Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Overexpression of MiR-188-5p Downregulates IL6ST/STAT3/ NLRP3 Pathway to Ameliorate Neuron Injury in Oxygen-glucose Deprivation/Reoxygenation

Author(s): Yujie Hu, Ganlan Wang and Guoshuai Yang*

Volume 21, Issue 3, 2024

Published on: 22 May, 2024

Page: [263 - 273] Pages: 11

DOI: 10.2174/0115672026313555240515103132

Price: $65

Abstract

Background: CI/R, characterized by ischemic injury following abrupt reestablishment of blood flow, can cause oxidative stress, mitochondrial dysfunction, and apoptosis. We used oxygen-glucose deprivation/reoxygenation (OGD/R) induced injury in HT22 and primary mouse cortical neurons (MCN) as a model for CI/R.

Objective: This study investigates the role of miR-188-5p in hippocampal neuron cell injury associated with Cerebral Ischemia-Reperfusion (CI/R).

Methods: HT22 and MCN cells were induced by OGD/R to construct an in vitro model of CI/R. Cell apoptosis and proliferation were assessed using flow cytometry and the Cell Counting Kit-8 (CCK8). ELISA was conducted to measure the levels of IL-1β, IL-6, and TNF-α. Moreover, the interaction between miR-188-5p and IL6ST was investigated using dual luciferase assay, the expression of miR-188-5p, Bax, cleaved-caspase3, IL-6, Bcl-2, IL-1β, TNF-α, IL6ST, NFκB, NLRP3 and STAT3 was evaluated using RT-qPCR or Western blot, and immunofluorescence was used to analyze the co-expression of p-STAT3 and NLRP3 in neuronal cells.

Results: OGD/R reduced proliferation and miR-188-5p levels and increased IL6ST expression, inflammation, and apoptosis in HT22 and MCN cells. Moreover, miR-188-5p was found to bind to IL6ST. Mimics of miR-188-5p reduced apoptosis, lowered the expression of cleaved-caspase3 and Bax proteins, and elevated Bcl-2 protein expression in cells treated with OGD/R. Overexpression of miR-188-5p decreased the levels of NLRP3 and p-STAT3 in the OGD/R group. Furthermore, the overexpression of miR-188-5p reduced IL6ST, p- NFκB/NFκB, p-STAT3/STAT3, and NLRP3 proteins in OGD/R, and these effects could be reversed by IL6ST overexpression.

Conclusion: Mimics of miR-188-5p were found to inhibit inflammation and the STAT3/NLRP3 pathway via IL6ST, thereby ameliorating injury in HT22 and MCN cells treated with OGD/R in the context of CI/R.

Keywords: MiR-188-5p, inflammation, IL6ST/STAT3, oxygen-glucose deprivation/reoxygenation, cerebral ischemiareperfusion, ameliorate neuron injury.

[1]
Lin SP, Ye S, Long Y, et al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 2016; 471(1): 52-6.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.183] [PMID: 26845359]
[2]
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ischemia-reperfusion injury. Biomed Pharmacother 2020; 129: 110419.
[http://dx.doi.org/10.1016/j.biopha.2020.110419] [PMID: 32563988]
[3]
Xing F, Liu Y, Dong R, Cheng Y. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a. Exp Anim 2021; 70(1): 126-36.
[http://dx.doi.org/10.1538/expanim.20-0034] [PMID: 33116025]
[4]
Zhang Y, Ding N, Yi H, et al. Identification of differentially expressed miRNA 48 h after cerebral ischemia–reperfusion injury in mice by the technique of miRNA microarray. Can J Physiol Pharmacol 2020; 98(12): 855-60.
[http://dx.doi.org/10.1139/cjpp-2019-0701] [PMID: 32516555]
[5]
Tian T, Cao L, He C, et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics 2021; 11(13): 6507-21.
[http://dx.doi.org/10.7150/thno.56367] [PMID: 33995671]
[6]
Wang Y, Xiao G, He S, et al. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed Pharmacother 2020; 125: 109945.
[http://dx.doi.org/10.1016/j.biopha.2020.109945] [PMID: 32028240]
[7]
Wu R, Li X, Xu P, et al. TREM2 protects against cerebral ischemia/reperfusion injury. Mol Brain 2017; 10(1): 20.
[http://dx.doi.org/10.1186/s13041-017-0296-9] [PMID: 28592261]
[8]
Liu H, Wu X, Luo J, et al. Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front Immunol 2019; 10: 2408.
[http://dx.doi.org/10.3389/fimmu.2019.02408] [PMID: 31681297]
[9]
Dong X, Wang L, Song G, et al. Physcion protects rats against cerebral ischemia-reperfusion injury via inhibition of TLR4/NF-kB signaling pathway. Drug Des Devel Ther 2021; 15: 277-87.
[http://dx.doi.org/10.2147/DDDT.S267856] [PMID: 33536742]
[10]
Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 2009; 29(3): 464-79.
[http://dx.doi.org/10.1038/jcbfm.2008.141] [PMID: 19018268]
[11]
Jung JE, Kim GS, Chan PH. Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke 2011; 42(12): 3574-9.
[http://dx.doi.org/10.1161/STROKEAHA.111.626648] [PMID: 21940958]
[12]
Luo C, Li B, Chen L, Zhao L, Wei Y. IL-27 protects the brain from ischemia-reperfusion injury via the gp130/STAT3 signaling pathway. J Mol Neurosci 2021; 71(9): 1838-48.
[http://dx.doi.org/10.1007/s12031-021-01802-0] [PMID: 33851350]
[13]
Gong Z, Pan J, Shen Q, Li M, Peng Y. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 2018; 15(1): 242.
[http://dx.doi.org/10.1186/s12974-018-1282-6] [PMID: 30153825]
[14]
Jiang Q, Tang G, Zhong XM, Ding DR, Wang H, Li JN. Role of Stat3 in NLRP3/caspase‐1‐mediated hippocampal neuronal pyroptosis in epileptic mice. Synapse 2021; 75(12): e22221.
[http://dx.doi.org/10.1002/syn.22221] [PMID: 34958692]
[15]
Wang M, Zhang H, Yang F, et al. miR‐188‐5p suppresses cellular proliferation and migration via IL6ST: A potential noninvasive diagnostic biomarker for breast cancer. J Cell Physiol 2020; 235(5): 4890-901.
[http://dx.doi.org/10.1002/jcp.29367] [PMID: 31650530]
[16]
Yan X, Yu A, Zheng H, Wang S, He Y, Wang L. Calycosin-7- O - β - D -glucoside Attenuates OGD/R-induced damage by preventing oxidative stress and neuronal apoptosis via the SIRT1/FOXO1/PGC-1 α pathway in HT22 cells. Neural Plast 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/8798069] [PMID: 31885537]
[17]
Yuan Y, Zhai Y, Chen J, Xu X, Wang H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules 2021; 11(7): 923.
[http://dx.doi.org/10.3390/biom11070923] [PMID: 34206421]
[18]
Deng Z, Ou H, Ren F, et al. LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res 2020; 53(1): 38.
[http://dx.doi.org/10.1186/s40659-020-00304-4] [PMID: 32912324]
[19]
Fan ZX, Yang J. The role of microRNAs in regulating myocardial ischemia reperfusion injury. Saudi Med J 2015; 36(7): 787-93.
[http://dx.doi.org/10.15537/smj.2015.7.11089] [PMID: 26108581]
[20]
Liu J, Li L, Suo WZ. HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci 2009; 84(9-10): 267-71.
[http://dx.doi.org/10.1016/j.lfs.2008.12.008] [PMID: 19135458]
[21]
Materna-Kiryluk A, Pollak A, Gawalski K, et al. Mosaic IL6ST variant inducing constitutive GP130 cytokine receptor signaling as a cause of neonatal onset immunodeficiency with autoinflammation and dysmorphy. Hum Mol Genet 2021; 30(3-4): 226-33.
[http://dx.doi.org/10.1093/hmg/ddab035] [PMID: 33517393]
[22]
Zhang L, Cai Q, Lin S, et al. Qingda granule exerts neuroprotective effects against ischemia/reperfusion-induced cerebral injury via lncRNA GAS5/miR-137 signaling pathway. Int J Med Sci 2021; 18(7): 1687-98.
[http://dx.doi.org/10.7150/ijms.53603] [PMID: 33746585]
[23]
Zhou Y, Yang L, Bo C, Zhang X, Zhang J, Li Y. MicroRNA-9-3p aggravates cerebral ischemia/reperfusion injury by targeting fibroblast growth factor 19 (FGF19) to inactivate GSK-3β/Nrf2/ARE signaling. Neuropsychiatr Dis Treat 2021; 17: 1989-2002.
[http://dx.doi.org/10.2147/NDT.S290237] [PMID: 34177264]
[24]
Li W, Zhu Q, Xu X, Hu X. MiR-27a-3p suppresses cerebral ischemia-reperfusion injury by targeting FOXO1. Aging 2021; 13(8): 11727-37.
[http://dx.doi.org/10.18632/aging.202866] [PMID: 33875617]
[25]
Zhang M, Zhu Y, Wei M, Liu H. Neuroprotective effects of miR-30c on rats with cerebral ischemia/reperfusion injury by targeting SOX9. Pathol Res Pract 2020; 216(12): 153271.
[http://dx.doi.org/10.1016/j.prp.2020.153271] [PMID: 33161310]
[26]
Wang W, Hu Y, Zhang Y. FTX attenuates cerebral ischemia–reperfusion injury by inhibiting apoptosis and oxidative stress via miR-186-5p/MDM4 pathway. Neurotox Res 2022; 40(2): 542-52.
[http://dx.doi.org/10.1007/s12640-022-00485-8] [PMID: 35344194]
[27]
Liu Y, Li YP, Xiao LM, et al. Extracellular vesicles derived from M2 microglia reduce ischemic brain injury through microRNA-135a-5p/TXNIP/NLRP3 axis. Lab Invest 2021; 101(7): 837-50.
[http://dx.doi.org/10.1038/s41374-021-00545-1] [PMID: 33875790]
[28]
Pilati C, Zucman-Rossi J. Mutations leading to constitutive active gp130/JAK1/STAT3 pathway. Cytokine Growth Factor Rev 2015; 26(5): 499-506.
[http://dx.doi.org/10.1016/j.cytogfr.2015.07.010] [PMID: 26188635]
[29]
Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998; 334(Pt 2): 297-314.
[30]
Zanders L, Kny M, Hahn A, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. J Cachexia Sarcopenia Muscle 2022; 13(1): 713-27.
[http://dx.doi.org/10.1002/jcsm.12867] [PMID: 34821076]
[31]
Kiszałkiewicz JM, Majewski S, Piotrowski WJ, et al. Evaluation of selected IL6/STAT3 pathway molecules and miRNA expression in chronic obstructive pulmonary disease. Sci Rep 2021; 11(1): 22756.
[http://dx.doi.org/10.1038/s41598-021-01950-8] [PMID: 34815425]
[32]
Huang H, Zhang G, Ge Z. lncRNA MALAT1 promotes renal fibrosis in diabetic nephropathy by targeting the miR-2355-3p/IL6ST axis. Front Pharmacol 2021; 12: 647650.
[http://dx.doi.org/10.3389/fphar.2021.647650] [PMID: 33995063]
[33]
Tang M, Liu P, Li X, Wang J, Zhu X, He F. Protective action of B1R antagonist against cerebral ischemia-reperfusion injury through suppressing miR-200c expression of Microglia-derived microvesicles. Neurol Res 2017; 39(7): 612-20.
[http://dx.doi.org/10.1080/01616412.2016.1275096] [PMID: 28398146]
[34]
Chen X, Yao Z, Peng X, et al. Eupafolin alleviates cerebral ischemia/reperfusion injury in rats via blocking the TLR4/NF κB signaling pathway. Mol Med Rep 2020; 22(6): 5135-44.
[http://dx.doi.org/10.3892/mmr.2020.11637] [PMID: 33173992]
[35]
Deng L, Guo Y, Liu J, et al. miR-671-5p attenuates neuroinflammation via suppressing NF-κB expression in an acute ischemic stroke model. Neurochem Res 2021; 46(7): 1801-13.
[http://dx.doi.org/10.1007/s11064-021-03321-1] [PMID: 33871800]
[36]
Choi JS, Kim SY, Cha JH, et al. Upregulation of gp130 and STAT3 activation in the rat hippocampus following transient forebrain ischemia. Glia 2003; 41(3): 237-46.
[http://dx.doi.org/10.1002/glia.10186] [PMID: 12528179]
[37]
Wang L, Ren W, Wu Q, et al. NLRP3 inflammasome activation: A therapeutic target for cerebral ischemia–reperfusion injury. Front Mol Neurosci 2022; 15: 847440.
[http://dx.doi.org/10.3389/fnmol.2022.847440] [PMID: 35600078]
[38]
Wang Z, Li Y, Ye Y, et al. NLRP3 inflammasome deficiency attenuates cerebral ischemia-reperfusion injury by inhibiting ferroptosis. Brain Res Bull 2023; 193: 37-46.
[http://dx.doi.org/10.1016/j.brainresbull.2022.11.016] [PMID: 36435361]
[39]
Zhu L, Wang Z, Sun X, et al. STAT3/mitophagy axis coordinates macrophage NLRP3 inflammasome activation and inflammatory bone loss. J Bone Miner Res 2020; 38(2): 335-53.
[http://dx.doi.org/10.1002/jbmr.4756] [PMID: 36502520]
[40]
Zhu H, Jian Z, Zhong Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front Immunol 2021; 12: 714943.
[http://dx.doi.org/10.3389/fimmu.2021.714943] [PMID: 34367186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy