrinol., 2018, 89(5), 628-633.
[http://dx.doi.org/10.1111/cen.13808] [PMID: 29992612]
[70]
Stepto, N.K.; Moreno-Asso, A.; McIlvenna, L.C.; Walters, K.A.; Rodgers, R.J. Molecular mechanisms of insulin resistance in polycystic ovary syndrome: Unraveling the conundrum in skeletal muscle? J. Clin. Endocrinol. Metab., 2019, 104(11), 5372-5381.
[http://dx.doi.org/10.1210/jc.2019-00167] [PMID: 30938770]
[71]
Mancini, A.; Bruno, C.; Vergani, E.; d’Abate, C.; Giacchi, E.; Silvestrini, A. Oxidative stress and low-grade inflammation in polycystic ovary syndrome: Controversies and new insights. Int. J. Mol. Sci., 2021, 22(4), 1667.
[http://dx.doi.org/10.3390/ijms22041667] [PMID: 33562271]
[72]
Mizgier, M. Jarząbek-Bielecka, G.; Wendland, N.; Jodłowska-Siewert, E.; Nowicki, M.; Brożek, A.; Kędzia, W.; Formanowicz, D.; Opydo-Szymaczek, J. Relation between inflammation, oxidative stress, and macronutrient intakes in normal and excessive body weight adolescent girls with clinical features of polycystic ovary syndrome. Nutrients, 2021, 13(3), 896.
[http://dx.doi.org/10.3390/nu13030896] [PMID: 33801995]
[73]
Zhang, R.; Liu, H.; Bai, H.; Zhang, Y.; Liu, Q.; Guan, L.; Fan, P. Oxidative stress status in Chinese women with different clinical phenotypes of polycystic ovary syndrome. Clin. Endocrinol., 2017, 86(1), 88-96.
[http://dx.doi.org/10.1111/cen.13171] [PMID: 27489079]
[74]
Liu, Y.; Yu, Z.; Zhao, S.; Cheng, L.; Man, Y.; Gao, X.; Zhao, H. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J. Assist. Reprod. Genet., 2021, 38(2), 471-477.
[http://dx.doi.org/10.1007/s10815-020-02014-y] [PMID: 33216309]
[75]
Di Segni, C.; Silvestrini, A.; Fato, R.; Bergamini, C.; Guidi, F.; Raimondo, S.; Meucci, E.; Romualdi, D.; Apa, R.; Lanzone, A.; Mancini, A. Plasmatic and intracellular markers of oxidative stress in normal weight and obese patients with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes, 2017, 125(8), 506-513.
[http://dx.doi.org/10.1055/s-0043-111241] [PMID: 28675914]
[76]
Lai, Q.; Xiang, W.; Li, Q.; Zhang, H.; Li, Y.; Zhu, G.; Xiong, C.; Jin, L. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front. Med., 2018, 12(5), 518-524.
[http://dx.doi.org/10.1007/s11684-017-0575-y] [PMID: 29260383]
[77]
Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol., 2018, 16(1), 80.
[http://dx.doi.org/10.1186/s12958-018-0391-5] [PMID: 30126412]
[78]
Uyanikoglu, H.; Sabuncu, T.; Dursun, H.; Sezen, H.; Aksoy, N. Circulating levels of apoptotic markers and oxidative stress parameters in women with polycystic ovary syndrome: A case-controlled descriptive study. Biomarkers, 2017, 22(7), 1-5.
[http://dx.doi.org/10.1080/1354750X.2016.1265004 ] [PMID: 27899026]
[79]
Özer, A.; Bakacak, M. Kıran, H.; Ercan, Ö.; Köstü, B.; Kanat-Pektaş, M.; Kılınç, M.; Aslan, F. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome. Ginekol. Pol., 2016, 87(11), 733-738.
[http://dx.doi.org/10.5603/GP.2016.0079] [PMID: 27958630]
[80]
Guzmán Hernández, E.A.; Díaz Portillo, S.A.; Villafuerte Anaya, Ó.C.; González Valle, M.D.R.; Benítez Flores, J.D.C.; Chávez, R.S.M.; Galindo, G.C.; Mondragón, L.D.V.; Cobos, D.S.; Guerrero, G.A.M. Renoprotective and hepatoprotective effects of hippocratea excelsa on metabolic syndrome in fructose-fed rats. Farmacia, 2020, 68(6), 1106-1119.
[http://dx.doi.org/10.31925/farmacia.2020.6.19]
[81]
Delitala, A.P.; Capobianco, G.; Delitala, G.; Cherchi, P.L.; Dessole, S. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch. Gynecol. Obstet., 2017, 296(3), 405-419.
[http://dx.doi.org/10.1007/s00404-017-4429-2] [PMID: 28643028]
[82]
Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol., 2017, 7(3), 765-781.
[http://dx.doi.org/10.1002/cphy.c160043] [PMID: 28640441]
[83]
Dumesic, D.A.; Abbott, D.H.; Sanchita, S.; Chazenbalk, G.D. Endocrine-metabolic dysfunction in polycystic ovary syndrome: An evolutionary perspective. Curr. Opin. Endocr. Metab. Res., 2020, 12, 41-48.
[http://dx.doi.org/10.1016/j.coemr.2020.02.013] [PMID: 32363240]
[84]
Sadeghi, H.M.; Adeli, I.; Calina, D.; Docea, A.O.; Mousavi, T.; Daniali, M.; Nikfar, S.; Tsatsakis, A.; Abdollahi, M. Polycystic ovary syndrome: A comprehensive review of pathogenesis, management, and drug repurposing. Int. J. Mol. Sci., 2022, 23(2), 583.
[http://dx.doi.org/10.3390/ijms23020583] [PMID: 35054768]
[85]
Legro, R.S.; Barnhart, H.X.; Schlaff, W.D.; Carr, B.R.; Diamond, M.P.; Carson, S.A.; Steinkampf, M.P.; Coutifaris, C.; McGovern, P.G.; Cataldo, N.A.; Gosman, G.G.; Nestler, J.E.; Giudice, L.C.; Leppert, P.C.; Myers, E.R. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N. Engl. J. Med., 2007, 356(6), 551-566.
[http://dx.doi.org/10.1056/NEJMoa063971] [PMID: 17287476]
[86]
Armanini, D.; Castello, R.; Scaroni, C.; Bonanni, G.; Faccini, G.; Pellati, D.; Bertoldo, A.; Fiore, C.; Moghetti, P. Treatment of polycystic ovary syndrome with spironolactone plus licorice. Eur. J. Obstet. Gynecol. Reprod. Biol., 2007, 131(1), 61-67.
[http://dx.doi.org/10.1016/j.ejogrb.2006.10.013] [PMID: 17113210]
[87]
Felemban, A.; Tan, S.L.; Tulandi, T. Laparoscopic treatment of polycystic ovaries with insulated needle cautery: A reappraisal. Fertil. Steril., 2000, 73(2), 266-269.
[http://dx.doi.org/10.1016/S0015-0282(99)00534-8 ] [PMID: 10685526]
[88]
Kwon, C.Y.; Cho, I.H.; Park, K.S. Therapeutic effects and mechanisms of herbal medicines for treating polycystic ovary syndrome: A review. Front. Pharmacol., 2020, 11, 1192.
[http://dx.doi.org/10.3389/fphar.2020.01192] [PMID: 32903374]
[89]
Goswami, P.K.; Khale, A. Natural remedies for polycystic ovarian syndrome (PCOS): A review. Int. J. Pharm. Phytopharm. Res., 2012, 1, 396-402.
[90]
Abasian, Z.; Rostamzadeh, A.; Mohammadi, M.; Hosseini, M.; Rafieian-kopaei, M. A review on role of medicinal plants in polycystic ovarian syndrome: Pathophysiology, neuroendocrine signaling, therapeutic status and future prospects. Middle East Fertil. Soc. J., 2018, 23(4), 255-262.
[http://dx.doi.org/10.1016/j.mefs.2018.04.005]
[91]
Miller, L.G.; Murray, W.J. Herbal Medicinals: A Clinician’s Guide; Routledge: London, UK, 1998, p. 326.
[92]
Tilburt, J.C.; Kaptchuk, T.J. Bulletin of the World Health Organization; 86th ed; World Health Organization, 2008, pp. 594-599.
[93]
Anonymous. Zanzibar Traditional and Alternative Medicine Policy, Ministry of Health and Social Welfare in Collaboration with: World Health Organization. 2008. [(accessed on 15 September 2021)]. Available online: https://www.afro.who.int/publications/zanzibar-traditional-and-alternative-medicine-policy-2008
[94]
Benzie, I.F.; Galor, S.W. Herbal Medicine: Biomolecular and Clinical Aspects; CRC Press: Boca Raton, FL, USA, 2011, p. 7.
[http://dx.doi.org/10.1201/b10787]
[95]
Lakshmi, J.N.; Babu, A.N.; Kiran, S.S.M.; Nori, L.P.; Hassan, N.; Ashames, A.; Bhandare, R.R.; Shaik, A.B. Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review. BioTech, 2023, 12(1), 4.
[http://dx.doi.org/10.3390/biotech12010004 ] [PMID: 36648830]
[96]
Wal, A.; Wal, P.; Saraswat, N.; Wadhwa, S. A detailed review on herbal treatments for treatment of PCOS-polycystic ovary syndrome (PCOS). Current Nutraceuticals, 2021, 2(3), 192-202.
[http://dx.doi.org/10.2174/2665978602666210805092103]
[97]
Khandelwal, R.; Nathani, S. An ayurvedic approach to PCOS: Aleading cause of female infertility. Int. J. Ayurveda Res., 2016, 1(3), 77-82.
[98]
Healthy living. Saraca asoca bark. Available from: https://healthyliving.natureloc.com/wp-content/uploads/2016/08/Ashoka-Bark4.jpg[Accessed January 12, 2021].
[99]
Aruljothi, R.; Thiruthani, M. Review of saraca asoca for uterine tonic in traditional siddha medicine. Int. J. Curr. Res. Chem.Pharm. Sci, 2019, 6(6), 1-3.
[100]
Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[101]
Sheeraz, M. Rational approach towards the role of kalawnji (Nigella sativa linn) in marz-e- akyas khusyatur rehm (polycysticovarian syndrome): A review. Indo Am. J. Pharm., 2018, 8(5), 1089-1096.
[102]
Nafiu, A.; Alimi, S.; Babalola, A.; Ogunlade, A.; Muhammad, F.; Abioye, A. oluwafuyi, A.; Oyewole, L.; Akinola, O.; Olayemi, J.; Amin, A.; Abdulmajeed, W.; Musa, I.; Rahman, M. Anti-androgenic and insulin-sensitizing actions of Nigella sativa oil improve polycystic ovary and associated dyslipidemia and redox disturbances. J. Complem. Med. Res., 2019, 10(4), 186-199.
[http://dx.doi.org/10.5455/jcmr.20190613045154]
[103]
Pachiappan, S.; Matheswaran, S.; Saravanan, P.P.; Gayathiri, M. Medicinal plants for polycystic ovary syndrome: A review of phytomedicine research. Int. J. Curr. Res. Chem. Pharmace. Sci., 2017, 5(2), 78-80.
[http://dx.doi.org/10.22192/ijcrcps]
[104]
Kalia, V.; Jadav, A.N.; Bhuttani, K.K. In vivo effect of Asparagus racemosus on serum gonadotrophin levels in immature female wistar rats. 2nd world congress of Biotech; Devision Of Herbal medicine: NBRI: Lucknow, 2003, p. 40.
[105]
Gaitondé, B.B.; Jetmalani, M.H. Antioxytocic action of saponin isolated from Asparagus racemosus Willd (Shatavari) on uterine muscle. Arch. Int. Pharmacodyn. Ther., 1969, 179(1), 121-129.
[PMID: 5348388]
[106]
Sharma, K.; Bhatnagar, M. Asparagus racemosus (Shatavari): A versatile female tonic. Int. J. Pharm., 2011, 2(3), 855-863.
[107]
Pandey, A.K.; Gupta, A.; Tiwari, M.; Prasad, S.; Pandey, A.N.; Yadav, P.K.; Sharma, A.; Sahu, K.; Asrafuzzaman, S.; Vengayil, D.T.; Shrivastav, T.G.; Chaube, S.K. Impact of stress on female reproductive health disorders: Possible beneficial effects of shatavari (Asparagus racemosus). Biomed. Pharmacother., 2018, 103, 46-49.
[http://dx.doi.org/10.1016/j.biopha.2018.04.003] [PMID: 29635127]
[108]
Fahad, T.; Ismath, S. Phytochemical & therapeutic potentials of Murrmakki (Commiphor amyrrha). Indian J. Appl. Res., 2018, 8(9), 102-104.
[109]
There’s an EO for that. Treat PCOS naturally using essential oils. Available from: https://www.theresaneoforthat.com/treat-pcos-naturally- using-essential-oils/[Accessed January 5, 2021].
[110]
Evans, W.C.; Evans, D.; Trease, G.E. A taxonomic approach to the study of medicinal plants and animal derived drugs.Treaseand Evans pharmacognosy, 15th; WB Saunders: Edinburgh, New York, 2002, pp. 1-6.
[111]
Duke, J.; Duke, P.K.; Cellier, J.L. Duke Handbook of medicinal herbs. In: Environment & Agriculture, Medicine, Dentistry, Nursing & Allied Health; CRC Press: Boca Raton, 2002; pp. 1-896.
[http://dx.doi.org/10.1201/9781420040463]
[112]
Kostova, I.; Dinchev, D. Saponins in tribulusterrestris-chemistry and bioactivity. Phytochem. Rev., 2005, 4(2-3), 111-137.
[http://dx.doi.org/10.1007/s11101-005-2833-x]
[113]
Abadjieva, D.; Kistanova, E. Tribulus terrestris alters the expression of growth differentiation factor 9 and bone morphogenetic protein 15 in rabbit ovaries of mothers and f1 female offspring. PLoS One, 2016, 11(2), e0150400.
[http://dx.doi.org/10.1371/journal.pone.0150400] [PMID: 26928288]
[114]
Singh, P.P.; Krishna, A. Anti-hyperglycaemic activity of tribulusterrestrisfruit extract restores metabolic imbalance in letrozole induced-PCOS mice. Int. J. Pharmacogn. Phytochem, 2019, 11(4), 304-311.
[http://dx.doi.org/10.25258/phyto.11.4.10]
[115]
Belwal, T.; Devkota, H.P.; Singh, M.K.; Sharma, R. St. John’s Wort (Hypericumperforatum), nonvitamin and nonmineral. Nutritional Supplements; Academic Press, 2019, pp. 415-432.
[http://dx.doi.org/10.1016/B978-0-12-812491-8.00056-4]
[116]
Mitsi, C.; Efthimiou, K. Infertility: Psychological-psychopathological consequences and cognitive-behavioural interventions. Psychiatriki, 2014, 25(4), 293-302.
[PMID: 25630548]
[117]
O’Reilly, E.; Sevigny, M.; Sabarre, K.A.; Phillips, K.P. Perspectives of complementary and alternative medicine (CAM) practitioners in the support and treatment of infertility. BMC Complement. Altern. Med., 2014, 14(1), 394.
[http://dx.doi.org/10.1186/1472-6882-14-394] [PMID: 25310971]
[118]
Rayburn, W.F.; Gonzalez, C.L.; Christensen, H.D.; Stewart, J.D. Effect of prenatally administered hypericum (St John’s wort) on growth and physical maturation of mouse offspring. Am. J. Obstet. Gynecol., 2001, 184(2), 191-195.
[http://dx.doi.org/10.1067/mob.2001.108339] [PMID: 11174501]
[119]
Canning, S.; Waterman, M.; Orsi, N.; Ayres, J.; Simpson, N.; Dye, L. The efficacy of Hypericum perforatum (St John’s wort) for the treatment of premenstrual syndrome: a randomized, double-blind, placebo-controlled trial. CNS Drugs, 2010, 24(3), 207-225.
[http://dx.doi.org/10.2165/11530120-000000000-00000 ] [PMID: 20155996]
[120]
Insulite health PCOS. Herbal remedies for PCOS. Available from: https://pcos.com/herbal-remedies/[Accessed January 3, 2021]
[121]
chouhan, B.; Kumawat, R.C.; Kotecha, M.; Ramamurthy, A.; Nathani, S. Triphala: A comprehensive ayurvedic review. Int. J. Res. Ayurveda Pharm., 2013, 4(4), 612-617.
[http://dx.doi.org/10.7897/2277-4343.04433]
[122]
Sing, D.C.; Dhyani, S.; Kaur, G.A. Critical review on Guggulu [CommiphoraWightii(arn.) bhand. & its miraculous medicinal uses. Int. J. Ayurveda Pharma Res., 2015, 3(1), 1-9.
[123]
Kavitha, A.; Narendra, B.A.; Kumar, S.M.; Kiran, V.S. Evaluation of effect of Commiphora wightii in dehydroepiandrosterone (DHEA) induced polycystic ovary syndrome (PCOS) in rats. PharmaTutor, 2016, 4(1), 47-55.
[124]
Rani, R.; Mishra, S. Phytochemistry of guggul (commiphorawightii): A review. Asian J. Res. Chem, 2013, 6(4), 415-426.
[125]
Nariyal, V.; Sharma, P. Kanchnar (Bauhinia variegata) as a medicinal herb: A systematic review. Int. J. Adv. Res., 2017, 5(9), 587-591.
[http://dx.doi.org/10.21474/IJAR01/5364]
[126]
Netmeds. Kanchanar Guggulu: This ayurvedic formulation treats hormonal imbalance. Available from: https://www.netmeds.com/health-library/post/kanchanar-guggulu-this-ayurvedicformulation-treats-hormonal-imbalance/ [Accessed December 27, 2020].
[127]
Sangal, A. Role of cinnamon as beneficial antidiabetic food adjunct: A review. Adv. Appl. Sci. Res., 2011, 2(4), 440-450.
[128]
Vangalapati, M.; Prakash, S. A review on pharmacological activities and clinical effects of cinnamon species. Res. J. Pharm. Biol. Chem. Sci., 2012, 3(1), 653-663.
[129]
Kort, D.H.; Lobo, R.A. Preliminary evidence that cinnamon improves menstrual cyclicity in women with polycystic ovary syndrome: A randomized controlled trial. Am J Obstet Gynecol, 2014, 211(5), E1-487-E6.http://dx.doi.org/10.1016/j.ajog.2014.05.009
[130]
Borzoei, A.; Rafraf, M.; Niromanesh, S.; Farzadi, L.; Narimani, F.; Doostan, F. Effects of cinnamon supplementation on antioxidant status and serum lipids in women with polycystic ovary syndrome. J. Tradit. Complement. Med., 2018, 8(1), 128-133.
[http://dx.doi.org/10.1016/j.jtcme.2017.04.008] [PMID: 29322000]
[131]
Satapathy, S.; Das, N.; Bandyopadhyay, D.; Mahapatra, S.C.; Sahu, D.S.; Meda, M. Effect of tulsi (ocimum sanctum linn.) supplementation on metabolic parameters and liver enzymes in young overweight and obese subjects. Indian J. Clin. Biochem., 2017, 32(3), 357-363.
[http://dx.doi.org/10.1007/s12291-016-0615-4] [PMID: 28811698]
[132]
Khanage, S.G.; Subhash, T.Y.; Bhaiyyasaheb, I.R. Herbal drugs for the treatment of polycystic ovary syndrome (PCOS) and its complications. Pharm. Res., 2019, 2(1), 5-13.
[PMID: 31823112]
[133]
Dastgheib, M.; Barati-Boldaji, R.; Bahrampour, N.; Taheri, R.; Borghei, M.; Amooee, S.; Mohammadi-Sartang, M.; Wong, A.; Babajafari, S.; Mazloomi, S.M. A comparison of the effects of cinnamon, ginger, and metformin consumption on metabolic health, anthropometric indices, and sexual hormone levels in women with poly cystic ovary syndrome: A randomized double-blinded placebo-controlled clinical trial. Front. Nutr., 2022, 9, 1071515.
[http://dx.doi.org/10.3389/fnut.2022.1071515] [PMID: 36523331]
[134]
Esmaeilinezhad, Z.; Babajafari, S.; Sohrabi, Z.; Eskandari, M.H.; Amooee, S.; Barati-Boldaji, R. Effect of synbiotic pomegranate juice on glycemic, sex hormone profile and anthropometric indices in PCOS: A randomized, triple blind, controlled trial. Nutr. Metab. Cardiovasc. Dis., 2019, 29(2), 201-208.
[http://dx.doi.org/10.1016/j.numecd.2018.07.002] [PMID: 30538082]
[135]
Kumarapeli, M.; Karunagoda, K.; Perera, P.K. A randomized clinical trial to evaluate the efficacy of Satapushpashatavari powered drugwith Satapushpa-shatavari grita for the management of polycystic ovary syndrome (PCOS). IJPSR, 2018, 9(6), 2494-2499.
[136]
Moini Jazani, A. Celery plus Anise versus metformin for the treatment of oligomenorrhea in the polycystic ovary syndrome: a tripleblindrandomized clinical trial; Tabriz University of Medical Sciences, School of Traditional Medicine, 2018.
[137]
Borzoei, A.; Rafraf, M.; Asghari-Jafarabadi, M. Cinnamon improves metabolic factors without detectable effects on adiponectin in women with polycystic ovary syndrome. Asia Pac. J. Clin. Nutr., 2018, 27(3), 556-563.
[PMID: 29737802]
[138]
Arentz, S.; Smith, C.A.; Abbott, J.; Fahey, P.; Cheema, B.S.; Bensoussan, A. Combined lifestyle and herbal medicine in overweight women with polycystic ovary syndrome (PCOS): A randomized controlled trial. Phytother. Res., 2017, 31(9), 1330-1340.
[http://dx.doi.org/10.1002/ptr.5858] [PMID: 28685911]
[139]
Lai, L.; Flower, A.; Prescott, P.; Wing, T.; Moore, M.; Lewith, G. Standardised versus individualised multiherb Chinese herbal medicine for oligomenorrhoea and amenorrhoea in polycystic ovary syndrome: A randomised feasibility and pilot study in the UK. BMJ Open, 2017, 7(2), e011709.
[http://dx.doi.org/10.1136/bmjopen-2016-011709 ] [PMID: 28159846]
[140]
Mombaini, E.; Jafarirad, S.; Husain, D.; Haghighizadeh, M.H.; Padfar, P. The impact of green tea supplementation on anthropometric indices and inflammatory cytokines in women with polycystic ovary syndrome. Phytother. Res., 2017, 31(5), 747-754.
[http://dx.doi.org/10.1002/ptr.5795] [PMID: 28244612]
[141]
Mirmasoumi, G.; Fazilati, M.; Foroozanfard, F.; Vahedpoor, Z.; Mahmoodi, S.; Taghizadeh, M.; Esfeh, N.K.; Mohseni, M.; Karbassizadeh, H.; Asemi, Z. The effects of flaxseed oil omega-3 fatty acids supplementation onmetabolic status of patients with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Exp. Clin. Endocrinol. Diabetes, 2018, 126(4), 222-228.
[PMID: 29117618]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy