Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring the Constituents and Mechanisms of Polygonum multiflorum Thunb. in Mitigating Ischemic Stroke: A Network Pharmacology and Molecular Docking Study

Author(s): Lingyu Ruan, Mengyun Zheng, Xinru Xia, Chaofan Pang, Yating Wang, Zhiwei Fan, Jingtian Yang, Qing Qing, Hongyan Lin, Yuheng Tao, Junsong Wang* and Liqun Wang*

Volume 28, Issue 5, 2025

Published on: 15 April, 2024

Page: [781 - 797] Pages: 17

DOI: 10.2174/0113862073285988240229081558

Price: $65

Abstract

Backgound: Polygonum multiflorum Thunb. (PMT) has shown promise in exerting cerebrovascular protective effects, and its potential for treating ischemic stroke (IS) has garnered attention. However, the lack of clarity regarding its chemical constituents and mechanisms has significantly hindered its clinical application.

Methods: In this study, we employed network pharmacology and molecular docking techniques for the first time to elucidate the potential compounds and targets of PMT in treating IS. The databases CTD, DrugBank, DisGeNET, GeneCards, OMIM, TTD, PGKB, NCBI, TCMIP, CNKI, PubMed, ZINC, STITCH, BATMAN, ETCM and Swiss provided information on targets related to IS and components of PMT, along with their associated targets. We constructed “compoundtarget” and protein-protein interaction (PPI) networks sourced from the STRING database using the Cytoscape software. Gene Ontology (GO) enrichment analysis and KEGG pathway analysis were conducted using the DAVID database. Molecular docking between core targets and active compounds was conducted using Autodock4 software. Experiments were performed in an oxygen- glucose deprivation and reperfusion (OGD/R) model to validate the anti-IS activity of compounds isolated from PMT preliminarily. Network pharmacological analysis revealed 16 core compounds, including resveratrol, polydatin, TSG, ω-hydroxyemodin, emodin anthrone, tricin, moupinamide, and others, along with 11 high-degree targets, such as PTGS1, PTGS2, ADORA1, ADORA2, CA1, EGFR, ESR1, ESR2, SRC, MMP3 and MMP9.

Results: GO and KEGG enrichment analyses revealed the involvement of HIF-1, Akt signaling pathway and energy metabolism-related signaling pathways. Molecular docking results emphasized eight key compounds and confirmed their interactions with corresponding targets. In vitro OGD/R model experiments identified TSG and tricin as the primary active substances within PMT for its anti-stroke activity.

Conclusion: This study contributes new insights into the potential development of PMT for stroke prevention and treatment.

Keywords: Polygonum multiflorum Thunb., ischemic stroke, network pharmacology, molecular docking, oxygen-glucose deprivation and reperfusion (OGD/R), protein-protein interaction (PPI).

Graphical Abstract
[1]
Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart disease and stroke statistics—2022 update: A report from the american heart association. Circulation, 2022, 145(8), e153-e639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[2]
Xia, C.; Zhou, J.; Lu, C.; Wang, Y.; Tang, T.; Cai, Y.; Ju, S. Characterizing diaschisis-related thalamic perfusion and diffusion after middle cerebral artery infarction. Stroke, 2021, 52(7), 2319-2327.
[http://dx.doi.org/10.1161/STROKEAHA.120.032464] [PMID: 33971741]
[3]
Xing, C.; Arai, K.; Lo, E.H.; Hommel, M. Pathophysiologic cascades in ischemic stroke. Int. J. Stroke, 2012, 7(5), 378-385.
[http://dx.doi.org/10.1111/j.1747-4949.2012.00839.x] [PMID: 22712739]
[4]
Hankey, G.J. Neuroprotection for acute ischaemic stroke: Hope reignited. Lancet Neurol., 2006, 5(4), 287-288.
[http://dx.doi.org/10.1016/S1474-4422(06)70387-8] [PMID: 16545741]
[5]
Amani, H.; Habibey, R.; Hajmiresmail, S.J.; Latifi, S.; Pazoki-Toroudi, H.; Akhavan, O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(48), 9452-9476.
[http://dx.doi.org/10.1039/C7TB01689A] [PMID: 32264560]
[6]
Amani, H.; Habibey, R.; Shokri, F.; Hajmiresmail, S.J.; Akhavan, O.; Mashaghi, A.; Pazoki-Toroudi, H. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci. Rep., 2019, 9(1), 6044.
[http://dx.doi.org/10.1038/s41598-019-42633-9] [PMID: 30988361]
[7]
Cai, X.; Bandla, A.; Wang, C.; Liu, Y.H.; Chuan, C.K.; Xu, Y.; Liu, X.; Xu, S.; Wu, W.; Thakor, N.V.; Liu, B. Photothermal‐activatable liposome carrying tissue plasminogen activator for photoacoustic image‐guided ischemic stroke treatment. Small Struct., 2022, 3(2), 2100118.
[http://dx.doi.org/10.1002/sstr.202100118]
[8]
Yoshitomi, T.; Nagasaki, Y. Self-assembling antioxidants for ischemia–reperfusion injuries. Antioxid. Redox Signal., 2022, 36(1-3), 70-80.
[http://dx.doi.org/10.1089/ars.2021.0103] [PMID: 34074133]
[9]
Parvez, S.; Kaushik, M.; Ali, M.; Alam, M.M.; Ali, J.; Tabassum, H.; Kaushik, P. Dodging blood brain barrier with “nano” warriors: Novel strategy against ischemic stroke. Theranostics, 2022, 12(2), 689-719.
[http://dx.doi.org/10.7150/thno.64806] [PMID: 34976208]
[10]
Liao, J.; Li, Y.; Luo, Y.; Meng, S.; Zhang, C.; Xiong, L.; Wang, T.; Lu, Y. Recent advances in targeted nanotherapies for ischemic stroke. Mol. Pharm., 2022, 19(9), 3026-3041.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00383] [PMID: 35905397]
[11]
Akhavan, O.; Ghaderi, E.; Abouei, E.; Hatamie, S.; Ghasemi, E. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon, 2014, 66, 395-406.
[http://dx.doi.org/10.1016/j.carbon.2013.09.015]
[12]
Zeng, P.; Yi, Y.; Su, H.F.; Ye, C.Y.; Sun, Y.W.; Zhou, X.W.; Lu, Y.; Shi, A.; Tian, Q. Key phytochemicals and biological functions of chuanxiong rhizoma against ischemic stroke: A network pharmacology and experimental assessment. Front. Pharmacol., 2021, 12, 758049.
[http://dx.doi.org/10.3389/fphar.2021.758049] [PMID: 34992531]
[13]
Chong, P.Z.; Ng, H.Y.; Tai, J.T.; Lee, S.W.H. Efficacy and safety of ginkgo biloba in patients with acute ischemic stroke: A systematic review and meta-analysis. Am. J. Chin. Med., 2020, 48(3), 513-534.
[http://dx.doi.org/10.1142/S0192415X20500263] [PMID: 32349519]
[14]
Xu, M.; Wu, R.X.; Li, X.L.; Zeng, Y.S.; Liang, J.Y.; Fu, K.; Liang, Y.; Wang, Z. Traditional medicine in China for ischemic stroke: Bioactive components, pharmacology, and mechanisms. J. Integr. Neurosci.,, 2022, 21(1), 026.
[http://dx.doi.org/10.31083/j.jin2101026] [PMID: 35164462]
[15]
Liang, J.; Han, R.; Zhou, B. Metabolic Reprogramming: Strategy for Ischemic Stroke Treatment by Ischemic Preconditioning. Biology , 2021, 10(5), 424.
[http://dx.doi.org/10.3390/biology10050424] [PMID: 34064579]
[16]
Yang, M.; Huang, W.Z.; Pong, N.H.; Liu, A.G.L.; Li, C.K.; Ng, P.C.; Fok, T.F.; Li, K.K.H. The effect of polygonum multiflorum extracts on hematopoiesis and platelet production. Blood, 2005, 106, 2159-2159.
[17]
Li, Y.; Han, M.; Lin, P.; He, Y.; Yu, J.; Zhao, R. Hair growth promotion activity and its mechanism of polygonum multiflorum. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/517901] [PMID: 26294926]
[18]
Chen, H-S.; Liu, Y.; Lin, L.Q.; Zhao, J.L.; Zhang, C.P.; Jin, J.C.; Wang, L.; Bai, M.H.; Wang, Y.C.; Liu, M.; Shen, B.Z. Anti-proliferative effect of an extract of the root of Polygonum multiflorum Thunb. on MCF-7 human breast cancer cells and the possible mechanisms. Mol. Med. Rep., 2011, 4(6), 1313-1319.
[PMID: 21874249]
[19]
Li, M.H.; Ruan, L.Y.; Chen, C.; Xing, Y.X.; Hong, W.; Du, R.H.; Wang, J.S. Protective effects of Polygonum multiflorum on ischemic stroke rat model analysed by 1 H NMR metabolic profiling. J. Pharm. Biomed. Anal., 2018, 155, 91-103.
[http://dx.doi.org/10.1016/j.jpba.2018.03.049] [PMID: 29625260]
[20]
Chan, Y.C.; Wang, M.F.; Chen, Y.C.; Yang, D.Y.; Lee, M.S.; Cheng, F.C. Long-term administration of Polygonum multiflorum Thunb. reduces cerebral ischemia-induced infarct volume in gerbils. Am. J. Chin. Med., 2003, 31(1), 71-77.
[http://dx.doi.org/10.1142/S0192415X03000734] [PMID: 12723756]
[21]
Lee, S.V.; Choi, K.H.; Choi, Y.W.; Hong, J.W.; Baek, J.U.; Choi, B.T.; Shin, H.K. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice. Mol. Med. Rep., 2014, 9(4), 1415-1421.
[http://dx.doi.org/10.3892/mmr.2014.1943] [PMID: 24534954]
[22]
Jang, J.Y.; Kim, H.N.; Kim, Y.R.; Choi, Y.W.; Choi, Y.H.; Lee, J.H.; Shin, H.K.; Choi, B.T. Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons. J. Ethnopharmacol., 2013, 145(1), 261-268.
[http://dx.doi.org/10.1016/j.jep.2012.10.061] [PMID: 23164763]
[23]
Kim, H.N.; Kim, Y.R.; Jang, J.Y.; Choi, Y.W.; Baek, J.U.; Hong, J.W.; Choi, Y.H.; Shin, H.K.; Choi, B.T. Neuroprotective effects of Polygonum multiflorum extract against glutamate-induced oxidative toxicity in HT22 hippocampal cells. J. Ethnopharmacol., 2013, 150(1), 108-115.
[http://dx.doi.org/10.1016/j.jep.2013.08.014] [PMID: 23973786]
[24]
Alimirzaei, F.; Kieslich, C.A. Machine learning models for predicting membranolytic anticancer peptides. In: Computer Aided Chemical Engineering; Kokossis, A.C.; Georgiadis, M.C.; Pistikopoulos, E., Eds.; Elsevier, 2023, pp. 2691-2696.
[25]
Casas, A.I.; Hassan, A.A.; Larsen, S.J.; Gomez-Rangel, V.; Elbatreek, M.; Kleikers, P.W.M.; Guney, E.; Egea, J.; López, M.G.; Baumbach, J.; Schmidt, H.H.H.W. From single drug targets to synergistic network pharmacology in ischemic stroke. Proc. Natl. Acad. Sci. , 2019, 116(14), 7129-7136.
[http://dx.doi.org/10.1073/pnas.1820799116] [PMID: 30894481]
[26]
Lai, W.; Kuang, M.; Wang, X.; Ghafariasl, P.; Sabzalian, M.H.; Lee, S. Skin cancer diagnosis (SCD) using Artificial Neural Network (ANN) and Improved Gray Wolf Optimization (IGWO). Sci. Rep., 2023, 13(1), 19377.
[http://dx.doi.org/10.1038/s41598-023-45039-w] [PMID: 37938553]
[27]
Rahim, F.; Zaki Zadeh, A.; Javanmardi, P.; Emmanuel Komolafe, T.; Khalafi, M.; Arjomandi, A.; Ghofrani, H.A.; Shirbandi, K. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study. Biomed. Eng. Online, 2023, 22(1), 68.
[http://dx.doi.org/10.1186/s12938-023-01132-9] [PMID: 37430259]
[28]
Maghsoudi, S.; Taghavi Shahraki, B.; Rameh, F.; Nazarabi, M.; Fatahi, Y.; Akhavan, O.; Rabiee, M.; Mostafavi, E.; Lima, E.C.; Saeb, M.R.; Rabiee, N. A review on computer‐aided chemogenomics and drug repositioning for rational COVID ‐19 drug discovery. Chem. Biol. Drug Des., 2022, 100(5), 699-721.
[http://dx.doi.org/10.1111/cbdd.14136] [PMID: 36002440]
[29]
Rad, M.; Ebrahimipour, G.; Bandehpour, M.; Akhavan, O.; Yarian, F. Neisseria meningitidis detection by coupling bacterial factor H onto Au/scFv antibody nanohybrids. Appl. Phys., A Mater. Sci. Process., 2023, 129(6), 401.
[http://dx.doi.org/10.1007/s00339-023-06620-2]
[30]
Kieslich, C.A.; Alimirzaei, F.; Song, H.; Do, M.; Hall, P. Data-driven prediction of antiviral peptides based on periodicities of amino acid properties. In: Computer Aided Chemical Engineering, 50; Türkay, M.; Gani, R., Eds.; , 2021, pp. 2019-2024.
[http://dx.doi.org/10.1016/B978-0-323-88506-5.50312-0]
[31]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[32]
Sahu, S.N.; Soren, S.; Chakrabarty, S.; Sahu, R. Theoretical Study on Graphene Oxide as a Cancer Drug Carrier; Monoelements, 2020, pp. 73-86.
[http://dx.doi.org/10.1002/9781119655275.ch4]
[33]
Rad, M.; Ebrahimipour, G.; Bandehpour, M.; Akhavan, O.; Yarian, F. SOEing PCR/docking optimization of protein A-G/scFv-Fc-bioconjugated au nanoparticles for interaction with meningitidis bacterial antigen. Catalysts, 2023, 13(5), 790.
[http://dx.doi.org/10.3390/catal13050790]
[34]
Unal, M.A.; Bayrakdar, F.; Nazir, H.; Besbinar, O.; Gurcan, C.; Lozano, N.; Arellano, L.M.; Yalcin, S.; Panatli, O.; Celik, D.; Alkaya, D.; Agan, A.; Fusco, L.; Suzuk Yildiz, S.; Delogu, L.G.; Akcali, K.C.; Kostarelos, K.; Yilmazer, A. Graphene oxide nanosheets interact and interfere with SARS‐CoV‐2 surface proteins and cell receptors to inhibit infectivity. Small, 2021, 17(25), 2101483.
[http://dx.doi.org/10.1002/smll.202101483] [PMID: 33988903]
[35]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[36]
Jiang, P.; Liu, R.; Dou, S.; Liu, L.; Zhang, W.; Chen, Z.; Xu, R.; Ding, J. Analysis of the constituents in rat plasma after oral administration of Shexiang Baoxin pill by HPLC‐ESI‐MS/MS. Biomed. Chromatogr., 2009, 23(12), 1333-1343.
[http://dx.doi.org/10.1002/bmc.1258] [PMID: 19517427]
[37]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42(W1), W32-W38.
[http://dx.doi.org/10.1093/nar/gku293] [PMID: 24792161]
[38]
Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011, 27(3), 431-432.
[http://dx.doi.org/10.1093/bioinformatics/btq675] [PMID: 21149340]
[39]
Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X.; Qu, C.; Ni, J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J. Ethnopharmacol., 2015, 159, 158-183.
[http://dx.doi.org/10.1016/j.jep.2014.11.009] [PMID: 25449462]
[40]
Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Muzio, L.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. (Review). Int. J. Mol. Med., 2017, 40(2), 271-280.
[http://dx.doi.org/10.3892/ijmm.2017.3036] [PMID: 28656226]
[41]
Junttila, M.R.; Li, S.P.; Westermarck, J. Phosphatase‐mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J., 2008, 22(4), 954-965.
[http://dx.doi.org/10.1096/fj.06-7859rev] [PMID: 18039929]
[42]
Uzdensky, A.B. Apoptosis regulation in the penumbra after ischemic stroke: Expression of pro- and antiapoptotic proteins. Apoptosis, 2019, 24(9-10), 687-702.
[http://dx.doi.org/10.1007/s10495-019-01556-6] [PMID: 31256300]
[43]
Qin, C.; Yang, S.; Chu, Y.H.; Zhang, H.; Pang, X.W.; Chen, L.; Zhou, L.Q.; Chen, M.; Tian, D.S.; Wang, W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther., 2022, 7(1), 215.
[http://dx.doi.org/10.1038/s41392-022-01064-1] [PMID: 35794095]
[44]
Lebel, M.; Patenaude, C.; Allyson, J.; Massicotte, G.; Cyr, M. Dopamine D1 receptor activation induces tau phosphorylation via cdk5 and GSK3 signaling pathways. Neuropharmacology, 2009, 57(4), 392-402.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.041] [PMID: 19591849]
[45]
Ham, P.B., III; Raju, R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog. Neurobiol., 2017, 157, 92-116.
[http://dx.doi.org/10.1016/j.pneurobio.2016.06.006] [PMID: 27321753]
[46]
Duta-Bratu, C.G.; Nitulescu, G.M.; Mihai, D.P.; Olaru, O.T. Resveratrol and other natural oligomeric stilbenoid compounds and their therapeutic applications. Plants, 2023, 12(16), 2935.
[http://dx.doi.org/10.3390/plants12162935] [PMID: 37631147]
[47]
Laubach, V.E.; French, B.A.; Okusa, M.D. Targeting of adenosine receptors in ischemia–reperfusion injury. Expert Opin. Ther. Targets, 2011, 15(1), 103-118.
[http://dx.doi.org/10.1517/14728222.2011.541441] [PMID: 21110787]
[48]
Ruan, L.; Li, G.; Zhao, W.; Meng, H.; Zheng, Q.; Wang, J. Activation of adenosine a1 receptor in ischemic stroke: Neuroprotection by tetrahydroxy stilbene glycoside as an agonist. Antioxidants, 2021, 10(7), 1112.
[http://dx.doi.org/10.3390/antiox10071112] [PMID: 34356346]
[49]
Zhao, S.; Cheng, C.K.; Zhang, C.L.; Huang, Y. Interplay between oxidative stress, cyclooxygenases, and prostanoids in cardiovascular diseases. Antioxid. Redox Signal., 2021, 34(10), 784-799.
[http://dx.doi.org/10.1089/ars.2020.8105] [PMID: 32323554]
[50]
Yang, H.; Li, G.P.; Liu, Q.; Zong, S.B.; Li, L.; Xu, Z.L.; Zhou, J.; Cao, L.; Wang, Z.Z.; Zhang, Q.C.; Li, M.; Fan, Q.R.; Hu, H.F.; Xiao, W. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother. Res., 2021, 35(5), 2727-2744.
[http://dx.doi.org/10.1002/ptr.7018] [PMID: 33452698]
[51]
Choi, S.H.; Aid, S.; Bosetti, F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: Implications for translational research. Trends Pharmacol. Sci., 2009, 30(4), 174-181.
[http://dx.doi.org/10.1016/j.tips.2009.01.002] [PMID: 19269697]
[52]
Lopez, M.S.; Dempsey, R.J.; Vemuganti, R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem. Int., 2015, 89, 75-82.
[http://dx.doi.org/10.1016/j.neuint.2015.08.009] [PMID: 26277384]
[53]
Shah, F.A.; Kury, L.A.; Li, T.; Zeb, A.; Koh, P.O.; Liu, F.; Zhou, Q.; Hussain, I.; Khan, A.U.; Jiang, Y.; Li, S. Polydatin attenuates neuronal loss via reducing neuroinflammation and oxidative stress in rat MCAO models. Front. Pharmacol., 2019, 10, 663-663.
[http://dx.doi.org/10.3389/fphar.2019.00663] [PMID: 31293416]
[54]
Fu, R.; Shen, Y.; Zheng, J. Association between common genetic variants in ESR1 and stroke risk: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis., 2019, 28(11), 104355.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.104355] [PMID: 31533892]
[55]
Duncan, K.A.; Saldanha, C.J. Central aromatization: A dramatic and responsive defense against threat and trauma to the vertebrate brain. Front. Neuroendocrinol., 2020, 56, 100816.
[http://dx.doi.org/10.1016/j.yfrne.2019.100816] [PMID: 31786088]
[56]
Matsuda, H.; Shimoda, H.; Morikawa, T.; Yoshikawa, M. Phytoestrogens from the roots of Polygonum cuspidatum (polygonaceae): structure-Requirement of hydroxyanthraquinones for estrogenic activity. Bioorg. Med. Chem. Lett., 2001, 11(14), 1839-1842.
[http://dx.doi.org/10.1016/S0960-894X(01)00318-3] [PMID: 11459643]
[57]
Kang, S.C.; Lee, C.M.; Choung, E.S.; Bak, J.P.; Bae, J.J.; Yoo, H.S.; Kwak, J.H.; Zee, O.P. Anti-proliferative effects of estrogen receptor-modulating compounds isolated from Rheum palmatum. Arch. Pharm. Res., 2008, 31(6), 722-726.
[http://dx.doi.org/10.1007/s12272-001-1218-1] [PMID: 18563353]
[58]
Kim, S.J.; Hwang, Y.H.; Yee, S.T. Estrogenic activities of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside and physcion in MCF-7 cells. Medicine in. Drug Discovery., 2021, 9, 100072.
[http://dx.doi.org/10.1016/j.medidd.2020.100072]
[59]
Haberman, S.; Capildeo, R.; Rose, F.C. Sex differences in the incidence of cerebrovascular disease. J. Epidemiol. Community Health, 1981, 35(1), 45-50.
[http://dx.doi.org/10.1136/jech.35.1.45] [PMID: 7264532]
[60]
Chen, M.; Wu, S.; Shen, B.; Fan, Q.; Zhang, R.; Zhou, Y.; Zhang, P.; Wang, L.; Zhang, L. Activation of the δ opioid receptor relieves cerebral ischemic injury in rats via EGFR transactivation. Life Sci., 2021, 273, 119292.
[http://dx.doi.org/10.1016/j.lfs.2021.119292] [PMID: 33667516]
[61]
Wang, Y.; Cooke, M.J.; Lapitsky, Y.; Wylie, R.G.; Sachewsky, N.; Corbett, D.; Morshead, C.M.; Shoichet, M.S. Transport of epidermal growth factor in the stroke-injured brain. J. Control. Release, 2011, 149(3), 225-235.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.022] [PMID: 21035512]
[62]
Nakano, S.; Kobayashi, N.; Yoshida, K.; Ohno, T.; Matsuoka, H. Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertens. Res., 2005, 28(11), 925-936.
[http://dx.doi.org/10.1291/hypres.28.925] [PMID: 16555582]
[63]
Kagiyama, S.; Eguchi, S.; Frank, G.D.; Inagami, T.; Zhang, Y.C.; Phillips, M.I. Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation, 2002, 106(8), 909-912.
[http://dx.doi.org/10.1161/01.CIR.0000030181.63741.56] [PMID: 12186792]
[64]
Arai, K.; Jin, G.; Navaratna, D.; Lo, E.H. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J., 2009, 276(17), 4644-4652.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07176.x] [PMID: 19664070]
[65]
Chang, J.J.; Stanfill, A.; Pourmotabbed, T. The role of matrix metalloproteinase polymorphisms in ischemic stroke. Int. J. Mol. Sci., 2016, 17, 1323.
[66]
Alam, M.; Mohammad, A.; Rahman, S.; Todd, K.; Shuaib, A. Hyperthermia up-regulates matrix metalloproteinases and accelerates basement membrane degradation in experimental stroke. Neurosci. Lett., 2011, 495(2), 135-139.
[http://dx.doi.org/10.1016/j.neulet.2011.03.056] [PMID: 21443925]
[67]
Barr, T.L.; Latour, L.L.; Lee, K.Y.; Schaewe, T.J.; Luby, M.; Chang, G.S.; El-Zammar, Z.; Alam, S.; Hallenbeck, J.M.; Kidwell, C.S.; Warach, S. Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke, 2010, 41(3), e123-e128.
[http://dx.doi.org/10.1161/STROKEAHA.109.570515] [PMID: 20035078]
[68]
Choi, D.H.; Kang, D.G.; Kim, E.J.; Kim, H.Y.; Kim, J.S.; Lee, H.S. An ethanol extract of Polygonum multiflorum (EPM) suppresses atherogenesis in rat with atherogenic‐diet; Wiley Online Library, 2008.
[http://dx.doi.org/10.1096/fasebj.22.1_supplement.912.40]
[69]
Zhang, W.; Wang, C.H.; Li, F.; Zhu, W.Z. 2,3,4′,5‐tetrahydroxystilbene‐2‐ O ‐β‐ D ‐glucoside suppresses matrix metalloproteinase expression and inflammation in atherosclerotic rats. Clin. Exp. Pharmacol. Physiol., 2008, 35(3), 310-316.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04824.x] [PMID: 17973930]
[70]
Dong, W.; Li, N.; Gao, D.; Zhen, H.; Zhang, X.; Li, F. Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J. Vasc. Surg., 2008, 48(3), 709-714.
[http://dx.doi.org/10.1016/j.jvs.2008.04.007] [PMID: 18572362]
[71]
Tsai, M.M.; Chen, J.L.; Lee, T.H.; Liu, H.; Shanmugam, V.; Hsieh, H.L. Brain protective effect of resveratrol via ameliorating interleukin-1β-Induced MMP-9-mediated disruption of ZO-1 arranged integrity. Biomedicines, 2022, 10(6), 1270.
[http://dx.doi.org/10.3390/biomedicines10061270]
[72]
Guo, F.; Hua, Y.; Wang, J.; Keep, R.F.; Xi, G. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Transl. Stroke Res., 2012, 3(1), 130-137.
[http://dx.doi.org/10.1007/s12975-011-0106-0] [PMID: 22400066]
[73]
Lemon, N.; Canepa, E.; Ilies, M.A.; Fossati, S. Carbonic anhydrases as potential targets against neurovascular unit dysfunction in alzheimer’s disease and stroke. Front. Aging Neurosci., 2021, 13, 772278.
[74]
Zhang, Y.; Shen, L.; Xie, J.; Li, L.; Xi, W.; Li, B.; Bai, Y.; Yao, H.; Zhang, S.; Han, B. Pushen capsule treatment promotes functional recovery after ischemic stroke. Phytomedicine, 2023, 111, 154664.
[http://dx.doi.org/10.1016/j.phymed.2023.154664] [PMID: 36682301]
[75]
Liu, Y.; Qu, X.; Yan, M.; Li, D.; Zou, R. Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway. Hum. Exp. Toxicol., 2022, 41.
[http://dx.doi.org/10.1177/09603271221125928] [PMID: 36113040]
[76]
Lawan, A.; Shi, H.; Gatzke, F.; Bennett, A.M. Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cell. Mol. Life Sci., 2013, 70(2), 223-237.
[http://dx.doi.org/10.1007/s00018-012-1041-2] [PMID: 22695679]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy