Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Editorial

Transcending Molecules: Paving the Way from Lab to Life in Drug Transport Innovation

Author(s): Abhishek Verma, Abhishek Chauhan and Ankit Awasthi*

Volume 25, Issue 7, 2024

Published on: 18 April, 2024

Page: [445 - 448] Pages: 4

DOI: 10.2174/0113894501305312240414073623

Open Access Journals Promotions 2
Next »
[1]
Brouwer KLR, Evers R, Hayden E, et al. Regulation of drug transport proteins—From mechanisms to clinical impact: A white paper on behalf of the international transporter consortium. Clin Pharmacol Ther 2022; 112(3): 461-84.
[http://dx.doi.org/10.1002/cpt.2605] [PMID: 35390174]
[2]
Jang HY, Song J, Kim JH, et al. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. NPJ Digit Med 2022; 5(1): 88.
[http://dx.doi.org/10.1038/s41746-022-00639-0] [PMID: 35817846]
[3]
Fontana F, Anselmi M, Limonta P. Molecular mechanisms of cancer drug resistance: Emerging biomarkers and promising targets to overcome tumor progression. Cancers 2022; 14(7): 1614.
[4]
Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2023; 13(3): 982-97.
[http://dx.doi.org/10.1016/j.apsb.2022.10.002] [PMID: 36970215]
[5]
Khanppnavar B, Maier J, Herborg F, et al. Structural basis of organic cation transporter-3 inhibition. Nat Commun 2022; 13(1): 6714.
[http://dx.doi.org/10.1038/s41467-022-34284-8] [PMID: 36344565]
[6]
Hu Y, Li X, Zhang Q, et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater 2021; 6(9): 2905-13.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.014] [PMID: 33718671]
[7]
Zhou D, Zhou F, Sheng S, Wei Y, Chen X, Su J. Intra-articular nanodrug delivery strategies for treating osteoarthritis. Drug Discov Today 2023; 28(3): 103482.
[http://dx.doi.org/10.1016/j.drudis.2022.103482] [PMID: 36584875]
[8]
Zhang Y, Wang C, Zhang W, Li X. Bioactive peptides for anticancer therapies. Biomater Transl 2023; 4(1): 5-17.
[PMID: 37206303]
[9]
Hall AM, Trepiccione F, Unwin RJ. Drug toxicity in the proximal tubule: New models, methods and mechanisms. Pediatr Nephrol 2022; 37(5): 973-82.
[http://dx.doi.org/10.1007/s00467-021-05121-9] [PMID: 34050397]
[10]
Huttunen KM, Terasaki T, Urtti A, Montaser AB, Uchida Y. Pharmacoproteomics of brain barrier transporters and substrate design for the brain targeted drug delivery. Pharm Res 2022; 39(7): 1363-92.
[http://dx.doi.org/10.1007/s11095-022-03193-2] [PMID: 35257288]
[11]
Lowe MM, Blaser DA, Cone L, et al. Increasing patient involvement in drug development. Value Health 2016; 19(6): 869-78.
[http://dx.doi.org/10.1016/j.jval.2016.04.009] [PMID: 27712716]
[12]
Fan J, To KKW, Chen ZS, Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist Updat 2023; 66: 100905.
[http://dx.doi.org/10.1016/j.drup.2022.100905] [PMID: 36463807]
[13]
Giacomini KM, Yee SW, Koleske ML, et al. New and emerging research on solute carrier and ATP binding cassette transporters in drug discovery and development: Outlook from the international transporter consortium. Clin Pharmacol Ther 2022; 112(3): 540-61.
[http://dx.doi.org/10.1002/cpt.2627] [PMID: 35488474]
[14]
Hafey MJ, Aleksunes LM, Bridges CC, et al. Transporters and toxicity: Insights from the international transporter consortium workshop 4. Clin Pharmacol Ther 2022; 112(3): 527-39.
[http://dx.doi.org/10.1002/cpt.2638] [PMID: 35546260]
[15]
Taskar KS, Yang X, Neuhoff S, et al. Clinical relevance of hepatic and renal P‐gp/BCRP inhibition of drugs: An international transporter consortium perspective. Clin Pharmacol Ther 2022; 112(3): 573-92.
[http://dx.doi.org/10.1002/cpt.2670] [PMID: 35612761]
[16]
Vijaywargi G, Kollipara S, Ahmed T, Chachad S. Predicting transporter mediated drug–drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward. Biopharm Drug Dispos 2023; 44(3): 195-220.
[http://dx.doi.org/10.1002/bdd.2339] [PMID: 36413625]
[17]
Chu X, Prasad B, Neuhoff S, et al. Clinical implications of altered drug transporter abundance/function and PBPK modeling in specific populations: An ITC perspective. Clin Pharmacol Ther 2022; 112(3): 501-26.
[http://dx.doi.org/10.1002/cpt.2643] [PMID: 35561140]
[18]
Lin W, Chen Y, Unadkat JD, Zhang X, Wu D, Heimbach T. Applications, challenges, and outlook for PBPK modeling and simulation: A regulatory, industrial and academic perspective. Pharm Res 2022; 39(8): 1701-31.
[http://dx.doi.org/10.1007/s11095-022-03274-2] [PMID: 35552967]
[19]
Zang R, Barth A, Wong H, et al. Design and measurement of drug tissue concentration asymmetry and tissue exposure-effect (Tissue PK-PD) evaluation. J Med Chem 2022; 65(13): 8713-34.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00502] [PMID: 35790118]
[20]
Kappel D, Sahin L, Yao L, Thor S, Kweder S. A comparison of FDA and EMA pregnancy and lactation labeling. Clin Pharmacol Ther 2023; 113(6): 1251-7.
[http://dx.doi.org/10.1002/cpt.2843] [PMID: 36645246]
[21]
Shinde A, Thorat V, Singh HK, Chavda A, Patel VS. Personalized pharmacogenomics tailoring drug therapy to individuals. J ReAtt Ther Dev Divers 2023; 6(1): 749-55.
[22]
Vaidhya A, Ghildiyal K, Rajawat D, Nayak SS, Parida S, Panigrahi M. Relevance of pharmacogenetics and pharmacogenomics in veterinary clinical practice: A review. Anim Genet 2024; 55(1): 3-19.
[http://dx.doi.org/10.1111/age.13376] [PMID: 37990577]

© 2024 Bentham Science Publishers | Privacy Policy