Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Review Article

Stimuli-responsive Graphene-polysaccharide Nanocomposites for Drug Delivery and Tissue Engineering

Author(s): Arman Seifallahi Teymourlouei, Seyed Morteza Naghib* and M. R. Mozafari

Volume 22, Issue 2, 2025

Published on: 15 April, 2024

Page: [211 - 233] Pages: 23

DOI: 10.2174/0115701794298435240324175513

Price: $65

TIMBC 2025
Abstract

Natural polysaccharide-based nanoparticles are known for their non-toxic nature and diverse medical applications. Graphene oxide (GO) nanoparticles show potential in cancer treatment due to their ability to target medication delivery and influence ROS generation. These nanocomposites are versatile in gene transport, therapy, and photodynamic therapy, especially when surface-modified. Proper dispersion and functionalization of GO in polymer matrices are crucial, with examples like hyaluronic acid-functionalized GO offering versatile platforms for cancer drug administration. The potential of graphene oxide extends to cancer phototherapy, electronic nanowires, hydrogels, antibacterial nanocomposites, and environmental applications. When activated by polysaccharides, graphene-based nanocomposites exhibit anti-inflammatory and anticancer properties, making them valuable across various industries, including water treatment.

Keywords: Stimuli-responsive, graphene, polysaccharides, nanocomposite drug delivery, tissue engineering, nanomaterials.

Graphical Abstract
[1]
Singh, P.P. Ambika, Supported ionic liquids and their applications in organic transformations. Curr. Org. Synth., 2022, 19(8), 905-922.
[http://dx.doi.org/10.2174/1570179419666220303110933] [PMID: 36267047]
[2]
Kalar, P.L.; Agrawal, S.; Kushwaha, S.; Gayen, S.; Das, K. Recent developments on synthesis of organofluorine compounds using green approaches. Curr. Org. Chem., 2023, 27(3), 190-205.
[http://dx.doi.org/10.2174/1385272827666230516100739]
[3]
Hernández, P.L.D.; García, M.M. Synthesis of open-resorcinarene dendrimers with l-serine (ibuprofen) derivatives. Curr. Org. Chem., 2022, 26(1), 71-80.
[http://dx.doi.org/10.2174/1385272825666211130164548]
[4]
Schäfer, C.; Cho, H.; Vlocskó, B.; Xie, G.; Török, B. Recent advances in the green synthesis of heterocycles: From building blocks to biologically active compounds. Curr. Org. Synth., 2022, 19(3), 426-462.
[http://dx.doi.org/10.2174/1570179418666210910110205] [PMID: 34515007]
[5]
Jurak, M.; Wiącek, A.E.; Ładniak, A.; Przykaza, K.; Szafran, K. What affects the biocompatibility of polymers? Adv. Colloid Interface Sci., 2021, 294102451.
[http://dx.doi.org/10.1016/j.cis.2021.102451] [PMID: 34098385]
[6]
Kim, H.S.; Sun, X.; Lee, J.H.; Kim, H.W.; Fu, X.; Leong, K.W. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv. Drug Deliv. Rev., 2019, 146, 209-239.
[http://dx.doi.org/10.1016/j.addr.2018.12.014] [PMID: 30605737]
[7]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[8]
Bhattacharya, T.; Preetam, S.; Ghosh, B.; Chakrabarti, T.; Chakrabarti, P.; Samal, S.K.; Thorat, N. Advancement in biopolymer assisted cancer theranostics. ACS Appl. Bio Mater., 2023, 6(10), 3959-3983.
[http://dx.doi.org/10.1021/acsabm.3c00458] [PMID: 37699558]
[9]
Sayed, E.A.; Kamel, M. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 19200-19213.
[http://dx.doi.org/10.1007/s11356-019-06459-2] [PMID: 31529348]
[10]
Manuja, A.; Kumar, B.; Singh, R.K. Nanotechnology developments: Opportunities for animal health and production. Nanotechnol. Dev., 2012, 2(1), 4.
[http://dx.doi.org/10.4081/nd.2012.e4]
[11]
Mohantya, N. An overview of nanomedicine in veterinary science. Vet. Res., 2014, 2(4), 90-95.
[12]
Rapoport, N.; Gao, Z.; Kennedy, A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J. Natl. Cancer Inst., 2007, 99(14), 1095-1106.
[http://dx.doi.org/10.1093/jnci/djm043] [PMID: 17623798]
[13]
Meena, N. Applications of nanotechnology in veterinary therapeutics. J. Entomol. Zool. Stud., 2018, 6(2), 167-175. Available from: https://www.entomoljournal.com/archives/2018/vol6issue2/ PartC/6-1-85-412.pdf
[14]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.X.; Mitter, N.; Yu, C.; Middelberg, A.P.J. Nanoparticle vaccines. Vaccine, 2014, 32(3), 327-337.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.069] [PMID: 24295808]
[15]
Chakravarthi, V.P.; Balaji, N. Applications of nanotechnology in veterinary medicine. Vet. World, 2010, 3(10), 477-480. Available from https://www.veterinaryworld.org/Vol.3/October/Applications% 20of%20Nanotechnology%20in%20Veterinary%20Medicine. pdf
[16]
Jurj, A.; Braicu, C.; Pop, L.A.; Tomuleasa, C.; Gherman, C.; Neagoe, B.I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2871-2890.
[http://dx.doi.org/10.2147/DDDT.S142337] [PMID: 29033548]
[17]
Chu, M. Semiconductor quantum dots and rods for in vivo imaging and cancer phototherapy; Tongji University: China, 2017.
[http://dx.doi.org/10.1142/10112]
[18]
Villaverde, A. Nanoparticles in translational science and medicine, 1st Edition; Academic Press, 2011, p. 104.
[19]
Revia, R.A.; Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater. Today, 2016, 19(3), 157-168.
[http://dx.doi.org/10.1016/j.mattod.2015.08.022] [PMID: 27524934]
[20]
Patil, S.; Kore, K.; Kumar, P. Nanotechnology and its applications in veterinary and animal science. Vet. World, 2009, 2(1), 475-477.
[http://dx.doi.org/10.5455/vetworld.2009.475-477]
[21]
Sangiao, T.E.; Holban, A.; Gestal, M. Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases. Molecules, 2016, 21(7), 867.
[http://dx.doi.org/10.3390/molecules21070867] [PMID: 27376260]
[22]
Burneo, R.N.; Busquets, M. Estelrich, J. Magnetic nanoemulsions: Comparison between nanoemulsions formed by ultrasonication and by spontaneous emulsification. Nanomaterials , 2017, 7(7), 190.
[http://dx.doi.org/10.3390/nano7070190] [PMID: 28737673]
[23]
Elgqvist, J. Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int. J. Mol. Sci., 2017, 18(5), 1102.
[http://dx.doi.org/10.3390/ijms18051102] [PMID: 28531102]
[24]
Freitas, R.A. Jr Microbivores: Artificial mechanical phagocytes using digest and discharge protocol. J. Evol. Technol., 2005, 14(1), 54-106.
[25]
Freitas, R.A. Current status of nanomedicine and medical nanorobotics. J. Comput. Theor. Nanosci., 2005, 2(1), 1-25.
[26]
Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Wang, M.H. Preparation, characterization and anti-cancer activity of graphene oxide‐silver nanocomposite. J. Photochem. Photobiol. B, 2020, 210111984 .
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111984] [PMID: 32771914]
[27]
Verde, V.; Longo, A.; Cucci, L.M.; Sanfilippo, V. Magrì, A.; Satriano, C.; Anfuso, C.D.; Lupo, G.; La Mendola, D. Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy. Int. J. Mol. Sci., 2020, 21(15), 5571.
[http://dx.doi.org/10.3390/ijms21155571] [PMID: 32759830]
[28]
Zhu, J.; Li, B.; Xu, M.; Liu, R.; Xia, T.; Zhang, Z.; Xu, Y.; Liu, S. Graphene oxide promotes cancer metastasis through associating with plasma membrane to promote tgf-β signaling-dependent epithelial–mesenchymal transition. ACS Nano, 2020, 14(1), 818-827.
[http://dx.doi.org/10.1021/acsnano.9b07891] [PMID: 31877027]
[29]
Ribeiro, B.F.M.; Souza, M.M.; Fernandes, D.S.; do Carmo, D.R.; Santelli, M.G.M. Graphene oxide‐based nanomaterial interaction with human breast cancer cells. J. Biomed. Mater. Res. A, 2020, 108(4), 863-870.
[http://dx.doi.org/10.1002/jbm.a.36864] [PMID: 31846174]
[30]
Sharp, P.S.; Stylianou, M.; Arellano, L.M.; Neves, J.C.; Gravagnuolo, A.M.; Dodd, A.; Barr, K.; Lozano, N.; Kisby, T.; Kostarelos, K. Graphene oxide nanoscale platform enhances the anti‐cancer properties of bortezomib in glioblastoma models. Adv. Healthc. Mater., 2023, 12(3), 2201968.
[http://dx.doi.org/10.1002/adhm.202201968] [PMID: 36300643]
[31]
Giusto, E. Žárská, L.; Beirne, D.F.; Rossi, A.; Bassi, G.; Ruffini, A.; Montesi, M.; Montagner, D.; Ranc, V.; Panseri, S. Graphene oxide nanoplatforms to enhance cisplatin-based drug delivery in anticancer therapy. Nanomaterials, 2022, 12(14), 2372.
[http://dx.doi.org/10.3390/nano12142372] [PMID: 35889596]
[32]
Hasanin, M.S.; Sakhawy, E.M.; Ahmed, H.Y.; Kamel, S. Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5‐fluorouracil. Biotechnol. J., 2022, 17(4), 2100183.
[http://dx.doi.org/10.1002/biot.202100183] [PMID: 34499787]
[33]
Seo, S.H.; Joe, A.; Han, H.W.; Manivasagan, P.; Jang, E.S. Methylene blue-loaded mesoporous silica-coated gold nanorods on graphene oxide for synergistic photothermal and photodynamic therapy. Pharmaceutics, 2022, 14(10), 2242.
[http://dx.doi.org/10.3390/pharmaceutics14102242] [PMID: 36297675]
[34]
Paskeh, M.D.A.; Mehrabi, A.; Gholami, M.H.; Zabolian, A.; Ranjbar, E.; Saleki, H.; Ranjbar, A.; Hashemi, M.; Ertas, Y.N.; Hushmandi, K.; Mirzaei, S.; Ashrafizadeh, M.; Zarrabi, A.; Samarghandian, S. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed. Pharmacother., 2022, 146112532 .
[http://dx.doi.org/10.1016/j.biopha.2021.112532] [PMID: 34906772]
[35]
Wang, X.; Zhou, W.; Li, X.; Ren, J.; Ji, G.; Du, J.; Tian, W.; Liu, Q.; Hao, A. Graphene oxide suppresses the growth and malignancy of glioblastoma stem cell-like spheroids via epigenetic mechanisms. J. Transl. Med., 2020, 18(1), 200.
[http://dx.doi.org/10.1186/s12967-020-02359-z] [PMID: 32410622]
[36]
Bary, A.A.S.; Tolan, D.A.; Nassar, M.Y.; Taketsugu, T.; Nahas, E.A.M. Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int. J. Biol. Macromol., 2020, 154, 621-633.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.106] [PMID: 32179117]
[37]
Wang, Y.; Sun, G.; Gong, Y.; Zhang, Y.; Liang, X.; Yang, L. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res. Lett., 2020, 15(1), 57.
[http://dx.doi.org/10.1186/s11671-020-3281-7] [PMID: 32140846]
[38]
Gurunathan, S.; Kim, J.H. Graphene oxide enhances biogenesis and release of exosomes in human ovarian cancer cells. Int. J. Nanomedicine, 2022, 17, 5697-5731.
[http://dx.doi.org/10.2147/IJN.S385113] [PMID: 36466784]
[39]
Dash, B.S.; Lu, Y.J.; Pejrprim, P.; Lan, Y.H.; Chen, J. P Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy. Biomater. Adv., 2022, 136, 212764.
[40]
Choi, H.W.; Lim, J.H.; Kim, C.W.; Lee, E.; Kim, J.M.; Chang, K.; Chung, B.G. Near-infrared light-triggered generation of reactive oxygen species and induction of local hyperthermia from indocyanine green encapsulated mesoporous silica-coated graphene oxide for colorectal cancer therapy. Antioxidants, 2022, 11(1), 174.
[http://dx.doi.org/10.3390/antiox11010174] [PMID: 35052678]
[41]
Krętowski, R.; Pasko, C.M. The reduced graphene oxide (rgo) induces apoptosis, autophagy and cell cycle arrest in breast cancer cells. Int. J. Mol. Sci., 2022, 23(16), 9285.
[http://dx.doi.org/10.3390/ijms23169285] [PMID: 36012549]
[42]
Shen, J.; Dong, J.; Shao, F.; Zhao, J.; Gong, L.; Wang, H.; Chen, W.; Zhang, Y.; Cai, Y. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine, 2022, 17(9), 591-605.
[http://dx.doi.org/10.2217/nnm-2022-0030] [PMID: 35394351]
[43]
Izadi, S.; Moslehi, A.; Kheiry, H.; Kiani, K.F.; Ahmadi, A.; Masjedi, A.; Ghani, S.; Rafiee, B.; Karpisheh, V.; Hajizadeh, F.; Atyabi, F.; Assali, A. tekie, M.F.S.; Namdar, A.; Ghalamfarsa, G.; Sojoodi, M.; Niaragh, J.F. Codelivery of HIF-1α siRNA and dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm. Res., 2020, 37(10), 196.
[http://dx.doi.org/10.1007/s11095-020-02892-y] [PMID: 32944844]
[44]
Lu, Y.J.; Lan, Y.H.; Chuang, C.C.; Lu, W.T.; Chan, L.Y.; Hsu, P.W.; Chen, J.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy. Int. J. Mol. Sci., 2020, 21(19), 7111.
[http://dx.doi.org/10.3390/ijms21197111] [PMID: 32993166]
[45]
Qu, Y.; Sun, F.; He, F.; Yu, C.; Lv, J.; Zhang, Q.; Liang, D.; Yu, C.; Wang, J.; Zhang, X.; Xu, A.; Wu, J. Glycyrrhetinic acid-modified graphene oxide mediated siRNA delivery for enhanced liver-cancer targeting therapy. Eur. J. Pharm. Sci., 2019, 139105036.
[http://dx.doi.org/10.1016/j.ejps.2019.105036] [PMID: 31446078]
[46]
Sun, Q.; Wang, X.; Cui, C.; Li, J.; Wang, Y. Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo. Int. J. Nanomedicine, 2018, 13, 3713-3728.
[http://dx.doi.org/10.2147/IJN.S162939] [PMID: 29983564]
[47]
Slekiene, N.; Snitka, V. Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells. Toxicol. In Vitro, 2020, 65104821.
[http://dx.doi.org/10.1016/j.tiv.2020.104821] [PMID: 32151703]
[48]
Yang, Z.; Yang, D.; Zeng, K.; Li, D.; Qin, L.; Cai, Y.; Jin, J. Simultaneous delivery of antimiR-21 and doxorubicin by graphene oxide for reducing toxicity in cancer therapy. ACS Omega, 2020, 5(24), 14437-14443.
[http://dx.doi.org/10.1021/acsomega.0c01010] [PMID: 32596581]
[49]
Alipour, N.; Namazi, H. Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin. Mater. Sci. Eng. C, 2020, 108110459.
[http://dx.doi.org/10.1016/j.msec.2019.110459] [PMID: 31924031]
[50]
Charmi, J.; Nosrati, H.; Amjad, M.J.; Mohammadkhani, R.; Danafar, H. Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery. Heliyon, 2019, 5(4), e01466.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01466] [PMID: 31011643]
[51]
Lin, K.C.; Lin, M.W.; Hsu, M.N.; Chen, Y.G.; Chao, Y.C.; Tuan, H.Y.; Chiang, C.S.; Hu, Y.C. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics, 2018, 8(9), 2477-2487.
[http://dx.doi.org/10.7150/thno.24173] [PMID: 29721093]
[52]
Huang, X.; Chen, J.; Wu, W.; Yang, W.; Zhong, B.; Qing, X.; Shao, Z. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater., 2020, 109, 229-243.
[http://dx.doi.org/10.1016/j.actbio.2020.04.009] [PMID: 32294550]
[53]
Cortázar, C.I.; Vidaurre, A.; Marí, B.; Fernández, C.A.J. Morphology, crystallinity, and molecular weight of poly(ε-caprolactone)/graphene oxide hybrids. Polymers, 2019, 11(7), 1099.
[http://dx.doi.org/10.3390/polym11071099] [PMID: 31261770]
[54]
Malkappa, K.; Salehiyan, R.; Ray, S.S. Supramolecular poly (cyclotriphosphazene) functionalized graphene oxide/polypropylene composites with simultaneously improved thermal stability, flame retardancy, and viscoelastic properties. Macromol. Mater. Eng., 2020, 305(8), 2000207.
[http://dx.doi.org/10.1002/mame.202000207]
[55]
Ferreira, F.V. Functionalizing graphene and carbon nanotubes: A review. In: Springer Briefs in Applied Sciences and Technology (Functionalizing Graphene and Carbon Nanotubes); Springer, 2016; pp. 31-61.
[http://dx.doi.org/10.1007/978-3-319-35110-0_2]
[56]
Monji, P.; Jahanmardi, R.; Mehranpour, M. Preparation of melamine-grafted graphene oxide and evaluation of its efficacy as a flame retardant additive for polypropylene. Carbon lett., 2018, 27(1), 81-89.
[57]
Pascual, D.A.M.; Rahdar, A. Graphene-based polymer composites for flexible electronic applications. Micromachines, 2022, 13(7), 1123.
[http://dx.doi.org/10.3390/mi13071123] [PMID: 35888940]
[58]
Huskić, M.; Bolka, S.; Vesel, A.; Mozetič, M.; Anžlovar, A.; Vizintin, A.; Žagar, E. One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy resin nanocomposites. Eur. Polym. J., 2018, 101, 211-217.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.02.036]
[59]
de Sousa, M.; Martins, C.H.Z.; Franqui, L.S.; Fonseca, L.C.; Delite, F.S.; Lanzoni, E.M.; Martinez, D.S.T.; Alves, O.L. Covalent functionalization of graphene oxide with D -mannose: Evaluating the hemolytic effect and protein corona formation. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(18), 2803-2812.
[http://dx.doi.org/10.1039/C7TB02997G] [PMID: 32254233]
[60]
Chavoshi, N.; Jahanmardi, R. Chemical functionalization of graphene oxide by a hindered amine stabilizer and evaluation of the product as a UV-stabilizer for polypropylene. Fuller. Nanotub. Carbon Nanostruct., 2019, 27(1), 1-9.
[http://dx.doi.org/10.1080/1536383X.2018.1472084]
[61]
Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 2020, 10(26), 15328-15345.
[http://dx.doi.org/10.1039/D0RA01068E] [PMID: 35495479]
[62]
Wang, H.; Bi, S.G.; Ye, Y.S.; Xue, Y.; Xie, X.L.; Mai, Y.W. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity. Nanoscale, 2015, 7(8), 3548-3557.
[http://dx.doi.org/10.1039/C4NR06710J] [PMID: 25630871]
[63]
Huang, H.D.; Zhou, S-Y.; Ren, P-G.; Ji, X.; Li, Z-M. Improved mechanical and barrier properties of low-density polyethylene nanocomposite films by incorporating hydrophobic graphene oxide nanosheets. RSC Advances, 2015, 5(98), 80739-80748.
[http://dx.doi.org/10.1039/C5RA12694K]
[64]
Jeong, J.H.; Choi, M-C.; Nagappan, S.; Lee, W-K.; Ha, C-S. Preparation and properties of poly(lactic acid)/lipophilized graphene oxide nanohybrids. Polym. Int., 2018, 67(1), 91-99.
[http://dx.doi.org/10.1002/pi.5478]
[65]
Yao, J.; Liu, S.; Huang, Y.; Ren, S.; Lv, Y.; Kong, M.; Li, G. Acyl-chloride functionalized graphene oxide chemically grafted with hindered phenol and its application in anti-degradation of polypropylene. Prog. Nat. Sci., 2020, 30(3), 328-336.
[http://dx.doi.org/10.1016/j.pnsc.2020.05.010]
[66]
Sharma, B.; Malik, P.; Jain, P. Biopolymer reinforced nanocomposites: A comprehensive review. Mater. Today Commun., 2018, 16, 353-363.
[http://dx.doi.org/10.1016/j.mtcomm.2018.07.004]
[67]
Khan, W.S.; Hamadneh, N.N.; Khan, W.A. Polymer nanocomposites–synthesis techniques, classification and properties. In: Science and applications of Tailored Nanostructures; One Central Press (OCP), 2016.
[68]
Biru, E.I.; Necolau, M.I.; Zainea, A.; Iovu, H. Graphene oxide–protein-based scaffolds for tissue engineering: Recent advances and applications. Polymers, 2022, 14(5), 1032.
[http://dx.doi.org/10.3390/polym14051032] [PMID: 35267854]
[69]
Jamróz, E.; Kulawik, P.; Kopel, P. The effect of nanofillers on the functional properties of biopolymer-based films: A review. Polymers, 2019, 11(4), 675.
[http://dx.doi.org/10.3390/polym11040675] [PMID: 31013855]
[70]
Xiong, R.; Grant, A.M.; Ma, R.; Zhang, S.; Tsukruk, V.V. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Mater. Sci. Eng. Rep., 2018, 125, 1-41.
[http://dx.doi.org/10.1016/j.mser.2018.01.002]
[71]
Niamsap, T.; Lam, N.T.; Sukyai, P. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr. Polym., 2019, 205, 159-166.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.034] [PMID: 30446091]
[72]
Bao, Y.; Zhang, H.; Luan, Q.; Zheng, M.; Tang, H.; Huang, F. Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities. Carbohydr. Polym., 2018, 184, 66-73.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.051] [PMID: 29352944]
[73]
Hassan, E.A.; Hassan, M.L. zeid, A.R.E.; Wakil, E.N.A. Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind. Crops Prod., 2016, 93, 219-226.
[http://dx.doi.org/10.1016/j.indcrop.2015.12.006]
[74]
Naskar, S.; Sharma, S.; Kuotsu, K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J. Drug Deliv. Sci. Technol., 2019, 49, 66-81.
[http://dx.doi.org/10.1016/j.jddst.2018.10.022]
[75]
Bertolino, V.; Cavallaro, G.; Milioto, S.; Lazzara, G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr. Polym., 2020, 245116502.
[http://dx.doi.org/10.1016/j.carbpol.2020.116502] [PMID: 32718613]
[76]
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater., 2015, 14(3), 271-279.
[http://dx.doi.org/10.1038/nmat4170] [PMID: 25532074]
[77]
Imran, K.A.; Shivakumar, K.N. Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties. J. Reinf. Plast. Compos., 2018, 37(2), 118-133.
[http://dx.doi.org/10.1177/0731684417736143]
[78]
Li, Y.; Zhang, H.; Porwal, H.; Huang, Z.; Bilotti, E.; Peijs, T. Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos., Part A Appl. Sci. Manuf., 2017, 95, 229-236.
[http://dx.doi.org/10.1016/j.compositesa.2017.01.007]
[79]
Cantor, K.; Watts, P.; Kutz, M. Applied plastics engineering handbook. Process. Mater. Appl., 2017, 2017, 743-759.
[80]
Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S. Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; Garrido, J.A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhänen, T.; Morpurgo, A.; Coleman, J.N.; Nicolosi, V.; Colombo, L.; Fert, A.; Hernandez, G.M.; Bachtold, A.; Schneider, G.F.; Guinea, F.; Dekker, C.; Barbone, M.; Sun, Z.; Galiotis, C.; Grigorenko, A.N.; Konstantatos, G.; Kis, A.; Katsnelson, M.; Vandersypen, L.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.; Tredicucci, A.; Williams, G.M.; Hee Hong, B.; Ahn, J.H.; Kim, M.J.; Zirath, H.; Wees, V.B.J.; Zant, V.D.H.; Occhipinti, L.; Matteo, D.A.; Kinloch, I.A.; Seyller, T.; Quesnel, E.; Feng, X.; Teo, K.; Rupesinghe, N.; Hakonen, P.; Neil, S.R.T.; Tannock, Q.; Löfwander, T.; Kinaret, J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11), 4598-4810.
[http://dx.doi.org/10.1039/C4NR01600A] [PMID: 25707682]
[81]
Terzopoulou, Z.; Kyzas, G.; Bikiaris, D. Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials , 2015, 8(2), 652-683.
[http://dx.doi.org/10.3390/ma8020652] [PMID: 28787964]
[82]
Zhu, Y.; Yi, B.; Yuan, Q.; Wu, Y.; Wang, M.; Yan, S. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC Advances, 2018, 8(36), 19917-19929.
[http://dx.doi.org/10.1039/C8RA03018A] [PMID: 35541638]
[83]
Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci., 2017, 7(1), 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[84]
Hu, X.; Jia, X.; Zhi, C.; Jin, Z.; Miao, M. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles. Carbohydr. Polym., 2019, 210, 204-209.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.043] [PMID: 30732755]
[85]
Usman, A.; Hussain, Z.; Riaz, A.; Khan, A.N. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr. Polym., 2016, 153, 592-599.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.026] [PMID: 27561532]
[86]
Pal, N.; Dubey, P.; Gopinath, P.; Pal, K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int. J. Biol. Macromol., 2017, 95, 94-105.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.041] [PMID: 27856322]
[87]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[88]
Tehrani, K.F.; Ranji, N.; Kouhkan, F.; Hosseinzadeh, S. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. Iran. J. Basic Med. Sci., 2020, 23(4), 469-482.
[PMID: 32489562]
[89]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[90]
Yin, F.; Hu, K.; Chen, Y.; Yu, M.; Wang, D.; Wang, Q.; Yong, K.T.; Lu, F.; Liang, Y.; Li, Z. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics, 2017, 7(5), 1133-1148.
[http://dx.doi.org/10.7150/thno.17841] [PMID: 28435453]
[91]
Dunn, S.E.; Brindley, A.; Davis, S.S.; Davies, M.C.; Illum, L. Polystyrene-poly (ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm. Res., 1994, 11(7), 1016-1022.
[http://dx.doi.org/10.1023/A:1018939521589] [PMID: 7937542]
[92]
Scott, R.A.; Peppas, N.A. Highly crosslinked, PEG-containing copolymers for sustained solute delivery. Biomaterials, 1999, 20(15), 1371-1380.
[http://dx.doi.org/10.1016/S0142-9612(99)00040-X] [PMID: 10454008]
[93]
Carelli, V.; Colo, D.G.; Nannipieri, E.; Serafini, M.F. Evaluation of a silicone based matrix containing a crosslinked polyethylene glycol as a controlled drug delivery system for potential oral application. J. Control. Release, 1995, 33(1), 153-162.
[http://dx.doi.org/10.1016/0168-3659(94)00081-5]
[94]
Li, J.; Kao, W.J. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates. Biomacromolecules, 2003, 4(4), 1055-1067.
[http://dx.doi.org/10.1021/bm034069l] [PMID: 12857092]
[95]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[96]
Barbee, M.H.; Wright, Z.M.; Allen, B.P.; Taylor, H.F.; Patteson, E.F.; Knight, A.S. Protein-mimetic self-assembly with synthetic macromolecules. Macromolecules, 2021, 54(8), 3585-3612.
[http://dx.doi.org/10.1021/acs.macromol.0c02826]
[97]
Valmonte, Z.; Baker, Z.; Loor, J.; Sarkar, A. Concurrent reduction and stabilization of graphene oxide dispersion by silk-inspired polymer. ACS Appl. Polym. Mater., 2023, 5(7), 4621-4627.
[http://dx.doi.org/10.1021/acsapm.3c00353] [PMID: 37469881]
[98]
Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 2004, 104(12), 6017-6084.
[http://dx.doi.org/10.1021/cr030441b] [PMID: 15584695]
[99]
Qian, H.; Liu, B.; Jiang, X. Application of nanomaterials in cancer immunotherapy. Mater. Today Chem., 2018, 7, 53-64.
[http://dx.doi.org/10.1016/j.mtchem.2018.01.001]
[100]
SreeHarsha, N.; Maheshwari, R.; Dhubiab, A.B.E.; Tekade, M.; Sharma, M.C.; Venugopala, K.N.; Tekade, R.K.; Alzahrani, A.M. Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. Int. J. Nanomedicine, 2019, 14, 7419-7429.
[http://dx.doi.org/10.2147/IJN.S211224] [PMID: 31686814]
[101]
Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-based nanomaterials for drug delivery. Molecules, 2018, 23(10), 2661.
[http://dx.doi.org/10.3390/molecules23102661] [PMID: 30332830]
[102]
Zhang, G.; Zeng, X.; Li, P. Nanomaterials in cancer-therapy drug delivery system. J. Biomed. Nanotechnol., 2013, 9(5), 741-750.
[http://dx.doi.org/10.1166/jbn.2013.1583] [PMID: 23802404]
[103]
Karki, N.; Tiwari, H.; Tewari, C.; Rana, A.; Pandey, N.; Basak, S.; Sahoo, N.G. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(36), 8116-8148.
[http://dx.doi.org/10.1039/D0TB01149E] [PMID: 32966535]
[104]
Deb, A.; Andrews, N.G.; Raghavan, V. Natural polymer functionalized graphene oxide for co-delivery of anticancer drugs: In-vitro and in-vivo. Int. J. Biol. Macromol., 2018, 113, 515-525.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.153] [PMID: 29496437]
[105]
Jin, R.; Ji, X.; Yang, Y.; Wang, H.; Cao, A. Self-assembled graphene-dextran nanohybrid for killing drug-resistant cancer cells. ACS Appl. Mater. Interfaces, 2013, 5(15), 7181-7189.
[http://dx.doi.org/10.1021/am401523y] [PMID: 23875578]
[106]
Xie, M.; Lei, H.; Zhang, Y.; Xu, Y.; Shen, S.; Ge, Y.; Li, H.; Xie, J. Non-covalent modification of graphene oxide nanocomposites with chitosan/dextran and its application in drug delivery. RSC Advances, 2016, 6(11), 9328-9337.
[http://dx.doi.org/10.1039/C5RA23823D]
[107]
Zhang, F.; Xie, M.; Zhao, Y.; Zhang, Y.; Yang, M.; Yang, N.; Deng, T.; Zhang, M.; Xie, J. Chitosan and dextran stabilized GO-iron oxide nanosheets with high dispersibility for chemotherapy and photothermal ablation. Ceram. Int., 2019, 45(5), 5996-6003.
[http://dx.doi.org/10.1016/j.ceramint.2018.12.070]
[108]
Kiew, S.F.; Ho, Y.T.; Kiew, L.V.; Kah, J.C.Y.; Lee, H.B.; Imae, T.; Chung, L.Y. Preparation and characterization of an amylase-triggered dextrin-linked graphene oxide anticancer drug nanocarrier and its vascular permeability. Int. J. Pharm., 2017, 534(1-2), 297-307.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.045] [PMID: 29080707]
[109]
Aslam, M.; Kalyar, M.A.; Raza, Z.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci., 2018, 58(12), 2119-2132.
[http://dx.doi.org/10.1002/pen.24855]
[110]
Liu, Y.L.; Chiu, Y.C. Novel approach to the chemical modification of poly(vinyl alcohol): Phosphorylation. J. Polym. Sci. A Polym. Chem., 2003, 41(8), 1107-1113.
[http://dx.doi.org/10.1002/pola.10654]
[111]
Sahoo, N.G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H.K.F.; Li, L.; Tan, L.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem. Commun., 2011, 47(18), 5235-5237.
[http://dx.doi.org/10.1039/c1cc00075f] [PMID: 21451845]
[112]
Li, W.; Jiang, T.; Pu, Y.; Jiao, X.; Tan, W.; Qin, S. Glucose biosensor using fluorescence quenching with chitosan‐modified graphene oxide. Micro & Nano Lett., 2019, 14(3), 344-348.
[http://dx.doi.org/10.1049/mnl.2018.5269]
[113]
Cho, H.J.; Yoon, H.Y.; Koo, H.; Ko, S.H.; Shim, J.S.; Lee, J.H.; Kim, K.; Kwon, C.I.; Kim, D.D. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials, 2011, 32(29), 7181-7190.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.028] [PMID: 21733572]
[114]
Liu, Y.; Sun, J.; Cao, W.; Yang, J.; Lian, H.; Li, X.; Sun, Y.; Wang, Y.; Wang, S.; He, Z. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharm., 2011, 421(1), 160-169.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.006] [PMID: 21945183]
[115]
Prestwich, G.D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J. Control. Release, 2011, 155(2), 193-199.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.007] [PMID: 21513749]
[116]
Jung, H.S.; Lee, M-Y.; Kong, W.H.; Do, I.H.; Hahn, S.K. Nano graphene oxide–hyaluronic acid conjugate for target specific cancer drug delivery. RSC Advances, 2014, 4(27), 14197-14200.
[http://dx.doi.org/10.1039/c4ra00605d]
[117]
Song, E.; Han, W.; Li, C.; Cheng, D.; Li, L.; Liu, L.; Zhu, G.; Song, Y.; Tan, W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(15), 11882-11890.
[http://dx.doi.org/10.1021/am502423r] [PMID: 25000539]
[118]
Liu, J.; Zhang, D.; Lian, S.; Zheng, J.; Li, B.; Li, T.; Jia, L. Redox-responsive hyaluronic acid-functionalized graphene oxide nanosheets for targeted delivery of water-insoluble cancer drugs. Int. J. Nanomedicine, 2018, 13, 7457-7472.
[http://dx.doi.org/10.2147/IJN.S173889] [PMID: 30532533]
[119]
Wu, H.; Shi, H.; Wang, Y.; Jia, X.; Tang, C.; Zhang, J.; Yang, S. Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon, 2014, 69, 379-389.
[http://dx.doi.org/10.1016/j.carbon.2013.12.039]
[120]
Guo, Y.; Xu, H.; Li, Y.; Wu, F.; Li, Y.; Bao, Y.; Yan, X.; Huang, Z.; Xu, P. Hyaluronic acid and Arg-Gly-Asp peptide modified Graphene oxide with dual receptor-targeting function for cancer therapy. J. Biomater. Appl., 2017, 32(1), 54-65.
[http://dx.doi.org/10.1177/0885328217712110] [PMID: 28554233]
[121]
Sousa, L.R.; Diogo, D.M.D.; Alves, C.G.; Costa, E.C.; Ferreira, P.; Louro, R.O.; Correia, I.J. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr. Polym., 2018, 200, 93-99.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.066] [PMID: 30177213]
[122]
Pramanik, N.; Ranganathan, S.; Rao, S.; Suneet, K.; Jain, S.; Rangarajan, A.; Jhunjhunwala, S. A composite of hyaluronic acid-modified graphene oxide and iron oxide nanoparticles for targeted drug delivery and magnetothermal therapy. ACS Omega, 2019, 4(5), 9284-9293.
[http://dx.doi.org/10.1021/acsomega.9b00870] [PMID: 31460017]
[123]
Municoy, S. Echazú, A.M.I.; Antezana, P.E.; Galdopórpora, J.M.; Olivetti, C.; Mebert, A.M.; Foglia, M.L.; Tuttolomondo, M.V.; Alvarez, G.S.; Hardy, J.G.; Desimone, M.F. Stimuli-responsive materials for tissue engineering and drug delivery. Int. J. Mol. Sci., 2020, 21(13), 4724.
[http://dx.doi.org/10.3390/ijms21134724] [PMID: 32630690]
[124]
Scaffaro, R.; Botta, L.; Maio, A.; Gallo, G. PLA graphene nanoplatelets nanocomposites: Physical properties and release kinetics of an antimicrobial agent. Compos., Part B Eng., 2017, 109, 138-146.
[http://dx.doi.org/10.1016/j.compositesb.2016.10.058]
[125]
Li, C.; Li, F.; Wang, K.; Wang, Q.; Liu, H.; Sun, X.; Xie, D. Synthesis, characterizations, and release mechanisms of carboxymethyl chitosan-graphene oxide-gelatin composite hydrogel for controlled delivery of drug. Inorg. Chem. Commun., 2023, 155110965.
[http://dx.doi.org/10.1016/j.inoche.2023.110965]
[126]
Ou, L.; Sun, T.; Liu, M.; Zhang, Y.; Zhou, Z.; Zhan, X.; Lu, L.; Zhao, Q.; Lai, R.; Shao, L. Efficient miRNA inhibitor delivery with graphene oxide-polyethylenimine to inhibit oral squamous cell carcinoma. Int. J. Nanomedicine, 2020, 15, 1569-1583.
[http://dx.doi.org/10.2147/IJN.S220057] [PMID: 32210552]
[127]
Soliman, M.; Sadek, A.A.; Abdelhamid, H.N.; Hussein, K. Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res. Vet. Sci., 2021, 137, 262-273.
[http://dx.doi.org/10.1016/j.rvsc.2021.05.013] [PMID: 34052571]
[128]
Aly, A.A.; Ahmed, M.K. Nanofibers of cellulose acetate containing ZnO nanoparticles/graphene oxide for wound healing applications. Int. J. Pharm., 2021, 598120325
[http://dx.doi.org/10.1016/j.ijpharm.2021.120325] [PMID: 33539995]
[129]
Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Zheng, Y.; Yeung, K.W.K.; Chu, P.K.; Wu, S. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g‐C3N4 under dual light irradiation. Adv. Funct. Mater., 2018, 28(30), 1800299.
[http://dx.doi.org/10.1002/adfm.201800299]
[130]
Rehman, S.R.; Augustine, R.; Zahid, A.A.; Ahmed, R.; Tariq, M.; Hasan, A. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications. Int. J. Nanomedicine, 2019, 14, 9603-9617.
[http://dx.doi.org/10.2147/IJN.S218120] [PMID: 31824154]
[131]
Ahmed, S.; Ikram, S. Chitosan and gelatin based biodegradable packaging films with UV-light protection. J. Photochem. Photobiol. B, 2016, 163, 115-124.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.023] [PMID: 27560490]
[132]
Ma, Z.; Li, S.; Wang, H.; Cheng, W.; Li, Y.; Pan, L.; Shi, Y. Advanced electronic skin devices for healthcare applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(2), 173-197.
[http://dx.doi.org/10.1039/C8TB02862A] [PMID: 32254546]
[133]
Wu, J.; Wang, M.; Pan, Y.; Pang, Y.; Tang, Y.; Song, C.; Zhu, J.; Zhang, X.; Huang, Q. Synthesis of manganese-oxide and palladium nanoparticles co-decorated polypyrrole/graphene oxide (MnO 2 @Pd@PPy/GO) nanocomposites for anti-cancer treatment. RSC Advances, 2022, 12(37), 23786-23795.
[http://dx.doi.org/10.1039/D2RA03860A] [PMID: 36093248]
[134]
Guo, X.; Mei, N. Aloe vera: A review of toxicity and adverse clinical effects. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2016, 34(2), 77-96.
[http://dx.doi.org/10.1080/10590501.2016.1166826] [PMID: 26986231]
[135]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[136]
Qin, X.C.; Guo, Z.Y.; Liu, Z.M.; Zhang, W.; Wan, M.M.; Yang, B.W. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J. Photochem. Photobiol. B, 2013, 120, 156-162.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.12.005] [PMID: 23357205]
[137]
Wei, G.; Yan, M.; Dong, R.; Wang, D.; Zhou, X.; Chen, J.; Hao, J. Covalent modification of reduced graphene oxide by means of diazonium chemistry and use as a drug-delivery system. Chem, 2012, 18(46), 14708-14716.
[http://dx.doi.org/10.1002/chem.201200843] [PMID: 23018420]
[138]
Wang, Y.; Zhang, P.; Liu, C.F.; Huang, C.Z. A facile and green method to fabricate graphene-based multifunctional hydrogels for miniature-scale water purification. RSC Advances, 2013, 3(24), 9240-9246.
[http://dx.doi.org/10.1039/c3ra22687e] [PMID: 23930219]
[139]
Scaffaro, R.; Maio, A.; Lopresti, F. Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid. Compos. Sci. Technol., 2019, 169, 60-69.
[http://dx.doi.org/10.1016/j.compscitech.2018.11.003]
[140]
Low, Y.Z.; Li, L.; Tan, L.P. Investigating the behavior of mucoadhesive polysaccharide-functionalized graphene oxide in bladder environment. ACS Appl. Bio Mater., 2021, 4(1), 630-639.
[http://dx.doi.org/10.1021/acsabm.0c01187]
[141]
Wei, Q.; Fu, T.; Yue, Q.; Liu, H.; Ma, S.; Cai, M.; Zhou, F. Graphene oxide/brush-like polysaccharide copolymer nanohybrids as eco-friendly additives for water-based lubrication. Tribol. Int., 2021, 157106895.
[http://dx.doi.org/10.1016/j.triboint.2021.106895]
[142]
Litewka, D.J.; Dykas, K.; Felkle, D.; Karnas, K.; Khachatryan, G.; Karewicz, A. Hyaluronic acid-silver nanocomposites and their biomedical applications: A review. Materials, 2021, 15(1), 234.
[http://dx.doi.org/10.3390/ma15010234] [PMID: 35009380]
[143]
Martínez, A.M.; Benito, M.; Pérez, E.; Teijón, M.J.; Blanco, D.M. The role of anionic polysaccharides in the preparation of nanomedicines with anticancer applications. Curr. Pharm. Des., 2016, 22(22), 3364-3379.
[http://dx.doi.org/10.2174/1381612822666160128145125] [PMID: 26818877]
[144]
Folentarska, A.; Łagiewka, J.; Krystyjan, M.; Ciesielski, W. Biodegradable binary and ternary complexes from renewable raw materials. Polymers, 2021, 13(17), 2925.
[http://dx.doi.org/10.3390/polym13172925] [PMID: 34502965]
[145]
Nowak, N.; Grzebieniarz, W.; Khachatryan, G.; Khachatryan, K.; Molenda, K.A.; Krzan, M.; Grzyb, J. Synthesis of silver and gold nanoparticles in sodium alginate matrix enriched with graphene oxide and investigation of properties of the obtained thin films. Appl. Sci., 2021, 11(9), 3857.
[http://dx.doi.org/10.3390/app11093857]
[146]
Krystyjan, M.; Khachatryan, G.; Grabacka, M.; Krzan, M.; Witczak, M.; Grzyb, J.; Woszczak, L. Physicochemical, bacteriostatic, and biological properties of starch/chitosan polymer composites modified by graphene oxide, designed as new bionanomaterials. Polymers, 2021, 13(14), 2327.
[http://dx.doi.org/10.3390/polym13142327] [PMID: 34301083]
[147]
Anjali, J.; Jose, V.K.; Lee, J.M. Carbon-based hydrogels: Synthesis and their recent energy applications. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(26), 15491-15518.
[http://dx.doi.org/10.1039/C9TA02525A]
[148]
Palmese, L.L.; Thapa, R.K.; Sullivan, M.O.; Kiick, K.L. Hybrid hydrogels for biomedical applications. Curr. Opin. Chem. Eng., 2019, 24, 143-157.
[http://dx.doi.org/10.1016/j.coche.2019.02.010] [PMID: 31844607]
[149]
Ehtesabi, H.; Roshani, S.; Bagheri, Z.; Avini, Y.M. Carbon dots—Sodium alginate hydrogel: A novel tetracycline fluorescent sensor and adsorber. J. Environ. Chem. Eng., 2019, 7(5), 103419.
[http://dx.doi.org/10.1016/j.jece.2019.103419]
[150]
Javanbakht, S.; Nazari, N.; Rakhshaei, R.; Namazi, H. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydr. Polym., 2018, 195, 453-459.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.103] [PMID: 29804999]
[151]
Saeednia, L.; Yao, L.; Cluff, K.; Asmatulu, R. Sustained releasing of methotrexate from injectable and thermosensitive chitosan–carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega, 2019, 4(2), 4040-4048.
[http://dx.doi.org/10.1021/acsomega.8b03212] [PMID: 30842986]
[152]
Kosowska, K.; Pyzik, D.P.; Stryjewska, S.M.; Noga, S.; Jagiełło, J.; Baran, M.; Lipińska, L.; Surma, Z.E.; Chłopek, J. Gradient chitosan hydrogels modified with graphene derivatives and hydroxyapatite: Physiochemical properties and initial cytocompatibility evaluation. Int. J. Mol. Sci., 2020, 21(14), 4888.
[http://dx.doi.org/10.3390/ijms21144888] [PMID: 32664452]
[153]
Ganguly, S.; Das, P.; Itzhaki, E.; Hadad, E.; Gedanken, A.; Margel, S. Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels. ACS Appl. Mater. Interfaces, 2020, 12(46), 51940-51951.
[http://dx.doi.org/10.1021/acsami.0c14527] [PMID: 33156599]
[154]
Serafin, A.; Murphy, C.; Rubio, M.C.; Collins, M.N. Printable alginate/ gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater. Sci. Eng. C, 2021, 122111927 .
[http://dx.doi.org/10.1016/j.msec.2021.111927] [PMID: 33641920]
[155]
Wang, H.; Biswas, S.K.; Zhu, S.; Lu, Y.; Yue, Y.; Han, J.; Xu, X.; Wu, Q.; Xiao, H. Self-healable electro-conductive hydrogels based on core-shell structured nanocellulose/carbon nanotubes hybrids for use as flexible supercapacitors. Nanomaterials, 2020, 10(1), 112.
[http://dx.doi.org/10.3390/nano10010112] [PMID: 31935929]
[156]
Nayak, S.; Prasad, S.R.; Mandal, D.; Das, P. Carbon dot crosslinked polyvinylpyrrolidone hybrid hydrogel for simultaneous dye adsorption, photodegradation and bacterial elimination from waste water. J. Hazard. Mater., 2020, 392122287 .
[http://dx.doi.org/10.1016/j.jhazmat.2020.122287] [PMID: 32066019]
[157]
Jlassi, K.; Eid, K.; Sliem, M.H.; Abdullah, A.M.; Chehimi, M.M.; Krupa, I. Rational synthesis, characterization, and application of environmentally friendly (polymer–carbon dot) hybrid composite film for fast and efficient UV-assisted Cd2+ removal from water. Environ. Sci. Eur., 2020, 32(1), 12.
[http://dx.doi.org/10.1186/s12302-020-0292-z]
[158]
Sudhakar, K.; Suneetha, M.; Rao, K.M.; Han, S.S. Antibacterial reduced graphene oxide reinforces polyelectrolyte hydrogels with polysaccharides via a green method. Colloids Surf. A Physicochem. Eng. Asp., 2021, 628127340.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127340]
[159]
Krzan, M. Pióro, K.A.; Tyliszczak, B. Foams stabilized by particles. In: Foam films and foams, 1st Edition; CRC Press, 2018.
[http://dx.doi.org/10.1201/9781351117746-15]
[160]
Zhang, Y.; Zhu, J-Y.; Ren, H-B.; Bi, Y-T.; Zhang, L. Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance. Chin. Chem. Lett., 2017, 28(5), 935-942.
[http://dx.doi.org/10.1016/j.cclet.2017.01.023]
[161]
Zhao, Z.; Wang, E.F.; Yan, H.; Kono, Y.; Wen, B.; Bai, L.; Shi, F.; Zhang, J.; Benson, K.C.; Park, C.; Wang, Y.; Shen, G. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties. Nat. Commun., 2015, 6(1), 6212.
[http://dx.doi.org/10.1038/ncomms7212] [PMID: 25648723]
[162]
Thangavelu, G.S.A.; Mukherjee, M.; Layana, K.; Kumar, D.C.; Sulthana, Y.R.; Kumar, R.R.; Ananthan, A.; Muthulakshmi, V.; Mandal, A.B. Biodegradable polyurethanes foam and foam fullerenes nanocomposite strips by one-shot moulding: Physicochemical and mechanical properties. Mater. Sci. Semicond. Process., 2020, 112105018.
[http://dx.doi.org/10.1016/j.mssp.2020.105018]
[163]
Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Krzan, M.; Ciesielski, W.; Żarska, S.; Szczepankowska, J. Polysaccharides composite materials as carbon nanoparticles carrier. Polymers, 2022, 14(5), 948.
[http://dx.doi.org/10.3390/polym14050948] [PMID: 35267771]
[164]
Chen, P.; Xie, F.; Tang, F.; McNally, T. Structure and properties of thermomechanically processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed bionanocomposites. Int. J. Biol. Macromol., 2020, 158, 420-429.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.259] [PMID: 32376251]
[165]
Triviño, Z.D.G.; Prokhorov, E.; Bárcenas, L.G.; Nonell, M.J.; Campos, G.J.B.; Peña, E.E.; Morales, M.J.D.; Jacinto, S.P.; Terrones, M.; Salazar, G.S.; Donlucas, N.S.M.; Sanchez, I.C. The effect of CNT functionalization on electrical and relaxation phenomena in MWCNT/chitosan composites. Mater. Chem. Phys., 2015, 155, 252-261.
[http://dx.doi.org/10.1016/j.matchemphys.2015.02.041]
[166]
Alshahrani, A.A.; Alsohaimi, I.H.; Alshehri, S.; Alawady, A.R.; Aassar, E.M.R.; Nghiem, L.D.; Panhuis, M. Nanofiltration membranes prepared from pristine and functionalised multiwall carbon nanotubes/biopolymer composites for water treatment applications. J. Mater. Res. Technol., 2020, 9(4), 9080-9092.
[http://dx.doi.org/10.1016/j.jmrt.2020.06.055]
[167]
Yamakawa, A.; Suzuki, S.; Oku, T.; Enomoto, K.; Ikeda, M.; Rodrigue, J.; Tateiwa, K.; Terada, Y.; Yano, H.; Kitamura, S. Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films. Carbohydr. Polym., 2017, 171, 129-135.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.012] [PMID: 28578946]
[168]
Jamróz, E.; Khachatryan, G.; Kopel, P.; Juszczak, L.; Kawecka, A.; Krzyściak, P.; Kucharek, M.; Bębenek, Z.; Zimowska, M. Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films. Carbohydr. Polym., 2020, 240116244.
[http://dx.doi.org/10.1016/j.carbpol.2020.116244] [PMID: 32475550]
[169]
Khachatryan, K.; Khachatryan, L.; Krzan, M.; Krystyjan, M.; Fiedorowicz, K.L.; Boroń, L.A.; Koronowicz, A.; Drozdowska, M.; Khachatryan, G. Formation and investigation of physicochemical, biological and bacteriostatic properties of nanocomposite foils containing silver nanoparticles and graphene oxide in hyaluronic acid matrix. Materials, 2021, 14(12), 3377.
[http://dx.doi.org/10.3390/ma14123377] [PMID: 34207190]
[170]
Yu, J.; Zhao, Z.; Sun, J.; Geng, C.; Bu, Q.; Wu, D.; Xia, Y. Electrospinning highly concentrated sodium alginate nanofibres without surfactants by adding fluorescent carbon dots. Nanomaterials, 2020, 10(3), 565.
[http://dx.doi.org/10.3390/nano10030565] [PMID: 32245023]
[171]
Fujisawa, S.; Togawa, E.; Kuroda, K. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous Pickering emulsion. Biomacromol., 2017, 18(1), 266-271.
[http://dx.doi.org/10.1021/acs.biomac.6b01615] [PMID: 27958712]
[172]
Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B.; Chen, X. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci., 2016, 60, 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[173]
Chandrasekaran, R.; Krishnan, M.; Bupesh, G.; Chacko, S.; Gawade, O.; Hasan, S.; George, E.; Vijayakumar, T.S.; Sundaram, M.; Sagadevan, S. Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. J. Drug Deliv. Sci. Technol., 2023, 82104352.
[http://dx.doi.org/10.1016/j.jddst.2023.104352]
[174]
Putro, J.N.; Soetaredjo, F.E.; Lunardi, V.B.; Irawaty, W.; Yuliana, M.; Santoso, S.P.; Puspitasari, N.; Wenten, I.G.; Ismadji, S. Polysaccharides gums in drug delivery systems: A review. Int. J. Biol. Macromol., 2023, 253(Pt 4), 127020.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127020] [PMID: 37741484]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy