Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Comprehensive Overview of Innovative Strategies in Preventing Renal Ischemia-reperfusion Injury: Insights from Bibliometric and In silico Analyses

Author(s): Myltykbay S. Rysmakhanov*, Afshin Zare, Aibolat S. Smagulov, Nurgul A. Abenova, Nadiar M. Mussin, Yerlan B. Sultangereyev, Bazylbek S. Zhakiyev, Gani K. Kuttymuratov, Mehmet Haberal, Nazanin Jafari, Hanieh Baneshi, Shabnam Bakhshalizadeh, Mahdi Mahdipour, Farhad Rahmanifar and Amin Tamadon

Volume 30, Issue 20, 2024

Published on: 26 April, 2024

Page: [1578 - 1598] Pages: 21

DOI: 10.2174/0113816128283420240409050754

conference banner
Abstract

Background: Ischemia-reperfusion Injury (IRI) is a complex pathophysiological process with severe consequences, including irreversible loss of renal function. Various intraoperative prevention methods have been proposed to mitigate the harmful effects of warm ischemia and kidney reperfusion.

Aim: This comprehensive analysis provides an overview of pharmacological agents and intraoperative methods for preventing and treating renal IRI.

Methods: Our analysis revealed that eplerenone exhibited the highest binding affinity to crucial targets, including Aldehyde Dehydrogenase (AD), Estrogen Receptor (ER), Klotho protein, Mineralocorticoid Receptor (MR), and Toll-like Receptor 4 (TLR4). This finding indicates eplerenone's potential as a potent preventive agent against IRI, surpassing other available therapeutics like Benzodioxole, Hydrocortisone, Indoles, Nicotinamide adenine dinucleotide, and Niacinamide. In preventing kidney IRI, our comprehensive analysis emphasizes the significance of eplerenone due to its strong binding affinity to key targets involved in the pathogenesis of IRI.

Results: This finding positions eplerenone as a promising candidate for further clinical investigation and consideration for future clinical practice.

Conclusion: The insights provided in this analysis will assist clinicians and researchers in selecting effective preventive approaches for renal IRI in surgical settings, potentially improving patient outcomes.

Keywords: Ischemia-reperfusion injury, molecular docking, bibliometric analysis, kidney reperfusion, kidney transplantation, renal resection.

[1]
Łabuś A, Niemczyk M, Czyżewski Ł, et al. Costs of long-term post-transplantation care in kidney transplant recipients. Ann Transplant 2019; 24: 252-9.
[http://dx.doi.org/10.12659/AOT.914661] [PMID: 31061380]
[2]
Axelrod DA, Schnitzler MA, Xiao H, et al. An economic assessment of contemporary kidney transplant practice. Am J Transplant 2018; 18(5): 1168-76.
[http://dx.doi.org/10.1111/ajt.14702] [PMID: 29451350]
[3]
Jensen CE, Sørensen P, Petersen KD. In Denmark kidney transplantation is more cost-effective than dialysis. Dan Med J 2014; 61(3): A4796.
[PMID: 24814915]
[4]
Qiu L, Zhang ZJ. Therapeutic strategies of kidney transplant ischemia reperfusion injury: Insight from mouse models. Biomed J Sci Tech Res 2019; 14(5): 002617.
[PMID: 31093605]
[5]
Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V, Stefanidis I. Reoxygenation induces reactive oxygen species production and ferroptosis in renal tubular epithelial cells by activating aryl hydrocarbon receptor. Mol Med Rep 2020; 23(1): 1.
[http://dx.doi.org/10.3892/mmr.2020.11679] [PMID: 33179104]
[6]
Vatazin AV, Nesterenko IV, Zulkarnaev AB, Shakhov NL. Pathogenetic mechanisms of the development of ischemic and reperfusion damage the kidneys as a promising target specific therapy. Russian J Transplantol Artif Organs 2015; 17(1): 147-56.
[http://dx.doi.org/10.15825/1995-1191-2015-1-147-156]
[7]
Menke J, Sollinger D, Schamberger B, Heemann U, Lutz J. The effect of ischemia/reperfusion on the kidney graft. Curr Opin Organ Transplant 2014; 19(4): 395-400.
[http://dx.doi.org/10.1097/MOT.0000000000000090] [PMID: 24905021]
[8]
Garg JP, Vucic D. Targeting cell death pathways for therapeutic intervention in kidney diseases. Semin Nephrol 2016; 36(3): 153-61.
[http://dx.doi.org/10.1016/j.semnephrol.2016.03.003] [PMID: 27339381]
[9]
Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant 2015; 5(2): 52-67.
[http://dx.doi.org/10.5500/wjt.v5.i2.52] [PMID: 26131407]
[10]
Su M, Hu X, Lin J, et al. Identification of candidate genes involved in renal ischemia/reperfusion injury. DNA Cell Biol 2019; 38(3): 256-62.
[http://dx.doi.org/10.1089/dna.2018.4551] [PMID: 30668132]
[11]
Wu J, Zhang F, Zheng X, et al. Identification of renal ischemia reperfusion injury subtypes and predictive strategies for delayed graft function and graft survival based on neutrophil extracellular trap-related genes. Front Immunol 2022; 13: 1047367.
[http://dx.doi.org/10.3389/fimmu.2022.1047367] [PMID: 36532016]
[12]
He S, He L, Yan F, et al. Identification of hub genes associated with acute kidney injury induced by renal ischemia–reperfusion injury in mice. Front Physiol 2022; 13: 951855.
[http://dx.doi.org/10.3389/fphys.2022.951855] [PMID: 36246123]
[13]
Yoshida T, Kurella M, Beato F, et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int 2002; 61(5): 1646-54.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00341.x] [PMID: 11967014]
[14]
Zhang D, Wang Y, Zeng S, et al. Integrated analysis of prognostic genes associated with ischemia–reperfusion injury in renal transplantation. Front Immunol 2021; 12: 747020.
[http://dx.doi.org/10.3389/fimmu.2021.747020] [PMID: 34557203]
[15]
Summers DM, Watson CJE, Pettigrew GJ, et al. Kidney donation after circulatory death (DCD): State of the art. Kidney Int 2015; 88(2): 241-9.
[http://dx.doi.org/10.1038/ki.2015.88] [PMID: 25786101]
[16]
Cardinal H, Dieudé M, Hébert MJ. Endothelial dysfunction in kidney transplantation. Front Immunol 2018; 9: 1130.
[http://dx.doi.org/10.3389/fimmu.2018.01130] [PMID: 29875776]
[17]
Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-reperfusion injury reduces long term renal graft survival: Mechanism and beyond. EBioMedicine 2018; 28: 31-42.
[http://dx.doi.org/10.1016/j.ebiom.2018.01.025] [PMID: 29398595]
[18]
Han F, Lin MZ, Zhou HL, et al. Delayed graft function is correlated with graft loss in recipients of expanded-criteria rather than standard-criteria donor kidneys: A retrospective, multicenter, observation cohort study. Chin Med J 2020; 133(5): 561-70.
[http://dx.doi.org/10.1097/CM9.0000000000000666] [PMID: 32053570]
[19]
Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: A systematic review and meta-analysis. Nephrol Dial Transplant 2008; 24(3): 1039-47.
[http://dx.doi.org/10.1093/ndt/gfn667] [PMID: 19103734]
[20]
Barba J, Zudaire JJ, Robles JE, et al. Is there a safe cold ischemia time interval for kidney graft? Actas Urol Esp 2011; 35(8): 475-80.
[http://dx.doi.org/10.1016/j.acuro.2011.03.005] [PMID: 21550140]
[21]
Schopp I, Reissberg E, Lüer B, Efferz P, Minor T. Controlled rewarming after hypothermia: Adding a new principle to renal preservation. Clin Transl Sci 2015; 8(5): 475-8.
[http://dx.doi.org/10.1111/cts.12295] [PMID: 26053383]
[22]
Hameed AM, Yuen L, Pang T, Rogers N, Hawthorne WJ, Pleass HC. Techniques to ameliorate the impact of second warm ischemic time on kidney transplantation outcomes. Transplant Proc 2018; 50(10): 3144-51.
[http://dx.doi.org/10.1016/j.transproceed.2018.09.003] [PMID: 30577180]
[23]
Tennankore KK, Kim SJ, Alwayn IPJ, Kiberd BA. Prolonged warm ischemia time is associated with graft failure and mortality after kidney transplantation. Kidney Int 2016; 89(3): 648-58.
[http://dx.doi.org/10.1016/j.kint.2015.09.002] [PMID: 26880458]
[24]
Heylen L, Pirenne J, Samuel U, et al. The impact of anastomosis time during kidney transplantation on graft loss: A eurotransplant cohort study. Am J Transplant 2017; 17(3): 726-34.
[http://dx.doi.org/10.1111/ajt.14031] [PMID: 27593738]
[25]
Patel AR, Eggener SE. Warm ischemia less than 30 minutes is not necessarily safe during partial nephrectomy: Every minute matters. Urol Oncol 2011; 29(6): 826-8.
[http://dx.doi.org/10.1016/j.urolonc.2011.02.015] [PMID: 22078406]
[26]
Tasoulis MK, Douzinas EE. Hypoxemic reperfusion of ischemic states: An alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 2016; 23(1): 7.
[http://dx.doi.org/10.1186/s12929-016-0220-0] [PMID: 26786360]
[27]
Kamińska D, Kościelska-Kasprzak K, Chudoba P, et al. The influence of warm ischemia elimination on kidney injury during transplantation – clinical and molecular study. Sci Rep 2016; 6(1): 36118.
[http://dx.doi.org/10.1038/srep36118] [PMID: 27808277]
[28]
Van Eck NJ, Waltman L. VOSviewer: Visualizing scientific landscapes. Leiden University in the Netherlands 2010.
[29]
Trott O, Olson AJ. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[30]
Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Res 2023; 51(D1): D1373-80.
[http://dx.doi.org/10.1093/nar/gkac956] [PMID: 36305812]
[31]
Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46(W1): W296-303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[32]
Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute kidney injury: From diagnosis to prevention and treatment strategies. J Clin Med 2020; 9(6): 1704.
[http://dx.doi.org/10.3390/jcm9061704] [PMID: 32498340]
[33]
Vormann MK, Tool LM, Ohbuchi M, et al. Modelling and prevention of acute kidney injury through ischemia and reperfusion in a combined human renal proximal tubule/blood vessel-on-a-chip. Kidney360 2022; 3(2): 217-31.
[http://dx.doi.org/10.34067/KID.0003622021] [PMID: 35373131]
[34]
Zheng H, Lan J, Li J, Lv L. Therapeutic effect of berberine on renal ischemia-reperfusion injury in rats and its effect on Bax and Bcl-2. Exp Ther Med 2018; 16(3): 2008-12.
[http://dx.doi.org/10.3892/etm.2018.6408] [PMID: 30186432]
[35]
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256: 117860.
[http://dx.doi.org/10.1016/j.lfs.2020.117860] [PMID: 32534037]
[36]
Li X, Ma N, Xu J, Zhang Y, Yang P, Su X. Targeting ferroptosis: Pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev 2021; 1587922.
[http://dx.doi.org/10.1155/2021/1587922]
[37]
Panisello-Roselló A, Lopez A, Folch-Puy E, et al. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J Gastroenterol 2018; 24(27): 2984-94.
[http://dx.doi.org/10.3748/wjg.v24.i27.2984] [PMID: 30038465]
[38]
Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail 2021; 43(1): 619-42.
[http://dx.doi.org/10.1080/0886022X.2021.1901739] [PMID: 33784950]
[39]
Barati A, Rahbar Saadat Y, Meybodi SM, et al. Eplerenone reduces renal ischaemia/reperfusion injury by modulating Klotho, NF-κB and SIRT1/SIRT3/PGC-1α signalling pathways. J Pharm Pharmacol 2023; 75(6): 819-27.
[http://dx.doi.org/10.1093/jpp/rgac054] [PMID: 35866843]
[40]
Hu MC, Moe OW. Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol 2012; 8(7): 423-9.
[http://dx.doi.org/10.1038/nrneph.2012.92] [PMID: 22664739]
[41]
Khader A, Yang WL, Kuncewitch M, et al. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation 2014; 98(2): 148-56.
[http://dx.doi.org/10.1097/TP.0000000000000194] [PMID: 24918615]
[42]
Mejía-Vilet JM, Ramírez V, Cruz C, Uribe N, Gamba G, Bobadilla NA. Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am J Physiol Renal Physiol 2007; 293(1): F78-86.
[http://dx.doi.org/10.1152/ajprenal.00077.2007] [PMID: 17376767]
[43]
Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007; 117(10): 2847-59.
[http://dx.doi.org/10.1172/JCI31008] [PMID: 17853945]
[44]
Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology 2019; 20(4): 381-95.
[http://dx.doi.org/10.1007/s10522-019-09805-6] [PMID: 30838484]
[45]
Panesso MC, Shi M, Cho HJ, et al. Klotho has dual protective effects on cisplatin-induced acute kidney injury. Kidney Int 2014; 85(4): 855-70.
[http://dx.doi.org/10.1038/ki.2013.489] [PMID: 24304882]
[46]
Hu X, Ding C, Ding X, et al. Inhibition of myeloid differentiation protein 2 attenuates renal ischemia/reperfusion-induced oxidative stress and inflammation via suppressing TLR4/TRAF6/NF-kB pathway. Life Sci 2020; 256: 117864.
[http://dx.doi.org/10.1016/j.lfs.2020.117864] [PMID: 32474021]
[47]
Donnahoo KK, Shames BD, Harken AH, Meldrum DR. Review article: The role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol 1999; 162(1): 196-203.
[http://dx.doi.org/10.1097/00005392-199907000-00068] [PMID: 10379787]
[48]
Abe T, Sazawa A, Harabayashi T, et al. Renal hypothermia with ice slush in laparoscopic partial nephrectomy: The outcome of renal function. J Endourol 2012; 26(11): 1483-8.
[http://dx.doi.org/10.1089/end.2012.0122] [PMID: 22984848]
[49]
Ramirez D, Caputo PA, Krishnan J, Zargar H, Kaouk JH. Robot-assisted partial nephrectomy with intracorporeal renal hypothermia using ice slush: Step-by-step technique and matched comparison with warm ischaemia. BJU Int 2016; 117(3): 531-6.
[http://dx.doi.org/10.1111/bju.13346] [PMID: 26435486]
[50]
Menon M, Abaza R, Sood A, et al. Robotic kidney transplantation with regional hypothermia: Evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). Eur Urol 2014; 65(5): 1001-9.
[http://dx.doi.org/10.1016/j.eururo.2013.11.011] [PMID: 24287316]
[51]
Hruby S, Lusuardi L, Jeschke S, Janetschek G. Cooling mechanisms in laparoscopic partial nephrectomy: Are really necessary? Arch Esp Urol 2013; 66(1): 139-45.
[PMID: 23406809]
[52]
Arai Y, Kaiho Y, Saito H, et al. Renal hypothermia using ice-cold saline for retroperitoneal laparoscopic partial nephrectomy: Evaluation of split renal function with technetium-99m-dimercaptosuccinic acid renal scintigraphy. Urology 2011; 77(4): 814-8.
[http://dx.doi.org/10.1016/j.urology.2010.12.007] [PMID: 21333332]
[53]
Li Y, Han X, Dagvadorj BU, et al. An effective cooling device for minimal-incision kidney transplantation. Ann Transplant 2020; 25: e928773.
[http://dx.doi.org/10.12659/AOT.928773] [PMID: 33243968]
[54]
Longchamp A, Meier RPH, Colucci N, et al. Impact of an intra-abdominal cooling device during open kidney transplantation in pigs. Swiss Med Wkly 2019; 149: w20143.
[http://dx.doi.org/10.4414/smw.2019.20143] [PMID: 31869427]
[55]
Meier RPH, Piller V, Hagen ME, et al. Intra-abdominal cooling system limits ischemia–reperfusion injury during robot-assisted renal transplantation. Am J Transplant 2018; 18(1): 53-62.
[http://dx.doi.org/10.1111/ajt.14399] [PMID: 28637093]
[56]
Territo A, Piana A, Fontana M, et al. Step-by-step development of a cold ischemia device for open and robotic-assisted renal transplantation. Eur Urol 2021; 80(6): 738-45.
[http://dx.doi.org/10.1016/j.eururo.2021.05.026] [PMID: 34059396]
[57]
Zhang P, Han X, Zhang X, et al. A controllable double-cycle cryogenic device inducing hypothermia for laparoscopic orthotopic kidney transplantation in swine. Transl Androl Urol 2021; 10(7): 3046-55.
[http://dx.doi.org/10.21037/tau-21-544] [PMID: 34430407]
[58]
Khan T, Kwarcinski J, Pang T, et al. Protection from the second warm ischemic injury in kidney transplantation using an ex vivo porcine model and thermally insulating jackets. Transplant Proc 2021; 53(2): 750-4.
[http://dx.doi.org/10.1016/j.transproceed.2021.01.037] [PMID: 33581848]
[59]
Karipineni F, Campos S, Parsikia A, et al. Elimination of warm ischemia using the ice bag technique does not decrease delayed graft function. Int J Surg 2014; 12(6): 551-6.
[http://dx.doi.org/10.1016/j.ijsu.2014.04.002] [PMID: 24735894]
[60]
Liu F, Yuan H, Li X, Ma X, Wang M. Application of hypothermic perfusion via a renal artery balloon catheter during robot-assisted partial nephrectomy and effect on renal function. Acad Radiol 2019; 26(8): e196-201.
[http://dx.doi.org/10.1016/j.acra.2018.09.024] [PMID: 31284936]
[61]
Colli JL, Dorsey P, Grossman L, Lee BR. Retrograde renal cooling to minimize ischemia. Int Braz J Urol 2013; 39(1): 37-45.
[http://dx.doi.org/10.1590/S1677-5538.IBJU.2013.01.06] [PMID: 23489498]
[62]
Saitz TR, Dorsey PJ, Colli J, Lee BR. Induction of cold ischemia in patients with solitary kidney using retrograde intrarenal cooling: 2-year functional outcomes. Int Urol Nephrol 2013; 45(2): 313-20.
[http://dx.doi.org/10.1007/s11255-013-0391-5] [PMID: 23386246]
[63]
Collett JA, Corridon PR, Mehrotra P, et al. Hydrodynamic isotonic fluid delivery ameliorates moderate-to-severe ischemia-reperfusion injury in rat kidneys. J Am Soc Nephrol 2017; 28(7): 2081-92.
[http://dx.doi.org/10.1681/ASN.2016040404] [PMID: 28122967]
[64]
Herrler T, Tischer A, Meyer A, et al. The intrinsic renal compartment syndrome: New perspectives in kidney transplantation. Transplantation 2010; 89(1): 40-6.
[http://dx.doi.org/10.1097/TP.0b013e3181c40aba] [PMID: 20061917]
[65]
Herrler T, Wang H, Tischer A, et al. Decompression of inflammatory edema along with endothelial cell therapy expedites regeneration after renal ischemia-reperfusion injury. Cell Transplant 2013; 22(11): 2091-103.
[http://dx.doi.org/10.3727/096368912X658700] [PMID: 23128032]
[66]
van Smaalen TC, Mestrom MGAM, Kox JJHFM, Winkens B, van Heurn LWE. Capsulotomy of ischemically damaged donor kidneys: A pig study. Eur Surg Res 2016; 57(1-2): 89-99.
[http://dx.doi.org/10.1159/000445432] [PMID: 27160678]
[67]
Kinoshita K, Yamanaga S, Kaba A, et al. Optimizing intraoperative blood pressure to improve outcomes in living donor renal transplantation. Transplant Proc 2020; 52(6): 1687-94.
[http://dx.doi.org/10.1016/j.transproceed.2020.01.166] [PMID: 32448661]
[68]
Costa FLS, Teixeira RKC, Yamaki VN, et al. Remote ischemic conditioning temporarily improves antioxidant defense. J Surg Res 2016; 200(1): 105-9.
[http://dx.doi.org/10.1016/j.jss.2015.07.031] [PMID: 26316445]
[69]
Plotnikov EY. Ischemic preconditioning of the kidney. Bull Exp Biol Med 2021; 171(5): 567-71.
[http://dx.doi.org/10.1007/s10517-021-05270-9] [PMID: 34617172]
[70]
Veighey KV, Nicholas JM, Clayton T, et al. Early remote ischaemic preconditioning leads to sustained improvement in allograft function after live donor kidney transplantation: Long-term outcomes in the renal protection against ischaemia–reperfusion in transplantation (REPAIR) randomised trial. Br J Anaesth 2019; 123(5): 584-91.
[http://dx.doi.org/10.1016/j.bja.2019.07.019] [PMID: 31521337]
[71]
Shen Y, Qiu T, Liu XH, Zhang L, Wang ZS, Zhou JQ. Renal ischemia-reperfusion injury attenuated by splenic ischemic preconditioning. Eur Rev Med Pharmacol Sci 2018; 22(7): 2134-42.
[http://dx.doi.org/10.26355/eurrev_201804_14747] [PMID: 29687873]
[72]
Menting TP, Wever KE, Ozdemir-van Brunschot DMD, Van der Vliet DJA, Rovers MM, Warle MC. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Libr 2017; 2017(3): CD010777.
[http://dx.doi.org/10.1002/14651858.CD010777.pub2] [PMID: 28258686]
[73]
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11(17): 5706-26.
[http://dx.doi.org/10.1039/D3BM00255A] [PMID: 37401545]
[74]
Mirmoghtadaei M, Khaboushan AS, Mohammadi B, et al. Kidney tissue engineering in preclinical models of renal failure: A systematic review and meta-analysis. Regen Med 2022; 17(12): 941-55.
[http://dx.doi.org/10.2217/rme-2022-0084] [PMID: 36154467]
[75]
Zamorano M, Castillo RL, Beltran JF, et al. Tackling ischemic reperfusion injury with the aid of stem cells and tissue engineering. Front Physiol 2021; 12: 705256.
[http://dx.doi.org/10.3389/fphys.2021.705256] [PMID: 34603075]
[76]
Chen F, Chen N, Xia C, et al. Mesenchymal stem cell therapy in kidney diseases: Potential and challenges. Cell Transplant 2023; 32: 9636897231164251.
[http://dx.doi.org/10.1177/09636897231164251] [PMID: 37013255]
[77]
Fu Z, Zhang Y, Geng X, et al. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14(1): 116.
[http://dx.doi.org/10.1186/s13287-023-03351-2] [PMID: 37122024]
[78]
Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7(1): 92.
[http://dx.doi.org/10.1038/s41392-022-00932-0] [PMID: 35314676]
[79]
Kouchakian MR, Baghban N, Moniri SF, Baghban M, Bakhshalizadeh S, Najafzadeh V. The clinical trials of mesenchymal stromal cells therapy. Stem Cells Int 2021; 1634782.
[http://dx.doi.org/10.1155/2021/1634782]
[80]
Rodrigues CE, Capcha JMC, de Bragança AC, et al. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res Ther 2017; 8(1): 19.
[http://dx.doi.org/10.1186/s13287-017-0475-8] [PMID: 28129785]
[81]
Yamada Y, Nakashima A, Doi S, et al. Localization and maintenance of engrafted mesenchymal stem cells administered via renal artery in kidneys with ischemia-reperfusion injury. Int J Mol Sci 2021; 22(8): 4178.
[http://dx.doi.org/10.3390/ijms22084178] [PMID: 33920714]
[82]
Keshvari MA, Afshar A, Daneshi S, et al. Decellularization of kidney tissue: Comparison of sodium lauryl ether sulfate and sodium dodecyl sulfate for allotransplantation in rat. Cell Tissue Res 2021; 386(2): 365-78.
[http://dx.doi.org/10.1007/s00441-021-03517-5] [PMID: 34424397]
[83]
Bombelli S, Meregalli C, Scalia C, et al. Nephrosphere-derived cells are induced to multilineage differentiation when cultured on human decellularized kidney scaffolds. Am J Pathol 2018; 188(1): 184-95.
[http://dx.doi.org/10.1016/j.ajpath.2017.09.012] [PMID: 29037855]
[84]
Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in tissue engineering and regenerative medicine: Evaluation, modification, and application methods. Front Bioeng Biotechnol 2022; 10: 805299.
[http://dx.doi.org/10.3389/fbioe.2022.805299] [PMID: 35547166]
[85]
Tian H, Wu L, Qin H, et al. Composite materials combined with stem cells promote kidney repair and regeneration. Compos, Part B Eng 2024; 275: 111278.
[http://dx.doi.org/10.1016/j.compositesb.2024.111278]
[86]
Katari R, Edgar L, Wong T, et al. Tissue-engineering approaches to restore kidney function. Curr Diab Rep 2015; 15(10): 69.
[http://dx.doi.org/10.1007/s11892-015-0643-0] [PMID: 26275443]
[87]
Cetin N, Suleyman H, Sener E, Demirci E, Gundogdu C, Akcay F. The prevention of ischemia/reperfusion induced oxidative damage by venous blood in rabbit kidneys monitored with biochemical, histopatological and immunohistochemical analysis. J Physiol Pharmacol 2014; 65(3): 383-92.
[PMID: 24930510]
[88]
Rysmakhanov M, Smagulov A, Mussin N, et al. Retrograde reperfusion of renal grafts to reduce ischemic-reperfusion injury. Korean J Transplant 2022; 36(4): 253-8.
[http://dx.doi.org/10.4285/kjt.22.0053] [PMID: 36704809]
[89]
Wang Y, Wen J, Almoiliqy M, Wang Y, Liu Z, Yang X. Sesamin protects against and ameliorates rat intestinal ischemia/reperfusion injury with involvement of activating Nrf2/HO-1/NQO1 signaling pathway. Oxid Med Cell Longev 2021; 2021: 5147069.
[http://dx.doi.org/10.1155/2021/5147069]
[90]
Azari O, Kheirandish R, Azizi S, Farajli Abbasi M, Ghahramani Gareh Chaman S, Bidi M. Protective effects of hydrocortisone, vitamin C and E alone or in combination against renal ischemia-reperfusion injury in rat. Iran J Pathol 2015; 10(4): 272-80.
[PMID: 26351497]
[91]
Papi S, Ahmadvand H, Sotoodehnejadnematalahi F, Yaghmaei P. The protective effects of indole-acetic acid on the renal ischemia-reperfusion injury via antioxidant and antiapoptotic properties in a rat model. Iran J Kidney Dis 2022; 16(2): 125-34.
[PMID: 35489081]
[92]
Fontecha-Barriuso M, Lopez-Diaz AM, Carriazo S, Ortiz A, Sanz AB. Nicotinamide and acute kidney injury. Clin Kidney J 2021; 14(12): 2453-62.
[http://dx.doi.org/10.1093/ckj/sfab173] [PMID: 34950458]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy