Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights

Author(s): Atena Soleimani, Nikoo Saeedi, Abdulridha Mohammed Al-Asady, Elnaz Nazari, Reyhane Hanaie, Majid Khazaei, Elnaz Ghorbani, Hamed Akbarzade, Mikhail Ryzhikov, Amir Avan and Seyed Mahdi Hasanian Mehr*

Volume 30, Issue 18, 2024

Published on: 15 April, 2024

Page: [1386 - 1397] Pages: 12

DOI: 10.2174/0113816128291321240329050945

Price: $65

Abstract

Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.

Keywords: LGR5, ALDH, CD166, CD133, CD44, cancer stem cell, colon cancer.

[1]
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin 2023; 73(3): 233-54.
[http://dx.doi.org/10.3322/caac.21772] [PMID: 36856579]
[2]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Morgan E, Arnold M, Gini A, et al. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023; 72(2): 338-44.
[http://dx.doi.org/10.1136/gutjnl-2022-327736] [PMID: 36604116]
[4]
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021; 14(10): 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[5]
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66(4): 683-91.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[6]
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61(5): 759-67.
[http://dx.doi.org/10.1016/0092-8674(90)90186-I] [PMID: 2188735]
[7]
Su R, Wu X, Tao L, Wang C. The role of epigenetic modifications in colorectal cancer metastasis. Clin Exp Metastasis 2022; 39(4): 521-39.
[http://dx.doi.org/10.1007/s10585-022-10163-w] [PMID: 35429301]
[8]
Winawer S, Fletcher R, Rex D, et al. Colorectal cancer screening and surveillance: Clinical guidelines and rationale? Update based on new evidence. Gastroenterology 2003; 124(2): 544-60.
[http://dx.doi.org/10.1053/gast.2003.50044] [PMID: 12557158]
[9]
Winawer SJ, Fletcher RH, Miller L, et al. Colorectal cancer screening: Clinical guidelines and rationale. Gastroenterology 1997; 112(2): 594-642.
[http://dx.doi.org/10.1053/gast.1997.v112.agast970594] [PMID: 9024315]
[10]
Ho MF, Lai VC, Ng DCK, Ng SSM. Prognosis of patients with unresectable stage IV Colon cancer undergoing primary tumor resection: A multicenter study of minimally symptomatic or asymptomatic primary tumor. Asian J Surg 2023; 46(9): 3710-5.
[http://dx.doi.org/10.1016/j.asjsur.2022.11.127] [PMID: 36522225]
[11]
Park J, Baik H, Kang SH, et al. Comparison between oxaliplatin therapy and capecitabine monotherapy for high-risk stage II – III elderly patients with colon cancer. Asian J Surg 2022; 45(1): 448-55.
[http://dx.doi.org/10.1016/j.asjsur.2021.07.067] [PMID: 34364765]
[12]
Ishiyama Y, Tachimori Y, Harada T, et al. Oncologic outcomes after laparoscopic versus open multivisceral resection for local advanced colorectal cancer: A meta-analysis. Asian J Surg 2023; 46(1): 6-12.
[http://dx.doi.org/10.1016/j.asjsur.2022.02.047] [PMID: 35568616]
[13]
Dai S, Zhao W, Yue L, Qian X. A competing risk for nomogram of the role of metastasectomy in patients with colorectal cancer and liver metastases. Asian J Surg 2023; 46(6): 2468-71.
[http://dx.doi.org/10.1016/j.asjsur.2022.12.066] [PMID: 36567218]
[14]
Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in colorectal cancer: Current research and future prospects. Int J Mol Sci 2020; 21(15): 5311.
[http://dx.doi.org/10.3390/ijms21155311] [PMID: 32726923]
[15]
Chen W, Frankel WL. A practical guide to biomarkers for the evaluation of colorectal cancer. Mod Pathol 2019; 32(1) (Suppl. 1): 1-15.
[http://dx.doi.org/10.1038/s41379-018-0136-1] [PMID: 30600322]
[16]
Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R. Colon cancer stem cells. J Mol Med 2009; 87(11): 1097-104.
[http://dx.doi.org/10.1007/s00109-009-0518-4] [PMID: 19727638]
[17]
Miller SJ, Lavker RM, Sun TT. Interpreting epithelial cancer biology in the context of stem cells: Tumor properties and therapeutic implications. Biochim Biophys Acta 2005; 1756(1): 25-52.
[PMID: 16139432]
[18]
Alison MR, Islam S, Wright NA. Stem cells in cancer: Instigators and propagators? J Cell Sci 2010; 123(14): 2357-68.
[http://dx.doi.org/10.1242/jcs.054296] [PMID: 20592182]
[19]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[20]
Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007; 18(5): 460-6.
[http://dx.doi.org/10.1016/j.copbio.2007.10.007] [PMID: 18023337]
[21]
Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120): 756-60.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[22]
Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: Promise of targeted therapy. Gastroenterology 2010; 138(6): 2151-62.
[http://dx.doi.org/10.1053/j.gastro.2009.12.063] [PMID: 20420952]
[23]
Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009; 361(25): 2449-60.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[24]
Vries RGJ, Huch M, Clevers H. Stem cells and cancer of the stomach and intestine. Mol Oncol 2010; 4(5): 373-84.
[http://dx.doi.org/10.1016/j.molonc.2010.05.001] [PMID: 20598659]
[25]
Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells 2012; 30(3): 363-71.
[http://dx.doi.org/10.1002/stem.1031] [PMID: 22232074]
[26]
Rey I. Cancer stem cells and signaling pathways in colorectal cancer. Indones J Gastroenterol Hepatol Digest Endosc 2018; 19(1): 37-41.
[27]
Zhang M, Atkinson RL, Rosen JM. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci USA 2010; 107(8): 3522-7.
[http://dx.doi.org/10.1073/pnas.0910179107] [PMID: 20133717]
[28]
Clevers H. The cancer stem cell: Premises, promises and challenges. Nat Med 2011; 17(3): 313-9.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[29]
Gupta PB, Fillmore CM, Jiang G, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146(4): 633-44.
[http://dx.doi.org/10.1016/j.cell.2011.07.026] [PMID: 21854987]
[30]
Taniguchi H, Moriya C, Igarashi H, et al. Cancer stem cells in human gastrointestinal cancer. Cancer Sci 2016; 107(11): 1556-62.
[http://dx.doi.org/10.1111/cas.13069] [PMID: 27575869]
[31]
Parizadeh SM, Jafarzadeh-Esfehani R, Hassanian SM, et al. Targeting cancer stem cells as therapeutic approach in the treatment of colorectal cancer. Int J Biochem Cell Biol 2019; 110: 75-83.
[http://dx.doi.org/10.1016/j.biocel.2019.02.010] [PMID: 30818083]
[32]
Dahal Lamichane B, Jung SY, Yun J, et al. AGR2 is a target of canonical Wnt/β-catenin signaling and is important for stemness maintenance in colorectal cancer stem cells. Biochem Biophys Res Commun 2019; 515(4): 600-6.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.154] [PMID: 31178140]
[33]
Shirmohamadi M, Eghbali E, Najjary S, et al. Regulatory mechanisms of microRNAs in colorectal cancer and colorectal cancer stem cells. J Cell Physiol 2020; 235(2): 776-89.
[http://dx.doi.org/10.1002/jcp.29042] [PMID: 31264216]
[34]
Das PK, Islam F, Lam AK. The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells 2020; 9(6): 1392.
[http://dx.doi.org/10.3390/cells9061392] [PMID: 32503256]
[35]
Kim H, Yu Y, Choi S, et al. Evodiamine eliminates colon cancer stem cells via suppressing Notch and Wnt signaling. Molecules 2019; 24(24): 4520.
[http://dx.doi.org/10.3390/molecules24244520] [PMID: 31835579]
[36]
Feng HC, Lin JY, Hsu SH, et al. Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers. Int J Cancer 2017; 141(12): 2537-50.
[http://dx.doi.org/10.1002/ijc.31008] [PMID: 28833104]
[37]
Chang SC, Ding JL. Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment. Biochim Biophys Acta Rev Cancer 2018; 1870(2): 165-75.
[http://dx.doi.org/10.1016/j.bbcan.2018.08.002] [PMID: 30318471]
[38]
Ylä-Herttuala S. The pharmacology of gene therapy. Mol Ther 2017; 25(8): 1731-2.
[http://dx.doi.org/10.1016/j.ymthe.2017.07.007] [PMID: 28739283]
[39]
Smith DC, Eisenberg PD, Manikhas G, et al. A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res 2014; 20(24): 6295-303.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1373] [PMID: 25324140]
[40]
Wei F, Zhang T, Deng SC, et al. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett 2019; 450: 1-13.
[http://dx.doi.org/10.1016/j.canlet.2019.02.022] [PMID: 30776481]
[41]
Imperial R, Ahmed Z, Toor OM, et al. Comparative proteogenomic analysis of right-sided colon cancer, left-sided colon cancer and rectal cancer reveals distinct mutational profiles. Mol Cancer 2018; 17(1): 177.
[http://dx.doi.org/10.1186/s12943-018-0923-9] [PMID: 30577807]
[42]
Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449(7165): 1003-7.
[http://dx.doi.org/10.1038/nature06196] [PMID: 17934449]
[43]
Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol 2009; 174(3): 715-21.
[http://dx.doi.org/10.2353/ajpath.2009.080758] [PMID: 19197002]
[44]
Kozovska Z, Gabrisova V, Kucerova L. Colon cancer: Cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother 2014; 68(8): 911-6.
[http://dx.doi.org/10.1016/j.biopha.2014.10.019] [PMID: 25458789]
[45]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[46]
Fumagalli A, Oost KC, Kester L, Morgner J, Bornes L, Bruens L. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell stem cell 2020; 26(4): 569-78.
[http://dx.doi.org/10.1016/j.stem.2020.02.008]
[47]
Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH. Expression profile of LGR5 and its prognostic significance in colorectal cancer progression. Am J Pathol 2018; 188(10): 2236-50.
[http://dx.doi.org/10.1016/j.ajpath.2018.06.012] [PMID: 30036518]
[48]
Liu YS, Hsu HC, Tseng KC, Chen HC, Chen SJ. Lgr5 promotes cancer stemness and confers chemoresistance through ABCB1 in colorectal cancer. Biomed Pharmacother 2013; 67(8): 791-9.
[http://dx.doi.org/10.1016/j.biopha.2013.08.001] [PMID: 24138824]
[49]
Han Y, Xue X, Jiang M, et al. LGR5, a relevant marker of cancer stem cells, indicates a poor prognosis in colorectal cancer patients: A meta-analysis. Clin Res Hepatol Gastroenterol 2015; 39(2): 267-73.
[http://dx.doi.org/10.1016/j.clinre.2014.07.008] [PMID: 25193236]
[50]
Wu XS, Xi HQ, Chen L. Lgr5 is a potential marker of colorectal carcinoma stem cells that correlates with patient survival. World J Surg Oncol 2012; 10(1): 244.
[http://dx.doi.org/10.1186/1477-7819-10-244] [PMID: 23153436]
[51]
Liu Z, Dai W, Jiang L, Cheng Y. Over-expression of LGR5 correlates with poor survival of colon cancer in mice as well as in patients. Neoplasma 2014; 61(2): 177-85.
[http://dx.doi.org/10.4149/neo_2014_016] [PMID: 24063790]
[52]
Salehizadeh S, Hasanzad M, Kadijani AA, Akbari A. The expression analysis of intestinal cancer stem cell marker lgr5 in colorectal cancer patients and the correlation with histopathological markers. J Gastrointest Cancer 2020; 51(2): 591-9.
[53]
Ding H, Wang C. Role of Lgr5-positive cells in colorectal cancer. Tumour Biol 2015; 36(9): 6759-64.
[http://dx.doi.org/10.1007/s13277-015-3357-7] [PMID: 25835970]
[54]
Jia H, Xiang L, Wang Z, Zhou Q. A study on the mechanism of low-expressed cancer stem cell marker lgr5 in inhibition of the proliferation and invasion of colorectal carcinoma. Cell Biochem Biophys 2015; 73(2): 393-7.
[http://dx.doi.org/10.1007/s12013-015-0640-6] [PMID: 27352328]
[55]
Nagata H, Ishihara S, Abe H, et al. LGR5 expression predicts peritoneal recurrence after curative resection of primary colon cancer. Br J Cancer 2019; 120(10): 996-1002.
[http://dx.doi.org/10.1038/s41416-019-0442-5] [PMID: 31000786]
[56]
Armstrong L, Stojkovic M, Dimmick I, et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 2004; 22(7): 1142-51.
[http://dx.doi.org/10.1634/stemcells.2004-0170] [PMID: 15579635]
[57]
Magni M, Shammah S, Schiró R, Mellado W, Dalla-Favera R, Gianni AM. Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 1996; 87(3): 1097-103.
[http://dx.doi.org/10.1182/blood.V87.3.1097.bloodjournal8731097] [PMID: 8562935]
[58]
Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009; 69(8): 3382-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4418] [PMID: 19336570]
[59]
Carpentino JE, Hynes MJ, Appelman HD, et al. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 2009; 69(20): 8208-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1132] [PMID: 19808966]
[60]
Zhou F, Mu YD, Liang J, et al. Aldehyde dehydrogenase 1: A specific cancer stem cell marker for human colorectal carcinoma. Mol Med Rep 2015; 11(5): 3894-9.
[http://dx.doi.org/10.3892/mmr.2015.3195] [PMID: 25585687]
[61]
Chen J, Xia Q, Jiang B, et al. Prognostic value of cancer stem cell marker ALDH1 expression in colorectal cancer: A systematic review and meta-analysis. PLoS One 2015; 10(12): e0145164.
[http://dx.doi.org/10.1371/journal.pone.0145164] [PMID: 26682730]
[62]
Yang W, Wang Y, Wang W, Chen Z, Bai G. Expression of aldehyde dehydrogenase 1A1 (ALDH1A1) as a prognostic biomarker in colorectal cancer using immunohistochemistry. Med Sci Monit 2018; 24: 2864-72.
[http://dx.doi.org/10.12659/MSM.910109] [PMID: 29748529]
[63]
Hessman CJ, Bubbers EJ, Billingsley KG, Herzig DO, Wong MH. Loss of expression of the cancer stem cell marker aldehyde dehydrogenase 1 correlates with advanced-stage colorectal cancer. Am J Surg 2012; 203(5): 649-53.
[http://dx.doi.org/10.1016/j.amjsurg.2012.01.003] [PMID: 22405917]
[64]
Khorrami S, Zavaran Hosseini A, Mowla SJ, Malekzadeh R. Verification of ALDH activity as a biomarker in colon cancer stem cells-derived HT-29 cell line. Iran J Cancer Prev 2015; 8(5): e3446.
[http://dx.doi.org/10.17795/ijcp-3446] [PMID: 26634106]
[65]
Mohamed SY, Kaf RM, Ahmed MM, Elwan A, Ashour HR, Ibrahim A. The prognostic value of cancer stem cell markers (Notch1, ALDH1, and CD44) in primary colorectal carcinoma. J Gastrointest Cancer 2019; 50(4): 824-37.
[http://dx.doi.org/10.1007/s12029-018-0156-6] [PMID: 30136202]
[66]
Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell antigen: Isolation, characterization, and molecular cloning. Blood 1997; 90(12): 5013-21.
[http://dx.doi.org/10.1182/blood.V90.12.5013] [PMID: 9389721]
[67]
Pilati P, Mocellin S, Bertazza L, et al. Prognostic value of putative circulating cancer stem cells in patients undergoing hepatic resection for colorectal liver metastasis. Ann Surg Oncol 2012; 19(2): 402-8.
[http://dx.doi.org/10.1245/s10434-011-2132-2] [PMID: 22071867]
[68]
Catalano V, Di Franco S, Iovino F, Dieli F, Stassi G, Todaro M. CD133 as a target for colon cancer. Expert Opin Ther Targets 2012; 16(3): 259-67.
[http://dx.doi.org/10.1517/14728222.2012.667404] [PMID: 22385077]
[69]
Horst D, Scheel SK, Liebmann S, et al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol 2009; 219(4): 427-34.
[http://dx.doi.org/10.1002/path.2597] [PMID: 19621338]
[70]
Pohl A, El-Khoueiry A, Yang D, et al. Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy. Pharmacogenomics J 2013; 13(2): 173-80.
[http://dx.doi.org/10.1038/tpj.2011.61] [PMID: 22231565]
[71]
Shih T, Lindley C. Bevacizumab: An angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 2006; 28(11): 1779-802.
[http://dx.doi.org/10.1016/j.clinthera.2006.11.015] [PMID: 17212999]
[72]
Sanders MA, Majumdar AP. Colon cancer stem cells: Implications in carcinogenesis. Front Biosci 2011; 16(1): 1651-62.
[http://dx.doi.org/10.2741/3811] [PMID: 21196254]
[73]
Stanisavljević L, Myklebust MP, Leh S, Dahl O. LGR5 and CD133 as prognostic and predictive markers for fluoropyrimidine-based adjuvant chemotherapy in colorectal cancer. Acta Oncol 2016; 55(12): 1425-33.
[http://dx.doi.org/10.1080/0284186X.2016.1201215] [PMID: 27435662]
[74]
Shikina A, Shinto E, Hashiguchi Y, et al. Differential clinical benefits of 5-fluorouracil-based adjuvant chemotherapy for patients with stage III colorectal cancer according to CD133 expression status. Jpn J Clin Oncol 2014; 44(1): 42-8.
[http://dx.doi.org/10.1093/jjco/hyt168] [PMID: 24244031]
[75]
Li R, Dong H, Zhu J, Yi H, Liu S. Overexpression of CD133 confers poor prognosis in colorectal cancer: A systematic review and meta-analysis. Int J Clin Exp Med 2019; 12(2): 1492-502.
[76]
Wang BB, Li ZJ, Zhang FF, Hou HT, Yu JK, Li F. Clinical significance of stem cell marker CD133 expression in colorectal cancer. Histol Histopathol 2016; 31(3): 299-306.
[PMID: 26442717]
[77]
Wang K, Xu J, Zhang J, Huang J. Prognostic role of CD133 expression in colorectal cancer: A meta-analysis. BMC Cancer 2012; 12(1): 573.
[http://dx.doi.org/10.1186/1471-2407-12-573] [PMID: 23216926]
[78]
Pals ST, Hogervorst F, Keizer GD, Thepen T, Horst E, Figdor CC. Identification of a widely distributed 90-kDa glycoprotein that is homologous to the Hermes-1 human lymphocyte homing receptor. J Immunol 1989; 143(3): 851-7.
[79]
Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 1992; 89(24): 12160-4.
[http://dx.doi.org/10.1073/pnas.89.24.12160] [PMID: 1465456]
[80]
Wielenga VJM, van der Neut R, Offerhaus GJA, Pals ST. CD44 glycoproteins in colorectal cancer: Expression, function, and prognostic value. Adv Cancer Res 1999; 77: 169-87.
[http://dx.doi.org/10.1016/S0065-230X(08)60787-3] [PMID: 10549358]
[81]
Huh JW, Kim HR, Kim YJ, et al. Expression of standard CD44 in human colorectal carcinoma: Association with prognosis. Pathol Int 2009; 59(4): 241-6.
[http://dx.doi.org/10.1111/j.1440-1827.2009.02357.x] [PMID: 19351367]
[82]
Lee SY, Kim KA, Kim CH, Kim YJ, Lee JH, Kim HR. CD44-shRNA recombinant adenovirus inhibits cell proliferation, invasion, and migration, and promotes apoptosis in HCT116 colon cancer cells. Int J Oncol 2017; 50(1): 329-36.
[http://dx.doi.org/10.3892/ijo.2016.3801] [PMID: 27959393]
[83]
Wielenga VJ, Heider KH, Offerhaus GJ, et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 1993; 53(20): 4754-6.
[PMID: 7691404]
[84]
Wielenga VJ, van der Voort R, Mulder JW, et al. CD44 splice variants as prognostic markers in colorectal cancer. Scand J Gastroenterol 1998; 33(1): 82-7.
[http://dx.doi.org/10.1080/00365529850166257] [PMID: 9489913]
[85]
Katoh S, Goi T, Naruse T, et al. Cancer stem cell marker in circulating tumor cells: Expression of CD44 variant exon 9 is strongly correlated to treatment refractoriness, recurrence and prognosis of human colorectal cancer. Anticancer Res 2015; 35(1): 239-44.
[PMID: 25550556]
[86]
Miyoshi S, Tsugawa H, Matsuzaki J, et al. Inhibiting xCT improves 5-fluorouracil resistance of gastric cancer induced by CD44 variant 9 expression. Anticancer Res 2018; 38(11): 6163-70.
[http://dx.doi.org/10.21873/anticanres.12969] [PMID: 30396933]
[87]
Ozawa M, Ichikawa Y, Zheng Y-W, et al. Prognostic significance of CD44 variant 2 upregulation in colorectal cancer. Br J Cancer 2014; 111(2): 365-74.
[http://dx.doi.org/10.1038/bjc.2014.253] [PMID: 24921913]
[88]
Nakano M, Taguchi R, Kikushige Y, et al. RHAMM marks proliferative subpopulation of human colorectal cancer stem cells. Cancer Sci 2023; 114(7): 2895-906.
[http://dx.doi.org/10.1111/cas.15795] [PMID: 36945114]
[89]
Gerger A, Zhang W, Yang D, et al. Common cancer stem cell gene variants predict colon cancer recurrence. Clin Cancer Res 2011; 17(21): 6934-43.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1180] [PMID: 21918173]
[90]
Tachezy M, Zander H, Gebauer F, et al. Activated leukocyte cell adhesion molecule (CD166)-Its prognostic power for colorectal cancer patients. J Surg Res 2012; 177(1): e15-20.
[http://dx.doi.org/10.1016/j.jss.2012.02.013] [PMID: 22482754]
[91]
Weichert W, Knösel T, Bellach J, Dietel M, Kristiansen G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol 2004; 57(11): 1160-4.
[http://dx.doi.org/10.1136/jcp.2004.016238] [PMID: 15509676]
[92]
Ribeiro KB, da Silva Zanetti J, Ribeiro-Silva A, et al. KRAS mutation associated with CD44/CD166 immunoexpression as predictors of worse outcome in metastatic colon cancer. Cancer Biomark 2016; 16(4): 513-21.
[http://dx.doi.org/10.3233/CBM-160592] [PMID: 27062566]
[93]
Shafaei S, Sharbatdaran M, Kamrani G, Khafri S. The association between CD166 detection rate and clinicopathologic parameters of patients with colorectal cancer. Caspian J Intern Med 2013; 4(4): 768-72.
[PMID: 24294471]
[94]
Hansen AG, Freeman TJ, Arnold SA, et al. Elevated ALCAM shedding in colorectal cancer correlates with poor patient outcome. Cancer Res 2013; 73(10): 2955-64.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2052] [PMID: 23539446]
[95]
Rey I, Lindarto D, Yusuf F, Putra A. CD166 as cancer stem cells marker based on colorectal cancer location and individual characteristic. J Kedokteran Syiah Kuala 2022.
[96]
Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 2015; 7(9): 1150-84.
[http://dx.doi.org/10.4252/wjsc.v7.i9.1150] [PMID: 26516408]
[97]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[98]
Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T. The expressions of stem cell markers: OCT4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol 2014; 47(1): 1-11.
[http://dx.doi.org/10.5115/acb.2014.47.1.1] [PMID: 24693477]
[99]
Shi G, Jin Y. Role of OCT4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther 2010; 1(5): 39.
[http://dx.doi.org/10.1186/scrt39] [PMID: 21156086]
[100]
Zhang Q, Han Z, Zhu Y, Chen J, Li W. The role and specific mechanism of OCT4 in cancer stem cells: A review. Int J Stem Cells 2020; 13(3): 312-25.
[http://dx.doi.org/10.15283/ijsc20097] [PMID: 32840233]
[101]
Dai X, Ge J, Wang X, Qian X, Zhang C, Li X. OCT4 regulates epithelial-mesenchymal transition and its knockdown inhibits colorectal cancer cell migration and invasion. Oncol Rep 2013; 29(1): 155-60.
[http://dx.doi.org/10.3892/or.2012.2086] [PMID: 23076549]
[102]
Beiraghdar M, Talebi A, Kianersi K. Comparison of gene expression of SOX2 and OCT4 in normal tissue, polyps, and colon adenocarcinoma using immunohistochemical staining. Adv Biomed Res 2015; 4(1): 234.
[http://dx.doi.org/10.4103/2277-9175.167958] [PMID: 26645019]
[103]
Neumann J, Bahr F, Horst D, et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer 2011; 11(1): 518.
[http://dx.doi.org/10.1186/1471-2407-11-518] [PMID: 22168803]
[104]
Avery S, Inniss K, Moore H. The regulation of self-renewal in human embryonic stem cells. Stem Cells Dev 2006; 15(5): 729-40.
[http://dx.doi.org/10.1089/scd.2006.15.729] [PMID: 17105408]
[105]
Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007; 9(6): 625-35.
[http://dx.doi.org/10.1038/ncb1589] [PMID: 17515932]
[106]
Ibrahim EE, Babaei-Jadidi R, Saadeddin A, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells 2012; 30(10): 2076-87.
[http://dx.doi.org/10.1002/stem.1182] [PMID: 22851508]
[107]
Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 2007; 17(1): 42-9.
[http://dx.doi.org/10.1038/sj.cr.7310125] [PMID: 17211451]
[108]
Leng Z, Tao K, Xia Q, et al. Krüppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One 2013; 8(2): e56082.
[http://dx.doi.org/10.1371/journal.pone.0056082] [PMID: 23418515]
[109]
Roudi R, Barodabi M, Madjd Z, Roviello G, Corona SP, Panahi M. Expression patterns and clinical significance of the potential cancer stem cell markers OCT4 and NANOG in colorectal cancer patients. Mol Cell Oncol 2020; 7(5): 1788366.
[http://dx.doi.org/10.1080/23723556.2020.1788366] [PMID: 32944642]
[110]
Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in cancer metabolism: New concepts in an old field. Antioxid Redox Signal 2017; 26(9): 462-85.
[http://dx.doi.org/10.1089/ars.2016.6750] [PMID: 27228792]
[111]
Paldino E, Tesori V, Casalbore P, Gasbarrini A, Puglisi MA. Tumor initiating cells and chemoresistance: Which is the best strategy to target colon cancer stem cells? Biomed Res Int 2014; 2014: 859871.
[http://dx.doi.org/10.1155/2014/859871]
[112]
Menendez J, Joven J, Cufí S, et al. The Warburg effect version 2.0: Metabolic reprogramming of cancer stem cells. Cell Cycle 2013; 12(8): 1166-79.
[http://dx.doi.org/10.4161/cc.24479] [PMID: 23549172]
[113]
Wang M, Han D, Yuan Z, et al. Long non-coding RNA H19 confers 5-Fu resistance in colorectal cancer by promoting SIRT1-mediated autophagy. Cell Death Dis 2018; 9(12): 1149.
[http://dx.doi.org/10.1038/s41419-018-1187-4] [PMID: 30451820]
[114]
Zu G, Ji A, Zhou T, Che N. Clinicopathological significance of SIRT1 expression in colorectal cancer: A systematic review and meta analysis. Int J Surg 2016; 26: 32-7.
[http://dx.doi.org/10.1016/j.ijsu.2016.01.002] [PMID: 26763348]
[115]
Su BC, Xiao KM, Wang K, Yang SF, Huang ZX, Luo JW. ATGL promotes colorectal cancer growth by regulating autophagy process and SIRT1 expression. Med Oncol 2023; 40(12): 350.
[http://dx.doi.org/10.1007/s12032-023-02148-w] [PMID: 37935950]
[116]
Yu DF, Jiang SJ, Pan ZP, et al. Expression and clinical significance of Sirt1 in colorectal cancer. Oncol Lett 2016; 11(2): 1167-72.
[http://dx.doi.org/10.3892/ol.2015.3982] [PMID: 26893713]
[117]
Wang XW, Jiang YH, Ye W, Shao CF, Xie JJ, Li X. SIRT1 promotes the progression and chemoresistance of colorectal cancer through the p53/miR-101/KPNA3 axis. Cancer Biol Ther 2023; 24(1): 2235770.
[http://dx.doi.org/10.1080/15384047.2023.2235770] [PMID: 37575080]
[118]
Yang Y, Yuan H, Zhao L, et al. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ 2022; 29(11): 2177-89.
[http://dx.doi.org/10.1038/s41418-022-01007-x] [PMID: 35484333]
[119]
Qiao PF, Yao L, Zeng ZL. Catalpol-mediated microRNA-34a suppresses autophagy and malignancy by regulating SIRT1 in colorectal cancer. Oncol Rep 2020; 43(4): 1053-66.
[http://dx.doi.org/10.3892/or.2020.7494] [PMID: 32323786]
[120]
Zhang Q, Wang J, Li N, et al. miR-34a increases the sensitivity of colorectal cancer cells to 5-fluorouracil in vitro and in vivo. Am J Cancer Res 2018; 8(2): 280-90.
[PMID: 29511598]
[121]
Lucena-Cacace A, Otero-Albiol D, Jiménez-García MP, Muñoz- Galvan S, Carnero A. NAMPT is a potent oncogene in colon cancer progression that modulates cancer stem cell properties and resistance to therapy through Sirt1 and PARP. Clin Cancer Res 2018; 24(5): 1202-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2575] [PMID: 29203587]
[122]
Yao J, Yang J, Yang Z, et al. FBXW11 contributes to stem-cell- like features and liver metastasis through regulating HIC1-mediated SIRT1 transcription in colorectal cancer. Cell Death Dis 2021; 12(10): 930.
[http://dx.doi.org/10.1038/s41419-021-04185-7] [PMID: 34642302]
[123]
Chen X, Sun K, Jiao S, et al. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep 2014; 4(1): 7481.
[http://dx.doi.org/10.1038/srep07481] [PMID: 25500546]
[124]
Ashrafizadeh M, Mirzaei S, Hushmandi K, et al. Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278: 119649.
[http://dx.doi.org/10.1016/j.lfs.2021.119649] [PMID: 34043989]
[125]
Ananthram KJ, Rajeev M, Aneesh TP. Insights into the role of mTOR/AMPK as a potential target for anticancer therapy. Curr Drug Ther 2021; 16(4): 299-312.
[http://dx.doi.org/10.2174/1574885516666210812092321]
[126]
Ng CAW, Jiang AA, Toh EMS, et al. Metformin and colorectal cancer: A systematic review, meta-analysis and meta-regression. Int J Colorectal Dis 2020; 35(8): 1501-12.
[http://dx.doi.org/10.1007/s00384-020-03676-x] [PMID: 32592092]
[127]
Ashamalla M, Youssef I, Yacoub M, Jayarangaiah A, Gupta N, Ray J. Obesity, diabetes and gastrointestinal malignancy: The role of metformin and other anti-diabetic therapy. Glob J Obes 2018; 5(2): 8.
[128]
León-González AJ, Jiménez-Vacas JM, Fuentes-Fayos AC, et al. Role of metformin and other metabolic drugs in the prevention and therapy of endocrine-related cancers. Curr Opin Pharmacol 2021; 60: 17-26.
[http://dx.doi.org/10.1016/j.coph.2021.06.002] [PMID: 34311387]
[129]
Zhang Y, Guan M, Zheng Z, Zhang Q, Gao F, Xue Y. Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PLoS One 2013; 8(11): e81264.
[http://dx.doi.org/10.1371/journal.pone.0081264] [PMID: 24278407]
[130]
Kim SH, Kim SC, Ku JL. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5- Fu resistant colorectal cancer cells. Oncotarget 2017; 8(34): 56546-57.
[http://dx.doi.org/10.18632/oncotarget.17798] [PMID: 28915611]
[131]
Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother 2021; 137: 111285.
[http://dx.doi.org/10.1016/j.biopha.2021.111285] [PMID: 33485118]
[132]
Lee J, Choi EA, Kim YS, et al. Metformin usage and the risk of colorectal cancer: A national cohort study. Int J Colorectal Dis 2021; 36(2): 303-10.
[http://dx.doi.org/10.1007/s00384-020-03765-x] [PMID: 32968891]
[133]
Canha MI, Ramos G, Prata R, Lages Martins P, Viúla Ramos M, Coimbra J. Is metformin associated with a lower prevalence of polyps, adenomas, and colorectal carcinoma in patients with diabetes mellitus? J Gastrointest Cancer 2023; 1-9.
[http://dx.doi.org/10.1007/s12029-023-00989-2] [PMID: 37987968]
[134]
Jahanafrooz Z, Mosafer J, Akbari M, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J Cell Physiol 2020; 235(5): 4153-66.
[http://dx.doi.org/10.1002/jcp.29337] [PMID: 31647128]
[135]
Zhang R, Qi F, Zhao F, et al. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis 2019; 10(4): 273.
[http://dx.doi.org/10.1038/s41419-019-1435-2] [PMID: 30894509]
[136]
Luo S, Yang G, Ye P, et al. Macrophages are a double-edged sword: molecular crosstalk between tumor-associated macrophages and cancer stem cells. Biomolecules 2022; 12(6): 850.
[http://dx.doi.org/10.3390/biom12060850] [PMID: 35740975]
[137]
Lin CC, Liao TT, Yang MH. Immune adaptation of colorectal cancer stem cells and their interaction with the tumor microenvironment. Front Oncol 2020; 10: 588542.
[http://dx.doi.org/10.3389/fonc.2020.588542] [PMID: 33312953]
[138]
Ishimoto T, Izumi D, Sakamoto Y, Miyamoto Y, Baba H. Molecular insights into colorectal cancer stem cell regulation by environmental factors. J Cancer Metastasis Treat 2015; 1(3): 156-62.
[http://dx.doi.org/10.4103/2394-4722.165532]
[139]
Tauriello DVF, Batlle E. Targeting the microenvironment in advanced colorectal cancer. Trends Cancer 2016; 2(9): 495-504.
[http://dx.doi.org/10.1016/j.trecan.2016.08.001] [PMID: 28741478]
[140]
Shi J, Fan L, Li B, Pan H. Molecular mechanism of integrin αvβ6 in liver metastasis of colon cancer based on SDF-1/CXCR4. Cell Mol Biol 2022; 67(5): 88-95.
[http://dx.doi.org/10.14715/cmb/2021.67.6.12] [PMID: 35818267]
[141]
Sun L, Li Q, Guo Y, et al. Extract of Caulis Spatholobi, a novel platelet inhibitor, efficiently suppresses metastasis of colorectal cancer by targeting tumor cell-induced platelet aggregation. Biomed Pharmacother 2020; 123: 109718.
[http://dx.doi.org/10.1016/j.biopha.2019.109718] [PMID: 31918208]
[142]
Zou W, Zhao J, Li Y, et al. Rat bone marrow-derived mesenchymal stem cells promote the migration and invasion of colorectal cancer stem cells. OncoTargets Ther 2020; 13: 6617-28.
[http://dx.doi.org/10.2147/OTT.S249353] [PMID: 32764957]
[143]
Shimokawa M, Ohta Y, Nishikori S, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 2017; 545(7653): 187-92.
[http://dx.doi.org/10.1038/nature22081] [PMID: 28355176]
[144]
Huang JL, Oshi M, Endo I, Takabe K. Clinical relevance of stem cell surface markers CD133, CD24, and CD44 in colorectal cancer. Am J Cancer Res 2021; 11(10): 5141-54.
[PMID: 34765317]
[145]
Sadeghi A, Roudi R, Mirzaei A, Zare Mirzaei A, Madjd Z, Abolhasani M. CD44 epithelial isoform inversely associates with invasive characteristics of colorectal cancer. Biomarkers Med 2019; 13(6): 419-26.
[http://dx.doi.org/10.2217/bmm-2018-0337] [PMID: 30942083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy