Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

The Regulation of Selenoproteins in Diabetes: A New Way to Treat Diabetes

Author(s): Jing Liang, Yiwen He, Chunxia Huang, Fengjie Ji, Xihong Zhou* and Yulong Yin*

Volume 30, Issue 20, 2024

Published on: 03 May, 2024

Page: [1541 - 1547] Pages: 7

DOI: 10.2174/0113816128302667240422110226

Price: $65

Open Access Journals Promotions 2
Abstract

Selenium is an essential micronutrient required for the synthesis and function of selenoproteins, most of which are enzymes involved in maintaining oxidative balance in the body. Diabetes is a group of metabolic disorders characterized by high blood glucose levels over a prolonged period of time. There are three main types of diabetes: type 1, type 2, and gestational diabetes. This review summarizes recent advances in the field of diabetes research with an emphasis on the roles of selenoproteins on metabolic disturbance in diabetes. We also discuss the interaction between selenoproteins and glucose and lipid metabolism to provide new insights into the prevention and treatment of diabetes.

Keywords: Glucose metabolism, lipid metabolism, selenium, selenoproteins, diabetes, micronutrient.

Next »
[1]
Ramírez-Acosta S, Selma-Royo M, Collado MC, Navarro-Roldán F, Abril N, García-Barrera T. Selenium supplementation influences mice testicular selenoproteins driven by gut microbiota. Sci Rep 2022; 12(1): 4218.
[http://dx.doi.org/10.1038/s41598-022-08121-3] [PMID: 35273298]
[2]
Mehdi Y, Hornick JL, Istasse L, Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013; 18(3): 3292-311.
[http://dx.doi.org/10.3390/molecules18033292] [PMID: 23486107]
[3]
Mariotti M, Salinas G, Gabaldón T, Gladyshev VN. Utilization of selenocysteine in early-branching fungal phyla. Nat Microbiol 2019; 4(5): 759-65.
[http://dx.doi.org/10.1038/s41564-018-0354-9] [PMID: 30742068]
[4]
Ha HY, Alfulaij N, Berry MJ, Seale LA. From selenium absorption to selenoprotein degradation. Biol Trace Elem Res 2019; 192(1): 26-37.
[http://dx.doi.org/10.1007/s12011-019-01771-x] [PMID: 31222623]
[5]
Baltaci AK, Mogulkoc R, Akil M, Bicer M. Review - Selenium - Its metabolism and relation to exercise. Pak J Pharm Sci 2016; 29(5): 1719-25.
[PMID: 27731835]
[6]
Barrera LN, Cassidy A, Wang W, et al. TrxR1 and GPx2 are potently induced by isothiocyanates and selenium, and mutually cooperate to protect Caco-2 cells against free radical-mediated cell death. Biochim Biophys Acta Mol Cell Res 2012; 1823(10): 1914-24.
[http://dx.doi.org/10.1016/j.bbamcr.2012.07.007] [PMID: 22820176]
[7]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[8]
Robertson RP. Nrf2 and antioxidant response in animal models of type 2 diabetes. Int J Mol Sci 2023; 24(4): 3082.
[http://dx.doi.org/10.3390/ijms24043082] [PMID: 36834496]
[9]
2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diab Care 2022; 45 (Suppl. 1): S17-38.
[http://dx.doi.org/10.2337/dc22-S002] [PMID: 34964875]
[10]
Standards of medical care in diabetes-2022 abridged for primary care providers. Clin Diabetes 2022; 40(1): 10-38.
[http://dx.doi.org/10.2337/cd22-as01] [PMID: 35221470]
[11]
Amirani E, Asemi Z, Taghizadeh M. The effects of selenium plus probiotics supplementation on glycemic status and serum lipoproteins in patients with gestational diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN 2022; 48: 56-62.
[http://dx.doi.org/10.1016/j.clnesp.2022.02.010] [PMID: 35331534]
[12]
Chellan B, Zhao L, Landeche M, Carmean CM, Dumitrescu AM, Sargis RM. Selenocysteine insertion sequence binding protein 2 (Sbp2) in the sex-specific regulation of selenoprotein gene expression in mouse pancreatic islets. Sci Rep 2020; 10(1): 18568.
[http://dx.doi.org/10.1038/s41598-020-75595-4] [PMID: 33122797]
[13]
Roden M, Prskavec M, Fürnsinn C, et al. Metabolic effect of sodium selenite: Insulin-like inhibition of glucagon-stimulated glycogenolysis in the isolated perfused rat liver. Hepatology 1995; 22(1): 169-74.
[PMID: 7601409]
[14]
Bicer M, Akil M, Baltaci AK, Mogulkoc R, Sivrikaya A, Akkus H. Effect of melatonin on element distribution in the liver tissue of diabetic rats subjected to forced exercise. Bratisl Med J 2015; 116(2): 119-23.
[http://dx.doi.org/10.4149/BLL_2015_023] [PMID: 25665479]
[15]
Bicer M, Akil M, Sivrikaya A, Kara E, Baltaci AK, Mogulkoc R. Effect of zinc supplementation on the distribution of various elements in the serum of diabetic rats subjected to an acute swimming exercise. J Physiol Biochem 2011; 67(4): 511-7.
[http://dx.doi.org/10.1007/s13105-011-0096-0] [PMID: 21607732]
[16]
Zhao J, Zou H, Huo Y, Wei X, Li Y. Emerging roles of selenium on metabolism and type 2 diabetes. Front Nutr 2022; 9: 1027629.
[http://dx.doi.org/10.3389/fnut.2022.1027629] [PMID: 36438755]
[17]
Shimada BK, Swanson S, Toh P, Seale LA. Metabolism of selenium, selenocysteine, and selenoproteins in ferroptosis in solid tumor cancers. Biomolecules 2022; 12(11): 1581.
[http://dx.doi.org/10.3390/biom12111581] [PMID: 36358931]
[18]
Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 16(7): 705-43.
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]
[19]
Schwarz K, Foltz CM. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 1957; 79(12): 3292-3.
[http://dx.doi.org/10.1021/ja01569a087]
[20]
Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid Redox Signal 2007; 9(7): 775-806.
[http://dx.doi.org/10.1089/ars.2007.1528] [PMID: 17508906]
[21]
Nogales F, Ojeda ML, Fenutría M, Murillo ML, Carreras O. Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reproduction 2013; 146(6): 659-67.
[http://dx.doi.org/10.1530/REP-13-0267] [PMID: 24080144]
[22]
Lei L, Mu J, Zheng Y, Liu Y. Selenium deficiency-induced oxidative stress causes myocardial injury in calves by activating inflammation, apoptosis, and necroptosis. Antioxidants 2023; 12(2): 229.
[http://dx.doi.org/10.3390/antiox12020229] [PMID: 36829789]
[23]
Irudayaraj SS, Jincy J, Sunil C, et al. Antidiabetic with antilipidemic and antioxidant effects of flindersine by enhanced glucose uptake through GLUT4 translocation and PPARγ agonism in type 2 diabetic rats. J Ethnopharmacol 2022; 285: 114883.
[http://dx.doi.org/10.1016/j.jep.2021.114883] [PMID: 34861363]
[24]
Ng CF, Schafer FQ, Buettner GR, Rodgers VGJ. The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res 2007; 41(11): 1201-11.
[http://dx.doi.org/10.1080/10715760701625075] [PMID: 17886026]
[25]
Lee SH, Takahashi K, Hatakawa Y, Oe T. Lipid peroxidation-derived modification and its effect on the activity of glutathione peroxidase 1. Free Radic Biol Med 2023; 208: 252-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2023.08.014] [PMID: 37549755]
[26]
Huang JQ, Zhou JC, Wu YY, Ren FZ, Lei XG. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic Biol Med 2018; 127: 108-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.077] [PMID: 29800654]
[27]
Burk RF, Hill KE, Selenoprotein P. Selenoprotein P: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 2005; 25(1): 215-35.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132120] [PMID: 16011466]
[28]
Burk RF, Hill KE. Regulation of selenium metabolism and transport. Annu Rev Nutr 2015; 35(1): 109-34.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034250] [PMID: 25974694]
[29]
Oo SM, Oo HK, Takayama H, et al. Selenoprotein P-mediated reductive stress impairs cold-induced thermogenesis in brown fat. Cell Rep 2022; 38(13): 110566.
[http://dx.doi.org/10.1016/j.celrep.2022.110566] [PMID: 35354056]
[30]
Shimada BK, Watanabe LM, Swanson S, Toh P, Seale LA. Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731: 109445.
[http://dx.doi.org/10.1016/j.abb.2022.109445] [PMID: 36265651]
[31]
Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radic Biol Med 2022; 193(Pt 1): 59-79.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.09.024] [PMID: 36206932]
[32]
Liu YY, Brent GA. The role of thyroid hormone in neuronal protection. Compr Physiol 2021; 11(3): 2075-95.
[http://dx.doi.org/10.1002/cphy.c200019] [PMID: 34061976]
[33]
Russo SC, Salas-Lucia F, Bianco AC. Deiodinases and the metabolic code for thyroid hormone action. Endocrinology 2021; 162(8): bqab059.
[http://dx.doi.org/10.1210/endocr/bqab059] [PMID: 33720335]
[34]
Choi YM, Kim MK, Kwak MK, Kim D, Hong EG. Association between thyroid hormones and insulin resistance indices based on the Korean national health and nutrition examination survey. Sci Rep 2021; 11(1): 21738.
[http://dx.doi.org/10.1038/s41598-021-01101-z] [PMID: 34741077]
[35]
Men L, Yu S, Yao J, Li Y, Ren D, Du J. Selenoprotein S protects against adipocyte death through mediation of the IRE1α-sXBP1 pathway. Biochem Biophys Res Commun 2018; 503(4): 2866-71.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.057] [PMID: 30146262]
[36]
Yu S, Du J, Selenoprotein S. Selenoprotein S: A therapeutic target for diabetes and macroangiopathy? Cardiovasc Diabetol 2017; 16(1): 101.
[http://dx.doi.org/10.1186/s12933-017-0585-8] [PMID: 28797256]
[37]
Li F, Mao A, Fu X, She Y, Wei X. Correlation between SEPS1 gene polymorphism and type 2 diabetes mellitus: A preliminary study. J Clin Lab Anal 2019; 33(8): e22967.
[http://dx.doi.org/10.1002/jcla.22967] [PMID: 31265177]
[38]
Qiao L, Men L, Yu S, et al. Hepatic deficiency of selenoprotein S exacerbates hepatic steatosis and insulin resistance. Cell Death Dis 2022; 13(3): 275.
[http://dx.doi.org/10.1038/s41419-022-04716-w] [PMID: 35347118]
[39]
Mao J, Teng W. The relationship between selenoprotein P and glucose metabolism in experimental studies. Nutrients 2013; 5(6): 1937-48.
[http://dx.doi.org/10.3390/nu5061937] [PMID: 23760059]
[40]
Mita Y, Nakayama K, Inari S, et al. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 2017; 8(1): 1658.
[http://dx.doi.org/10.1038/s41467-017-01863-z] [PMID: 29162828]
[41]
Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 2013; 65: 1538-47.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.016] [PMID: 23872396]
[42]
Stancill J S, Hansen P A, Mathison A J, Schmidt E E, Corbett J A. Deletion of thioredoxin reductase disrupts redox homeostasis and impairs beta-cell function. Function 2022; 3: zqac034.
[43]
Akahoshi N, Anan Y, Hashimoto Y, et al. Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. J Nutr Biochem 2019; 69: 120-9.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.020] [PMID: 31078905]
[44]
Li M, Zhang Y, Zhou J, Liu H, Selenoprotein F. Selenoprotein F knockout caused glucose metabolism disorder in young mice by disrupting redox homeostasis. Antioxidants 2022; 11(11): 2105.
[http://dx.doi.org/10.3390/antiox11112105] [PMID: 36358477]
[45]
Zheng X, Ren B, Li X, et al. Selenoprotein F knockout leads to glucose and lipid metabolism disorders in mice. J Biol Inorg Chem 2020; 25(7): 1009-22.
[http://dx.doi.org/10.1007/s00775-020-01821-z] [PMID: 32995962]
[46]
Seo JA, Kang MC, Yang WM, et al. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun 2020; 11(1): 2024.
[http://dx.doi.org/10.1038/s41467-020-15963-w] [PMID: 32332780]
[47]
Rubio-Navarro A, Gómez-Banoy N, Stoll L, et al. A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nat Cell Biol 2023; 25(4): 565-78.
[http://dx.doi.org/10.1038/s41556-023-01103-1] [PMID: 36928765]
[48]
Jablonska E, Reszka E, Gromadzinska J, et al. The effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients 2016; 8(12): 772.
[http://dx.doi.org/10.3390/nu8120772] [PMID: 27983572]
[49]
Gorini F, Vassalle C. Selenium and selenoproteins at the intersection of type 2 diabetes and thyroid pathophysiology. Antioxidants 2022; 11(6): 1188.
[http://dx.doi.org/10.3390/antiox11061188] [PMID: 35740085]
[50]
Saleh SR, Zaki R, Hassan R, El-Kersh MA, El-Sayed MM, Abd Elmoneam AA. The impact of vitamin A supplementation on thyroid function and insulin sensitivity: Implication of deiodinases and phosphoenolpyruvate carboxykinase in male Wistar rats. Eur J Nutr 2022; 61(8): 4091-105.
[http://dx.doi.org/10.1007/s00394-022-02945-5] [PMID: 35804266]
[51]
Guebre-Egziabher F, Alix PM, Koppe L, et al. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 2013; 95(11): 1971-9.
[http://dx.doi.org/10.1016/j.biochi.2013.07.017] [PMID: 23896376]
[52]
Su K, Yi B, Yao B, et al. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol Res 2020; 156: 104778.
[http://dx.doi.org/10.1016/j.phrs.2020.104778] [PMID: 32247822]
[53]
Johar DR, Bernstein LH. Biomarkers of stress-mediated metabolic deregulation in diabetes mellitus. Diabetes Res Clin Pract 2017; 126: 222-9.
[http://dx.doi.org/10.1016/j.diabres.2017.02.023] [PMID: 28273645]
[54]
Merk D, Ptok J, Jakobs P, et al. Selenoprotein T protects endothelial cells against lipopolysaccharide-induced activation and apoptosis. Antioxidants 2021; 10(9): 1427.
[http://dx.doi.org/10.3390/antiox10091427] [PMID: 34573059]
[55]
Prattichizzo F, De Nigris V, Spiga R, et al. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41: 1-17.
[http://dx.doi.org/10.1016/j.arr.2017.10.003] [PMID: 29081381]
[56]
Krümmel B, Plötz T, Jörns A, Lenzen S, Mehmeti I. The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta- cell death. Biochim Biophys Acta Mol Basis Dis 2021; 1867(6): 166114.
[http://dx.doi.org/10.1016/j.bbadis.2021.166114] [PMID: 33662571]
[57]
Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 2019; 19(18): 1800311.
[http://dx.doi.org/10.1002/pmic.201800311] [PMID: 30888116]
[58]
Alghobashy AA, Alkholy UM, Talat M, et al. Trace elements and oxidative stress in children with type 1 diabetes mellitus. Diabetes Metab Syndr Obes 2018; 11: 85-92.
[http://dx.doi.org/10.2147/DMSO.S157348] [PMID: 29618936]
[59]
Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15(7): 1957-97.
[http://dx.doi.org/10.1089/ars.2010.3586] [PMID: 21087145]
[60]
Benson M, Hossain J, Darmaun D. Improved glycemic control either alone, or combined with antioxidant supplementation, fails to restore blood glutathione or markers of oxidative stress in adolescents with poorly controlled type 1 diabetes. Nutr Res 2023; 117: 83-90.
[http://dx.doi.org/10.1016/j.nutres.2023.05.010] [PMID: 37515943]
[61]
Schomburg L. Selenium deficiency due to diet, pregnancy, severe illness, or COVID-19-A preventable trigger for autoimmune disease. Int J Mol Sci 2021; 22(16): 8532.
[http://dx.doi.org/10.3390/ijms22168532] [PMID: 34445238]
[62]
Guo S, Dai C, Guo M, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 2013; 123(8): 3305-16.
[http://dx.doi.org/10.1172/JCI65390] [PMID: 23863625]
[63]
Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5(1): 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
[64]
Wang X, Wu B, Sun G, et al. Dietary selenomethionine attenuates obesity by enhancing beiging process in white adipose tissue. J Nutr Biochem 2023; 113: 109230.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109230] [PMID: 36435293]
[65]
Huang YC, Combs GF Jr, Wu TL, Zeng H, Cheng WH. Selenium status and type 2 diabetes risk. Arch Biochem Biophys 2022; 730: 109400.
[http://dx.doi.org/10.1016/j.abb.2022.109400] [PMID: 36122760]
[66]
Afsharpour F, Javadi M, Hashemipour S, Koushan Y, haghighian HK. Propolis supplementation improves glycemic and antioxidant status in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled study. Complement Ther Med 2019; 43: 283-8.
[http://dx.doi.org/10.1016/j.ctim.2019.03.001] [PMID: 30935545]
[67]
Chen CW, Guan BJ, Alzahrani MR, et al. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat Commun 2022; 13(1): 4621.
[http://dx.doi.org/10.1038/s41467-022-32425-7] [PMID: 35941159]
[68]
Pitts MW, Hoffmann PR. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2018; 70: 76-86.
[http://dx.doi.org/10.1016/j.ceca.2017.05.001] [PMID: 28506443]
[69]
Lee JH, Jang JK, Ko KY, et al. Degradation of selenoprotein S and selenoprotein K through PPARγ-mediated ubiquitination is required for adipocyte differentiation. Cell Death Differ 2019; 26(6): 1007-23.
[http://dx.doi.org/10.1038/s41418-018-0180-x] [PMID: 30082770]
[70]
Anouar Y, Lihrmann I, Falluel-Morel A, Boukhzar L. Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic Biol Med 2018; 127: 145-52.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.076] [PMID: 29800653]
[71]
Chernorudskiy A, Varone E, Colombo SF, et al. Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity. Proc Natl Acad Sci USA 2020; 117(35): 21288-98.
[http://dx.doi.org/10.1073/pnas.2003847117] [PMID: 32817544]
[72]
Wang Y, Chang D, Zhao M, Chen M. Glutathione peroxidase 4 is a predictor of diabetic kidney disease progression in type 2 diabetes mellitus. Oxid Med Cell Longev 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/2948248] [PMID: 36275902]
[73]
Gong Y, Liu Z, Zhang Y, Zhang J, Zheng Y, Wu Z. AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus. Cell Death Discov 2023; 9(1): 178.
[http://dx.doi.org/10.1038/s41420-023-01477-z] [PMID: 37280194]
[74]
Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/9999612] [PMID: 34258295]
[75]
Nguyen-Ngo C, Perkins AV, Lappas M. Selenium prevents inflammation in human placenta and adipose tissue in vitro: Implications for metabolic diseases of pregnancy associated with inflammation. Nutrients 2022; 14(16): 3286.
[http://dx.doi.org/10.3390/nu14163286] [PMID: 36014792]
[76]
Deng H, Yao X, Cui N, et al. The protective effect of zinc, selenium, and chromium on myocardial fibrosis in the offspring of rats with gestational diabetes mellitus. Food Funct 2023; 14(3): 1584-94.
[http://dx.doi.org/10.1039/D2FO01105K] [PMID: 36661107]
[77]
Yan S, Su H, Xia Y, et al. Association between blood selenium levels and gestational diabetes mellitus: A systematic review and meta-analysis. Front Nutr 2022; 9: 1008584.
[http://dx.doi.org/10.3389/fnut.2022.1008584] [PMID: 36505252]
[78]
Akbaba G, Akbaba E, Sahin C, Kara M. The relationship between gestational diabetes mellitus and selenoprotein-P plasma 1 (SEPP1) gene polymorphisms. Gynecol Endocrinol 2018; 34(10): 849-52.
[http://dx.doi.org/10.1080/09513590.2018.1460659] [PMID: 29648467]
[79]
Lee SM, Kwak SH, Koo JN, et al. Non-alcoholic fatty liver disease in the first trimester and subsequent development of gestational diabetes mellitus. Diabetologia 2019; 62(2): 238-48.
[http://dx.doi.org/10.1007/s00125-018-4779-8] [PMID: 30470912]
[80]
Karamali M, Dastyar F, Badakhsh MH, Aghadavood E, Amirani E, Asemi Z. The effects of selenium supplementation on gene expression related to insulin and lipid metabolism, and pregnancy outcomes in patients with gestational diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 2020; 195(1): 1-8.
[http://dx.doi.org/10.1007/s12011-019-01818-z] [PMID: 31317471]
[81]
Steinbrenner H, Duntas LH, Rayman MP. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 2022; 50: 102236.
[http://dx.doi.org/10.1016/j.redox.2022.102236] [PMID: 35144052]
[82]
Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: Can we make sense of it? Free Radic Biol Med 2013; 65: 1557-64.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.003] [PMID: 23597503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy