Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways

Author(s): Krishna Kumar Varshney, Jeetendra Kumar Gupta and Rajnish Srivastava*

Volume 31, Issue 4, 2024

Published on: 16 April, 2024

Page: [275 - 289] Pages: 15

DOI: 10.2174/0109298665294109240323033601

Price: $65

Abstract

Background: Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities.

Objective: This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases.

Methods: A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023.

Results: The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis.

Conclusion: The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.

Keywords: Antioxidant, clinical, diosmetin, drug development, flavonoid, multifaceted, signaling.

Graphical Abstract
[1]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[2]
Makhuvele, R.; Naidu, K.; Gbashi, S.; Thipe, V.C.; Adebo, O.A.; Njobeh, P.B. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon, 2020, 6(10), e05291.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05291] [PMID: 33134582]
[3]
Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[http://dx.doi.org/10.1080/07391102.2021.1967195] [PMID: 34424822]
[4]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[5]
Williams, C.A.; Grayer, R.J. Anthocyanins and other flavonoids. Nat. Prod. Rep., 2004, 21(4), 539-573.
[http://dx.doi.org/10.1039/b311404j] [PMID: 15282635]
[6]
Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ. Isolation of some phenolic compounds from plantago subulata l. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280.
[http://dx.doi.org/10.1002/cbdv.202200280] [PMID: 35796520]
[7]
Palabıyık, E.; Sulumer, A.N.; Uguz, H.; Avcı, B.; Askın, S.; Askın, H.; Demir, Y. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J. Mol. Recognit., 2023, 36(3), e3004.
[http://dx.doi.org/10.1002/jmr.3004] [PMID: 36537558]
[8]
Türkeş, C.; Demir, Y.; Beydemir, Ş. In Vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors**. ChemistrySelect, 2022, 7(48), e202204050.
[http://dx.doi.org/10.1002/slct.202204050]
[9]
Ahmad, T.; Javed, A.; Khan, T.; Althobaiti, Y.S.; Ullah, A.; Almutairi, F.M.; Shah, A.J. Investigation into the antihypertensive effects of diosmetin and its underlying vascular mechanisms using rat model. Pharmaceuticals, 2022, 15(8), 951.
[http://dx.doi.org/10.3390/ph15080951] [PMID: 36015099]
[10]
Song, C.; Deng, S.; Hu, H.; Zheng, Z.; Shen, B.; Wu, X.; Huang, M.; Wang, J.; Wang, Z. Diosmetin affects gene expression on human lung adenocarcinoma cells. J. Oncol., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/5482148] [PMID: 35646118]
[11]
Yoshikawa, M.; Uemura, T.; Shimoda, H.; Kishi, A.; Kawahara, Y.; Matsuda, H. Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial part of Petroselinum crispum MIll. (Parsley) and structures of 6"-acetylapiin and a new monoterpene glycoside, petroside. Chem. Pharm. Bull., 2000, 48(7), 1039-1044.
[http://dx.doi.org/10.1248/cpb.48.1039] [PMID: 10923837]
[12]
Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative analysis of phenolic composition of six commercially available chamomile (Matricaria chamomilla L.) extracts: Potential biological implications. Int. J. Mol. Sci., 2021, 22(19), 10601.
[http://dx.doi.org/10.3390/ijms221910601] [PMID: 34638940]
[13]
Hostetler, G.L.; Riedl, K.M.; Schwartz, S.J. Endogenous enzymes, heat, and pH affect flavone profiles in parsley (Petroselinum crispum var. neapolitanum) and celery (Apium graveolens) during juice processing. J. Agric. Food Chem., 2012, 60(1), 202-208.
[http://dx.doi.org/10.1021/jf2033736] [PMID: 22224550]
[14]
Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr., 2017, 8(3), 423-435.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[15]
Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules, 2007, 12(8), 1641-1673.
[http://dx.doi.org/10.3390/12081641] [PMID: 17960080]
[16]
Villalva, M.; Silvan, J.M.; Alarcón-Cavero, T.; Villanueva-Bermejo, D.; Jaime, L.; Santoyo, S.; Martinez-Rodriguez, A.J. Antioxidant, anti-inflammatory, and antibacterial properties of an Achillea millefolium L. Extract and its fractions obtained by supercritical anti-solvent fractionation against Helicobacter pylori. Antioxidants, 2022, 11(10), 1849.
[http://dx.doi.org/10.3390/antiox11101849] [PMID: 36290572]
[17]
Lee, DH; Park, JK; Choi, J; Jang, H; Seol, JW Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model. Int Immunopharmacol., 2020, 89, 107046.
[http://dx.doi.org/10.1016/j.intimp.2020.107046]
[18]
Barton, NW; Lipovac, V; Rosenberg, A Effects of strong electrolyte upon the activity of Clostridium perfringens sialidase toward sialyllactose and sialoglycolipids. J Biol. Chem., 1975, 250(21), 8462-8466.
[19]
Shi, M.; Wang, J.; Bi, F.; Bai, Z. Diosmetin alleviates cerebral ischemia-reperfusion injury through Keap1-mediated Nrf2/ARE signaling pathway activation and NLRP3 inflammasome inhibition. Environ. Toxicol., 2022, 37(6), 1529-1542.
[http://dx.doi.org/10.1002/tox.23504] [PMID: 35191607]
[20]
Mo, G.; He, Y.; Zhang, X.; Lei, X.; Luo, Q. Diosmetin exerts cardioprotective effect on myocardial ischaemia injury in neonatal rats by decreasing oxidative stress and myocardial apoptosis. Clin. Exp. Pharmacol. Physiol., 2020, 47(10), 1713-1722.
[http://dx.doi.org/10.1111/1440-1681.13309] [PMID: 32219867]
[21]
Yang, K.; Li, W.F.; Yu, J.F.; Yi, C.; Huang, W.F. Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J. Surg. Res., 2017, 214, 69-78.
[http://dx.doi.org/10.1016/j.jss.2017.02.067] [PMID: 28624062]
[22]
Wang, C.; Liao, Y.; Wang, S.; Wang, D.; Wu, N.; Xu, Q.; Jiang, W.; Qiu, M.; Liu, C. Cytoprotective effects of diosmetin against hydrogen peroxide-induced L02 cell oxidative damage via activation of the Nrf2-ARE signaling pathway. Mol. Med. Rep., 2018, 17(5), 7331-7338.
[http://dx.doi.org/10.3892/mmr.2018.8750] [PMID: 29568961]
[23]
Bednarska, K.; Fecka, I. Potential of vasoprotectives to inhibit non-enzymatic protein glycation, and reactive carbonyl and oxygen species uptake. Int. J. Mol. Sci., 2021, 22(18), 10026.
[http://dx.doi.org/10.3390/ijms221810026] [PMID: 34576189]
[24]
Zhang, Y.; Jiang, Y.; Lu, D. Diosmetin suppresses neuronal apoptosis and inflammation by modulating the phosphoinositide 3-kinase (PI3K)/AKT/Nuclear Factor-κB (NF-κB) signaling pathway in a rat model of pneumococcal meningitis. Med. Sci. Monit., 2019, 25, 2238-2245.
[http://dx.doi.org/10.12659/MSM.911860] [PMID: 30914630]
[25]
Chen, Y.; Peng, F.; Xing, Z.; Chen, J.; Peng, C.; Li, D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol., 2022, 13, 1006434.
[http://dx.doi.org/10.3389/fimmu.2022.1006434] [PMID: 36353622]
[26]
Uddin, M.S.; Mamun, A.A.; Rahman, M.M.; Jeandet, P.; Alexiou, A.; Behl, T.; Sarwar, M.S.; Sobarzo-Sánchez, E.; Ashraf, G.M.; Sayed, A.A.; Albadrani, G.M.; Peluso, I.; Abdel-Daim, M.M. Natural products for neurodegeneration: Regulating neurotrophic signals. Oxid. Med. Cell. Longev., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/8820406] [PMID: 34239696]
[27]
Lai, M.C.; Liu, W.Y.; Liou, S.S.; Liu, I.M. Diosmetin targeted at peroxisome proliferator-activated receptor gamma alleviates advanced glycation end products induced neuronal injury. Nutrients, 2022, 14(11), 2248.
[http://dx.doi.org/10.3390/nu14112248] [PMID: 35684047]
[28]
Saeedi, M.; Rashidy-Pour, A. Association between chronic stress and Alzheimer’s disease: Therapeutic effects of Saffron. Biomed. Pharmacother., 2021, 133, 110995.
[http://dx.doi.org/10.1016/j.biopha.2020.110995] [PMID: 33232931]
[29]
Saghaei, E.; Nasiri Boroujeni, S.; Safavi, P.; Borjian Boroujeni, Z.; Bijad, E. Diosmetin mitigates cognitive and memory impairment provoked by chronic unpredictable mild stress in mice. Evid. Based Complement. Alternat. Med., 2020, 1-10.
[http://dx.doi.org/10.1155/2020/5725361] [PMID: 33414836]
[30]
Zhang, L.; Li, D.; Cao, F.; Xiao, W.; Zhao, L.; Ding, G.; Wang, Z. Identification of human acetylcholinesterase inhibitors from the constituents of egb761 by modeling docking and molecular dynamics simulations. Comb. Chem. High Throughput Screen., 2018, 21(1), 41-49.
[http://dx.doi.org/10.2174/1386207320666171123201910] [PMID: 29173156]
[31]
Lucas, K.; Rosch, M.; Langguth, P. Molecular hydrogen (H 2 ) as a potential treatment for acute and chronic fatigue. Arch. Pharm., 2021, 354(4), 2000378.
[http://dx.doi.org/10.1002/ardp.202000378] [PMID: 33368699]
[32]
Kaya, Y.; Erçağ, A.; Zorlu, Y.; Demir, Y.; Gülçin, İ. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J. Biol. Inorg. Chem., 2022, 27(2), 271-281.
[http://dx.doi.org/10.1007/s00775-022-01932-9] [PMID: 35175415]
[33]
Assadieskandar, A.; Yu, C.; Maisonneuve, P.; Kurinov, I.; Sicheri, F.; Zhang, C. Rigidification dramatically improves inhibitor selectivity for RAF kinases. ACS Med. Chem. Lett., 2019, 10(7), 1074-1080.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00194] [PMID: 31312411]
[34]
Oztaskin, N.; Goksu, S.; Demir, Y.; Maras, A.; Gulcin, İ. Synthesis of novel bromophenol with diaryl methanes—determination of their inhibition effects on carbonic anhydrase and acetylcholinesterase. Molecules, 2022, 27(21), 7426.
[http://dx.doi.org/10.3390/molecules27217426] [PMID: 36364255]
[35]
Hong, S.W.; Teesdale-Spittle, P.; Page, R.; Truman, P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology, 2022, 93, 163-172.
[http://dx.doi.org/10.1016/j.neuro.2022.09.008] [PMID: 36155069]
[36]
Sher, E.; Codignola, A.; Biancardi, E.; Cova, D.; Clementi, F. Amine uptake inhibition by diosmin and diosmetin in human neuronal and neuroendocrine cell lines. Pharmacol. Res., 1992, 26(4), 395-402.
[http://dx.doi.org/10.1016/1043-6618(92)90238-7] [PMID: 1338224]
[37]
Rebas, E.; Rzajew, J.; Radzik, T.; Zylinska, L. Neuroprotective polyphenols: A modulatory action on neurotransmitter pathways. Curr. Neuropharmacol., 2020, 18(5), 431-445.
[http://dx.doi.org/10.2174/1570159X18666200106155127] [PMID: 31903883]
[38]
Mei, Z.; Du, L.; Liu, X.; Chen, X.; Tian, H.; Deng, Y.; Zhang, W. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct., 2022, 13(1), 198-212.
[http://dx.doi.org/10.1039/D1FO02579A] [PMID: 34881386]
[39]
DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; Simonson, D.C.; Testa, M.A.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers, 2015, 1(1), 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[40]
Akdağ, M.; Özçelik, A.B.; Demir, Y.; Beydemir, Ş. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J. Mol. Struct., 2022, 1258, 132675.
[http://dx.doi.org/10.1016/j.molstruc.2022.132675]
[41]
Sever, B.; Altıntop, M.D.; Demir, Y.; Yılmaz, N.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem. Biol. Interact., 2021, 345, 109576.
[http://dx.doi.org/10.1016/j.cbi.2021.109576] [PMID: 34252406]
[42]
Gong, X.; Xiong, L.; Bi, C.; Zhang, B. Diosmetin ameliorate type 2 diabetic mellitus by up-regulating Corynebacterium glutamicum to regulate IRS/PI3K/AKT-mediated glucose metabolism disorder in KK-Ay mice. Phytomedicine, 2021, 87, 153582.
[http://dx.doi.org/10.1016/j.phymed.2021.153582] [PMID: 34091150]
[43]
Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci., 2018, 14(11), 1483-1496.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[44]
Ononamadu, C.; Ihegboro, G.O.; Owolarafe, T.A.; Salawu, K.; Fadilu, M.; Ezeigwe, O.C.; Oshobu, M.L.; Nwachukwu, F.C. Identification of potential antioxidant and hypoglycemic compounds in aqueous-methanol fraction of methanolic extract of ocimum canum leaves. Anal. Bioanal. Chem. Res., 2019, 6(2), 431-439.
[http://dx.doi.org/10.22036/abcr.2019.161326.1291]
[45]
Michael, H.N.; Salib, J.Y.; Eskander, E.F. Bioactivity of diosmetin glycosides isolated from the epicarp of date fruits, Phoenix dactylifera, on the biochemical profile of alloxan diabetic male rats. Phytother. Res., 2013, 27(5), 699-704.
[http://dx.doi.org/10.1002/ptr.4777] [PMID: 22761049]
[46]
Stål, P. Liver fibrosis in non-alcoholic fatty liver disease: Diagnostic challenge with prognostic significance. World J. Gastroenterol., 2015, 21(39), 11077-11087.
[http://dx.doi.org/10.3748/wjg.v21.i39.11077] [PMID: 26494963]
[47]
Zhang, G.; Yan, Y.; Feng, X. Effect of diosmetin on young rats with high-fat diet-induced non-alcoholic fatty liver disease. Trop. J. Pharm. Res., 2022, 20(2), 315-320.
[http://dx.doi.org/10.4314/tjpr.v20i2.14]
[48]
Luo, N.; Yang, C.; Zhu, Y.; Chen, Q.; Zhang, B. Diosmetin ameliorates nonalcoholic steatohepatitis through modulating lipogenesis and inflammatory response in a STAT1/ CXCL10-dependent manner. J. Agric. Food Chem., 2021, 69(2), 655-667.
[http://dx.doi.org/10.1021/acs.jafc.0c06652] [PMID: 33404223]
[49]
Meephat, S.; Prasatthong, P.; Rattanakanokchai, S.; Bunbupha, S.; Maneesai, P.; Pakdeechote, P. Diosmetin attenuates metabolic syndrome and left ventricular alterations via the suppression of angiotensin II/AT 1 receptor/gp 91phox /p-NF-κB protein expression in high-fat diet fed rats. Food Funct., 2021, 12(4), 1469-1481.
[http://dx.doi.org/10.1039/D0FO02744H] [PMID: 33449987]
[50]
Sadeghi, H.M.; Adeli, I.; Calina, D.; Docea, A.O.; Mousavi, T.; Daniali, M.; Nikfar, S.; Tsatsakis, A.; Abdollahi, M. Polycystic Ovary syndrome: A comprehensive review of pathogenesis, management, and drug repurposing. Int. J. Mol. Sci., 2022, 23(2), 583.
[http://dx.doi.org/10.3390/ijms23020583] [PMID: 35054768]
[51]
Yan, Y.; Liu, X.; Gao, J.; Wu, Y.; Li, Y. Inhibition of TGF-β signaling in gliomas by the flavonoid diosmetin isolated from Dracocephalum peregrinum L. Molecules, 2020, 25(1), 192.
[http://dx.doi.org/10.3390/molecules25010192] [PMID: 31906574]
[52]
Ahmad, T.; Khan, T.; Kirabo, A.; Shah, A.J. Antioxidant flavonoid diosmetin is cardioprotective in a rat model of myocardial infarction induced by beta 1-adrenergic receptors activation. Curr. Issues Mol. Biol., 2023, 45(6), 4675-4686.
[http://dx.doi.org/10.3390/cimb45060297] [PMID: 37367046]
[53]
Zaragozá, C.; Álvarez-Mon, M.Á.; Zaragozá, F.; Villaescusa, L. Flavonoids: Antiplatelet effect as inhibitors of COX-1. Molecules, 2022, 27(3), 1146.
[http://dx.doi.org/10.3390/molecules27031146] [PMID: 35164411]
[54]
Zaragozá, C.; Monserrat, J.; Mantecón, C.; Villaescusa, L.; Álvarez-Mon, M.Á.; Zaragozá, F.; Álvarez-Mon, M. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed. Pharmacother., 2021, 141, 111867.
[http://dx.doi.org/10.1016/j.biopha.2021.111867] [PMID: 34229245]
[55]
Guo, Y.; Li, D.; Cen, X.; Qiu, H.; Ma, Y.; Liu, Y.; Huang, S.; Liu, L.; Xu, M.; Tang, Q.Z. Diosmetin protects against cardiac hypertrophy via p62/Keap1/Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/8367997] [PMID: 35242278]
[56]
Wang, H.; Zhang, X.; Liu, Y.; Zhang, Y.; Wang, Y.; Peng, Y.; Ding, Y. Diosmetin-7-O-β-D-glucopyranoside suppresses endothelial–mesenchymal transformation through endoplasmic reticulum stress in cardiac fibrosis. Clin. Exp. Pharmacol. Physiol., 2023, 50(10), 789-805.
[http://dx.doi.org/10.1111/1440-1681.13802] [PMID: 37430476]
[57]
Arab, H.H.; Salama, S.A.; Omar, H.A.; Arafa, E.S.A.; Maghrabi, I.A. Diosmin protects against ethanol-induced gastric injury in rats: Novel anti-ulcer actions. PLoS One, 2015, 10(3), e0122417.
[http://dx.doi.org/10.1371/journal.pone.0122417] [PMID: 25821971]
[58]
Raffetto, J.D. Pathophysiology of chronic venous disease and venous ulcers. Surg. Clin. North Am., 2018, 98(2), 337-347.
[http://dx.doi.org/10.1016/j.suc.2017.11.002] [PMID: 29502775]
[59]
Yu, X.; Liu, Y. Diosmetin attenuate experimental ulcerative colitis in rats via suppression of NF-κB, TNF-α and IL-6 signalling pathways correlated with down-regulation of apoptotic events. Eur. J. Inflamm., 2021, 19, ..
[http://dx.doi.org/10.1177/20587392211067292]
[60]
Rabia, A.; Muhammad, U.I.; Nazia, E.; Tayyaba, A.; Ali, A.; Houda, A.; Nawaf, W.A.; Suhail, R. Diosmetin alleviates nonylphenol-induced liver damage by improving biochemical, inflammatory, apoptotic, and histological profile in rats. J. King Saud Univ. Sci., 2023, 35(1), 102392.
[http://dx.doi.org/10.1016/j.jksus.2022.10239]
[61]
Wójciak, M.; Feldo, M.; Borowski, G.; Kubrak, T.; Płachno, B.J.; Sowa, I. Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Molecules, 2022, 27(23), 8232.
[http://dx.doi.org/10.3390/molecules27238232] [PMID: 36500323]
[62]
Ge, A.; Liu, Y.; Zeng, X.; Kong, H.; Ma, Y.; Zhang, J.; Bai, F.; Huang, M. Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Acta Biochim. Biophys. Sin., 2015, 47(8), 604-611.
[http://dx.doi.org/10.1093/abbs/gmv052] [PMID: 26033789]
[63]
Ge, A.; Ma, Y.; Liu, Y.N.; Li, Y.S.; Gu, H.; Zhang, J.X.; Wang, Q.X.; Zeng, X.N.; Huang, M. Diosmetin prevents TGF-β1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci., 2016, 153, 1-8.
[http://dx.doi.org/10.1016/j.lfs.2016.04.023] [PMID: 27101925]
[64]
Hao, L.; Lu, R.; Ma, X.; Fan, S. Effect of diosmetin on acute lung injury induced by meconium and its mechanism in neonatal rats. Lab. Anim. Comp. Med., 2020, 40(5), 384.
[http://dx.doi.org/10.3969/j.issn.1674-5817.2020.05.004]
[65]
Liu, Q.; Ci, X.; Wen, Z.; Peng, L. Diosmetin alleviates lipopolysaccharide-induced acute lung injury through activating the Nrf2 pathway and inhibiting the NLRP3 inflammasome. Biomol. Ther., 2018, 26(2), 157-166.
[http://dx.doi.org/10.4062/biomolther.2016.234] [PMID: 28365974]
[66]
Zhou, B.; Wang, L.; Yang, S.; Liang, Y.; Zhang, Y.; Pan, X.; Li, J. Diosmetin alleviates benzo[a]pyrene-exacerbated H1N1 influenza virus-induced acute lung injury and dysregulation of inflammation through modulation of the PPAR-γ-NF-κB/P38 MAPK signaling axis. Food Funct., 2023, 14(7), 3357-3378.
[http://dx.doi.org/10.1039/D2FO02590F] [PMID: 36942763]
[67]
Xia, J.; Li, J.; Deng, M.; Yin, F.; Liu, J.; Wang, J. Diosmetin alleviates acute lung injury caused by lipopolysaccharide by targeting barrier function. Inflammopharmacology, 2023, 31(4), 2037-2047.
[http://dx.doi.org/10.1007/s10787-023-01228-7] [PMID: 37074600]
[68]
Alqahtani, M.J.; Negm, W.A.; Saad, H.M.; Salem, E.A.; Hussein, I.A.; Ibrahim, H.A. Fenofibrate and Diosmetin in a rat model of testicular toxicity: New insight on their protective mechanism through PPAR-α/NRF-2/HO-1 signaling pathway. Biomed. Pharmacother., 2023, 165, 115095.
[http://dx.doi.org/10.1016/j.biopha.2023.115095] [PMID: 37413905]
[69]
Chen, Y.; Xiang, Q.; Peng, F.; Gao, S.; Yu, L.; Tang, Y.; Yang, Z.; Pu, W.; Xie, X.; Peng, C. The mechanism of action of safflower total flavonoids in the treatment of endometritis caused by incomplete abortion based on network pharmacology and 16S rDNA sequencing. J. Ethnopharmacol., 2023, 315, 116639.
[http://dx.doi.org/10.1016/j.jep.2023.116639] [PMID: 37201664]
[70]
Adamante, G.; de Almeida, A.S.; Rigo, F.K.; da Silva Silveira, E.; Coelho, Y.O.; De Prá, S.D.T.; Milioli, A.M.; Camponogara, C.; Casoti, R.; Bellinaso, F.; Desideri, A.V.; Santos, M.F.C.; Ferreira, J.; Oliveira, S.M.; Trevisan, G. Diosmetin as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive activity in mice. Life Sci., 2019, 216, 215-226.
[http://dx.doi.org/10.1016/j.lfs.2018.11.029] [PMID: 30447303]
[71]
Feldo, M.; Wójciak, M.; Ziemlewska, A.; Dresler, S.; Sowa, I. Modulatory effect of diosmin and diosmetin on metalloproteinase activity and inflammatory mediators in human skin fibroblasts treated with lipopolysaccharide. Molecules, 2022, 27(13), 4264.
[http://dx.doi.org/10.3390/molecules27134264] [PMID: 35807509]
[72]
Chen, Y.; Wang, Y.; Liu, M.; Zhou, B.; Yang, G. Diosmetin exhibits anti-proliferative and anti-inflammatory effects on TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes through regulating the Akt and NF-κB signaling pathways. Phytother. Res., 2020, 34(6), 1310-1319.
[http://dx.doi.org/10.1002/ptr.6596] [PMID: 31833613]
[73]
Yarmolinsky, L.; Budovsky, A.; Ben-Shabat, S.; Khalfin, B.; Gorelick, J.; Bishitz, Y.; Miloslavski, R.; Yarmolinsky, L. Recent updates on the phytochemistry and pharmacological properties of Phlomis viscosa poiret. Rejuvenation Res., 2019, 22(4), 282-288.
[http://dx.doi.org/10.1089/rej.2018.2093] [PMID: 30353767]
[74]
Ma, A.; Zhang, R. Diosmetin inhibits cell proliferation, induces cell apoptosis and cell cycle arrest in liver cancer. Cancer Manag. Res., 2020, 12, 3537-3546.
[http://dx.doi.org/10.2147/CMAR.S240064] [PMID: 32547191]
[75]
Choi, J.; Lee, D.H.; Park, S.Y.; Seol, J.W. Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed. Pharmacother., 2019, 117, 109091.
[http://dx.doi.org/10.1016/j.biopha.2019.109091] [PMID: 31228803]
[76]
Zhao, F.; Hong, X.; Li, D.; Wei, Z.; Ci, X.; Zhang, S. Diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway. Med. Oncol., 2021, 38(5), 54.
[http://dx.doi.org/10.1007/s12032-021-01501-1] [PMID: 33811596]
[77]
Meephat, S.; Prasatthong, P.; Potue, P.; Bunbupha, S.; Pakdeechote, P.; Maneesai, P. Diosmetin ameliorates vascular dysfunction and remodeling by modulation of Nrf2/HO-1 and p-JNK/p-NF-κB expression in hypertensive rats. Antioxidants, 2021, 10(9), 1487.
[http://dx.doi.org/10.3390/antiox10091487] [PMID: 34573119]
[78]
Ning, R.; Chen, G.; Fang, R.; Zhang, Y.; Zhao, W.; Qian, F. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol. Res., 2021, 54(1), 40.
[http://dx.doi.org/10.1186/s40659-021-00363-1] [PMID: 34922636]
[79]
Oak, C.; Khalifa, A.; Isali, I.; Bhaskaran, N.; Walker, E.; Shukla, S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int. J. Oncol., 2018, 53(2), 835-843.
[http://dx.doi.org/10.3892/ijo.2018.4407] [PMID: 29767250]
[80]
Liu, S.; Zhou, X.; Li, W.; Zhang, H.; Zhang, B.; Li, G.; Liu, B.; Deng, X.; Peng, L. Diosmetin inhibits the expression of alpha-hemolysin in Staphylococcus aureus. Antonie van Leeuwenhoek, 2015, 108(2), 383-389.
[http://dx.doi.org/10.1007/s10482-015-0491-6] [PMID: 26021482]
[81]
Chan, B.C.L.; Ip, M.; Gong, H.; Lui, S.L.; See, R.H.; Jolivalt, C.; Fung, K.P.; Leung, P.C.; Reiner, N.E.; Lau, C.B.S. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine, 2013, 20(7), 611-614.
[http://dx.doi.org/10.1016/j.phymed.2013.02.007] [PMID: 23541215]
[82]
Wang, S.Y.; Sun, Z.L.; Liu, T.; Gibbons, S.; Zhang, W.J.; Qing, M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother. Res., 2014, 28(7), 1071-1076.
[http://dx.doi.org/10.1002/ptr.5098] [PMID: 24338874]
[83]
Liu, Y.; Benohoud, M.; Galani Yamdeu, J.H.; Gong, Y.Y.; Orfila, C. Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. Food Chem. X, 2021, 12, 100144.
[http://dx.doi.org/10.1016/j.fochx.2021.100144] [PMID: 34761200]
[84]
Yang, S.; Wang, L.; Pan, X.; Liang, Y.; Zhang, Y.; Li, J.; Zhou, B. 5-Methoxyflavone-induced AMPKα activation inhibits NF-κB and P38 MAPK signaling to attenuate influenza A virus-mediated inflammation and lung injury in vitro and in vivo. Cell. Mol. Biol. Lett., 2022, 27(1), 82.
[http://dx.doi.org/10.1186/s11658-022-00381-1] [PMID: 36180831]
[85]
Anwer, M.K.; Aldawsari, M.F.; Iqbal, M.; Almutairy, B.K.; Soliman, G.A.; Aboudzadeh, M.A. Diosmin-loaded nanoemulsion-based gel formulation: Development, optimization, wound healing and anti-inflammatory studies. Gels, 2023, 9(2), 95.
[http://dx.doi.org/10.3390/gels9020095] [PMID: 36826265]
[86]
Hsu, Y.L.; Kuo, P.L. Diosmetin induces human osteoblastic differentiation through the protein kinase C/p38 and extracellular signal-regulated kinase 1/2 pathway. J. Bone Miner. Res., 2008, 23(6), 949-960.
[http://dx.doi.org/10.1359/jbmr.080219] [PMID: 18269307]
[87]
Ding, H.; Ding, H.; Mu, P.; Lu, X.; Xu, Z. Diosmetin inhibits subchondral bone loss and indirectly protects cartilage in a surgically-induced osteoarthritis mouse model. Chem. Biol. Interact., 2023, 370, 110311.
[http://dx.doi.org/10.1016/j.cbi.2022.110311] [PMID: 36563736]
[88]
Shao, S.; Fu, F.; Wang, Z.; Song, F.; Li, C.; Wu, Z.; Ding, J.; Li, K.; Xiao, Y.; Su, Y.; Lin, X.; Yuan, G.; Zhao, J.; Liu, Q.; Xu, J. Diosmetin inhibits osteoclast formation and differentiation and prevents LPS-induced osteolysis in mice. J. Cell. Physiol., 2019, 234(8), 12701-12713.
[http://dx.doi.org/10.1002/jcp.27887] [PMID: 30515812]
[89]
Park, N.J.; Jo, B.G.; Bong, S.K.; Park, S.; Lee, S.; Kim, Y.K.; Yang, M.H.; Kim, S.N. Lobelia chinensis extract and its active compound, diosmetin, improve atopic dermatitis by reinforcing skin barrier function through SPINK5/LEKTI regulation. Int. J. Mol. Sci., 2022, 23(15), 8687.
[http://dx.doi.org/10.3390/ijms23158687] [PMID: 35955819]
[90]
Park, S.; Bong, S.K.; Lee, J.W.; Park, N.J.; Choi, Y.; Kim, S.M.; Yang, M.H.; Kim, Y.K.; Kim, S.N. Diosmetin and its glycoside, diosmin, improve atopic dermatitis like lesions in 2,4-dinitrochlorobenzene-induced murine models. Biomol. Ther., 2020, 28(6), 542-548.
[http://dx.doi.org/10.4062/biomolther.2020.135] [PMID: 32938818]
[91]
Shen, Z.; Shao, J.; Dai, J.; Lin, Y.; Yang, X.; Ma, J.; He, Q.; Yang, B.; Yao, K.; Luo, P. Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress. Toxicol. Rep., 2016, 3, 78-86.
[http://dx.doi.org/10.1016/j.toxrep.2015.12.004] [PMID: 28959525]
[92]
Guo, G.; Dong, J. Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Bioengineered, 2022, 13(4), 11072-11081.
[http://dx.doi.org/10.1080/21655979.2022.2068755] [PMID: 35481411]
[93]
Sawmiller, D.; Habib, A.; Li, S.; Darlington, D.; Hou, H.; Tian, J.; Shytle, R.D.; Smith, A.; Giunta, B.; Mori, T.; Tan, J. Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J. Neuroimmunol., 2016, 299, 98-106.
[http://dx.doi.org/10.1016/j.jneuroim.2016.08.018] [PMID: 27725131]
[94]
Boisnic, S.; Branchet, M.C.; Quioc-Salomon, B.; Doan, J.; Delva, C.; Gendron, C. Anti-inflammatory and antioxidant effects of diosmetin-3-O-β-d-glucuronide, the main metabolite of diosmin: Evidence from ex vivo human skin models. Molecules, 2023, 28(14), 5591.
[http://dx.doi.org/10.3390/molecules28145591] [PMID: 37513462]
[95]
Yang, Y.; Gong, X.B.; Huang, L.G.; Wang, Z.X.; Wan, R.Z.; Zhang, P.; Zhang, Q.Y.; Chen, Z.; Zhang, B.S. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget, 2017, 8(19), 30723-30733.
[http://dx.doi.org/10.18632/oncotarget.15413] [PMID: 28430612]
[96]
Guzik, T.J.; Harrison, D.G. Endothelial NF-kappaB as a mediator of kidney damage: The missing link between systemic vascular and renal disease? Circ. Res., 2007, 101(3), 227-229.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.158295] [PMID: 17673681]
[97]
Yu, G.; Wan, R.; Yin, G.; Xiong, J.; Hu, Y.; Xing, M.; Cang, X.; Fan, Y.; Xiao, W.; Qiu, L.; Wang, X.; Hu, G. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB. Int. J. Clin. Exp. Pathol., 2014, 7(5), 2133-2142.
[PMID: 24966921]
[98]
Russo, R.; Chandradhara, D.; De Tommasi, N. Comparative bioavailability of two diosmin formulations after oral administration to healthy volunteers. Molecules, 2018, 23(9), 2174.
[http://dx.doi.org/10.3390/molecules23092174] [PMID: 30158431]
[99]
Mandal, P.; Dan, S.; Chakraborty, S.; Ghosh, B.; Saha, C.; Khanam, J.; Pal, T.K. Simultaneous determination and quantitation of diosmetin and hesperetin in human plasma by liquid chromatographic mass spectrometry with an application to pharmacokinetic studies. J. Chromatogr. Sci., 2019, 57(5), 451-461.
[http://dx.doi.org/10.1093/chromsci/bmz015] [PMID: 30809630]
[100]
Chen, X.; Xu, L.; Guo, S.; Wang, Z.; Jiang, L.; Wang, F.; Zhang, J.; Liu, B. Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MSn. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1124, 58-71.
[http://dx.doi.org/10.1016/j.jchromb.2019.05.030] [PMID: 31177049]
[101]
Hollman, P.C.H. Bioavailability, and metabolism of flavonoids. A. Pharma. Biol., 2009, 42(1), 74-83.
[http://dx.doi.org/10.3109/13880200490893492]
[102]
Sil, S.; Das, A.; Seal, I.; Mukherjee, S.; Roy, S. A toxicological evaluation for safety assessment of ruthenium-based diosmetin complex in rats. Regul. Toxicol. Pharmacol., 2023, 137, 105303.
[http://dx.doi.org/10.1016/j.yrtph.2022.105303] [PMID: 36427689]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy