Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Revolutionizing Neurological Disorder Treatment: Integrating Innovations in Pharmaceutical Interventions and Advanced Therapeutic Technologies

Author(s): Rimpi Arora and Ashish Baldi*

Volume 30, Issue 19, 2024

Published on: 09 April, 2024

Page: [1459 - 1471] Pages: 13

DOI: 10.2174/0113816128284824240328071911

Price: $65

Abstract

Neurological disorders impose a significant burden on individuals, leading to disabilities and a reduced quality of life. However, recent years have witnessed remarkable advancements in pharmaceutical interventions aimed at treating these disorders. This review article aims to provide an overview of the latest innovations and breakthroughs in neurological disorder treatment, with a specific focus on key therapeutic areas such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke. This review explores emerging trends in drug development, including the identification of novel therapeutic targets, the development of innovative drug delivery systems, and the application of personalized medicine approaches. Furthermore, it highlights the integration of advanced therapeutic technologies such as gene therapy, optogenetics, and neurostimulation techniques. These technologies hold promise for precise modulation of neural circuits, restoration of neuronal function, and even disease modification. While these advancements offer hopeful prospects for more effective and tailored treatments, challenges such as the need for improved diagnostic tools, identification of new targets for intervention, and optimization of drug delivery methods will remain. By addressing these challenges and continuing to invest in research and collaboration, we can revolutionize the treatment of neurological disorders and significantly enhance the lives of those affected by these conditions.

Keywords: Neurological disorders, pharmaceutical interventions, Alzheimer's disease, novel targets, personalized medicine, quality of life.

Next »
[1]
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci 2022; 23(11): 5954.
[http://dx.doi.org/10.3390/ijms23115954] [PMID: 35682631]
[2]
Lima AA, Mridha MF, Das SC, Kabir MM, Islam MR, Watanobe Y. A comprehensive survey on the detection, classification, and challenges of neurological disorders. Biology (Basel) 2022; 11(3): 469.
[http://dx.doi.org/10.3390/biology11030469] [PMID: 35336842]
[3]
Yang Y, Yuan Y, Zhang G, et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat Med 2022; 28(10): 2207-15.
[http://dx.doi.org/10.1038/s41591-022-01932-x] [PMID: 35995955]
[4]
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[5]
Altimus CM, Marlin BJ, Charalambakis NE, et al. The next 50 years of neuroscience. J Neurosci 2020; 40(1): 101-6.
[http://dx.doi.org/10.1523/JNEUROSCI.0744-19.2019] [PMID: 31896564]
[6]
Subbiah V. The next generation of evidence-based medicine. Nat Med 2023; 29(1): 49-58.
[http://dx.doi.org/10.1038/s41591-022-02160-z] [PMID: 36646803]
[7]
Joshua AM, Misri Z. Physiotherapy for adult neurological conditions. Berlin, Heidelberg: Springer 2022.
[http://dx.doi.org/10.1007/978-981-19-0209-3]
[8]
Lunn M. Nerve and muscle disease. Neurology: A Queen Square. Hoboken, New Jersey: Wiley 2016.
[http://dx.doi.org/10.1002/9781118486160.ch10]
[9]
Clemente-Suárez V, Redondo-Flórez L, Beltrán-Velasco A, et al. Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines 2023; 11(9): 2488.
[http://dx.doi.org/10.3390/biomedicines11092488] [PMID: 37760929]
[10]
Tan L, Jiang T, Tan L, Yu JT. Toward precision medicine in neurological diseases. Ann Transl Med 2016; 4(6): 104.
[http://dx.doi.org/10.21037/atm.2016.03.26] [PMID: 27127757]
[11]
Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci 2021; 14(1): 86-93.
[http://dx.doi.org/10.1111/cts.12884] [PMID: 32961010]
[12]
Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision medicine in neurology: The inspirational paradigm of complement therapeutics. Pharmaceuticals (Basel) 2020; 13(11): 341.
[http://dx.doi.org/10.3390/ph13110341] [PMID: 33114553]
[13]
Yen C, Lin CL, Chiang MC. Exploring the frontiers of neuroimaging: A review of recent advances in understanding brain functioning and disorders. Life (Basel) 2023; 13(7): 1472.
[http://dx.doi.org/10.3390/life13071472] [PMID: 37511847]
[14]
Hampel H, Gao P, Cummings J, et al. The foundation and architecture of precision medicine in neurology and psychiatry. Trends Neurosci 2023; 46(3): 176-98.
[http://dx.doi.org/10.1016/j.tins.2022.12.004] [PMID: 36642626]
[15]
Gurevich EV, Gurevich VV. Beyond traditional pharmacology: New tools and approaches. Br J Pharmacol 2015; 172(13): 3229-41.
[http://dx.doi.org/10.1111/bph.13066] [PMID: 25572005]
[16]
Thao C. Hmong farmer narratives of pesticide use in the Central Valley, California. 2021. Available from: https://escholarship.org/uc/item/1fp6q9w3
[17]
Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci 2011; 15(5): 200-9.
[http://dx.doi.org/10.1016/j.tics.2011.03.006] [PMID: 21497128]
[18]
Menon B. Towards a new model of understanding – The triple network, psychopathology and the structure of the mind. Med Hypotheses 2019; 133: 109385.
[http://dx.doi.org/10.1016/j.mehy.2019.109385] [PMID: 31494485]
[19]
Gibbs RM, Lipnick S, Bateman JW, et al. Toward precision medicine for neurological and neuropsychiatric disorders. Cell Stem Cell 2018; 23(1): 21-4.
[http://dx.doi.org/10.1016/j.stem.2018.05.019] [PMID: 29887317]
[20]
Espay AJ, Aybek S, Carson A, et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol 2018; 75(9): 1132-41.
[http://dx.doi.org/10.1001/jamaneurol.2018.1264] [PMID: 29868890]
[21]
Wisniewski T, Sigurdsson EM. Therapeutic approaches for prion and Alzheimer’s diseases. FEBS J 2007; 274(15): 3784-98.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05919.x] [PMID: 17617224]
[22]
Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol 2021; 20(7): 559-72.
[http://dx.doi.org/10.1016/S1474-4422(21)00061-2] [PMID: 34146514]
[23]
Sharifi MS. Treatment of neurological and psychiatric disorders with deep brain stimulation; raising hopes and future challenges. Basic Clin Neurosci 2013; 4(3): 266-70.
[PMID: 25337356]
[24]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014; 2014: 869269.
[http://dx.doi.org/10.1155/2014/869269]
[25]
Nemeth CL, Fine AS, Fatemi A. Translational challenges in advancing regenerative therapy for treating neurological disorders using nanotechnology. Adv Drug Deliv Rev 2019; 148: 60-7.
[http://dx.doi.org/10.1016/j.addr.2019.05.003] [PMID: 31100303]
[26]
Brady LS. Assessing biomarkers for brain diseases: Progress and gaps 2013; 5(3): 23.
[27]
Peedicayil J. Identification of biomarkers in neuropsychiatric disorders based on systems biology and epigenetics. Front Genet 2019; 10: 985.
[http://dx.doi.org/10.3389/fgene.2019.00985] [PMID: 31681422]
[28]
Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, et al. Significance of brain glucose Hypometabolism, altered insulin signal transduction, and insulin resistance in several neurological diseases. Front Endocrinol (Lausanne) 2022; 13: 873301.
[http://dx.doi.org/10.3389/fendo.2022.873301] [PMID: 35615716]
[29]
Mitchell AJ, Kemp S, Benito-León J, Reuber M. The influence of cognitive impairment on health-related quality of life in neurological disease. Acta Neuropsychiatr 2010; 22(1): 2-13.
[http://dx.doi.org/10.1111/j.1601-5215.2009.00439.x]
[30]
Chen G, Xu T, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[31]
Villegas S, Roda AR, Serra-Mir G, Montoliu-Gaya L, Tiessler L. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen Res 2022; 17(8): 1666-74.
[http://dx.doi.org/10.4103/1673-5374.332127] [PMID: 35017413]
[32]
Raza C, Anjum R, Shakeel NA. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226: 77-90.
[http://dx.doi.org/10.1016/j.lfs.2019.03.057] [PMID: 30980848]
[33]
Lopez JA, Denkova M, Ramanathan S, Dale RC, Brilot F. Pathogenesis of autoimmune demyelination: From multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. Clin Transl Immunology 2021; 10(7): e1316.
[http://dx.doi.org/10.1002/cti2.1316] [PMID: 34336206]
[34]
Sabatino JJ Jr, Pröbstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019; 20(12): 728-45.
[http://dx.doi.org/10.1038/s41583-019-0233-2] [PMID: 31712781]
[35]
Gharibi T, Babaloo Z, Hosseini A, et al. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology 2020; 160(4): 325-35.
[http://dx.doi.org/10.1111/imm.13198] [PMID: 32249925]
[36]
Wanker EE, Ast A, Schindler F, Trepte P, Schnoegl S. The pathobiology of perturbed mutant huntingtin protein–protein interactions in Huntington’s disease. J Neurochem 2019; 151(4): 507-19.
[http://dx.doi.org/10.1111/jnc.14853] [PMID: 31418858]
[37]
Jurcau A. Molecular pathophysiological mechanisms in Huntington’s disease. Biomedicines 2022; 10(6): 1432.
[http://dx.doi.org/10.3390/biomedicines10061432] [PMID: 35740453]
[38]
Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 2009; 8(12): 982-1001.
[http://dx.doi.org/10.1038/nrd2983] [PMID: 19949402]
[39]
Łukawski K, Czuczwar SJ. Emerging therapeutic targets for epilepsy: Preclinical insights. Expert Opin Ther Targets 2022; 26(3): 193-206.
[http://dx.doi.org/10.1080/14728222.2022.2039120] [PMID: 35130119]
[40]
Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: Rationale and current status. Expert Opin Ther Targets 2019; 23(4): 341-51.
[http://dx.doi.org/10.1080/14728222.2019.1586885] [PMID: 30801204]
[41]
Marques BL. The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Dev Biol 2019; 95: 98-110.
[http://dx.doi.org/10.1016/j.semcdb.2018.12.003]
[42]
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 2021; 10(7): 1639.
[http://dx.doi.org/10.3390/cells10071639] [PMID: 34208834]
[43]
Wang X, Xuan W, Zhu ZY, et al. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24(12): 1100-14.
[http://dx.doi.org/10.1111/cns.13077] [PMID: 30350341]
[44]
Ma H, Jiang Z, Xu J, Liu J, Guo ZN. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv 2021; 28(1): 357-71.
[http://dx.doi.org/10.1080/10717544.2021.1879315] [PMID: 33517820]
[45]
Campbell BCV, De Silva DA, Macleod MR, et al. Ischaemic stroke. Nat Rev Dis Primers 2019; 5(1): 70.
[http://dx.doi.org/10.1038/s41572-019-0118-8] [PMID: 31601801]
[46]
Dauncey M. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients 2013; 5(3): 887-914.
[http://dx.doi.org/10.3390/nu5030887] [PMID: 23503168]
[47]
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, et al. Current and emerging avenues for Alzheimer’s disease drug targets. J Intern Med 2019; 286(4): 398-437.
[http://dx.doi.org/10.1111/joim.12959] [PMID: 31286586]
[48]
Bhardwaj S, Kesari KK, Rachamalla M, et al. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J Adv Res 2022; 40: 207-21.
[http://dx.doi.org/10.1016/j.jare.2021.07.001] [PMID: 36100328]
[49]
Takata K, Ginhoux F, Shimohama S. Roles of microglia in Alzheimer’s disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochem Pharmacol 2021; 192: 114754.
[http://dx.doi.org/10.1016/j.bcp.2021.114754] [PMID: 34480881]
[50]
Aisen PS, Cummings J, Doody R, et al. The future of anti-amyloid trials. J Prev Alzheimers Dis 2020; 7(3): 146-51.
[PMID: 32463066]
[51]
Panza F, Lozupone M, Solfrizzi V, et al. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 2018; 18(11): 847-57.
[http://dx.doi.org/10.1080/14737175.2018.1531706] [PMID: 30277096]
[52]
Yadikar H, Torres I, Aiello G, et al. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 2020; 15(7): e0224952.
[http://dx.doi.org/10.1371/journal.pone.0224952] [PMID: 32692785]
[53]
Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 2020; 370(6512): 66-9.
[http://dx.doi.org/10.1126/science.abb8587] [PMID: 33004513]
[54]
Adaikkan C. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron 2019; 102(5): 929-43.
[http://dx.doi.org/10.1016/j.neuron.2019.04.011]
[55]
Kadriu B, Musazzi L, Johnston JN, et al. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today 2021; 26(12): 2816-38.
[http://dx.doi.org/10.1016/j.drudis.2021.07.027] [PMID: 34358693]
[56]
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol Psychiatry 2023; 28(1): 217-29.
[http://dx.doi.org/10.1038/s41380-022-01792-4] [PMID: 36258018]
[57]
Rodríguez LR, Lapeña-Luzón T, Benetó N, et al. Therapeutic strategies targeting mitochondrial calcium signaling: A new hope for neurological diseases? Antioxidants 2022; 11(1): 165.
[http://dx.doi.org/10.3390/antiox11010165] [PMID: 35052668]
[58]
Wang T, Zhang J, Xu Y. Epigenetic basis of lead-induced neurological disorders. Int J Environ Res Public Health 2020; 17(13): 4878.
[http://dx.doi.org/10.3390/ijerph17134878] [PMID: 32645824]
[59]
Karelina T, Lerner S, Stepanov A, Meerson M, Demin O. Monoclonal antibody therapy efficacy can be boosted by combinations with other treatments: Predictions using an integrated Alzheimer’s disease platform. CPT Pharmacometrics Syst Pharmacol 2021; 10(6): 543-50.
[http://dx.doi.org/10.1002/psp4.12628] [PMID: 33818905]
[60]
Chen C, Li P. Neurovascular unit protection-novel therapeutic targets and strategies. CNS Neurosci Ther 2021; 27(1): 5-6.
[http://dx.doi.org/10.1111/cns.13588] [PMID: 33421349]
[61]
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-synuclein targeting therapeutics for Parkinson’s disease and related synucleinopathies. Front Neurol 2022; 13: 852003.
[http://dx.doi.org/10.3389/fneur.2022.852003] [PMID: 35614915]
[62]
Lewis PA. A step forward for LRRK2 inhibitors in Parkinson’s disease. Sci Transl Med 2022; 14(648): eabq7374.
[http://dx.doi.org/10.1126/scitranslmed.abq7374] [PMID: 35675432]
[63]
Chmielarz P, Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson’s disease: Gaps between basic science and clinical studies. Pharmacol Rep 2020; 72(5): 1195-217.
[http://dx.doi.org/10.1007/s43440-020-00120-3] [PMID: 32700249]
[64]
Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur J Neurosci 2019; 49(3): 328-38.
[http://dx.doi.org/10.1111/ejn.14094] [PMID: 30059179]
[65]
Burbulla LF, Jeon S, Zheng J, Song P, Silverman RB, Krainc D. A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson’s disease. Sci Transl Med 2019; 11(514): eaau6870.
[http://dx.doi.org/10.1126/scitranslmed.aau6870] [PMID: 31619543]
[66]
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: Progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59.
[http://dx.doi.org/10.1038/nrd.2018.110] [PMID: 30093643]
[67]
Desu HL, Plastini M, Illiano P, et al. IC100: A novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. J Neuroinflammation 2020; 17(1): 143.
[http://dx.doi.org/10.1186/s12974-020-01826-0] [PMID: 32366256]
[68]
Pellegrini F, Copetti M, Bovis F, et al. A proof-of-concept application of a novel scoring approach for personalized medicine in multiple sclerosis. Mult Scler 2020; 26(9): 1064-73.
[http://dx.doi.org/10.1177/1352458519849513] [PMID: 31144577]
[69]
Hadoush H, Alawneh A, Kassab M, Al-Wardat M, Al-Jarrah M. Effectiveness of non-pharmacological rehabilitation interventions in pain management in patients with multiple sclerosis: Systematic review and meta-analysis. NeuroRehabilitation 2022; 50(4): 347-65.
[http://dx.doi.org/10.3233/NRE-210328] [PMID: 35180138]
[70]
Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: A new treatment paradigm. Curr Opin Neurol 2018; 31(3): 233-43.
[http://dx.doi.org/10.1097/WCO.0000000000000561] [PMID: 29634596]
[71]
Pluchino S, Smith JA, Peruzzotti-Jametti L. Promises and limitations of neural stem cell therapies for progressive multiple sclerosis. Trends Mol Med 2020; 26(10): 898-912.
[http://dx.doi.org/10.1016/j.molmed.2020.04.005] [PMID: 32448751]
[72]
Eichinger P, Wiestler H, Zhang H, et al. A novel imaging technique for better detecting new lesions in multiple sclerosis. J Neurol 2017; 264(9): 1909-18.
[http://dx.doi.org/10.1007/s00415-017-8576-y] [PMID: 28756606]
[73]
Ehsani S. The future circle of healthcare: AI, 3D printing, longevity, ethics, and uncertainty mitigation. Cham: Springer 2022.
[http://dx.doi.org/10.1007/978-3-030-99838-7]
[74]
Dighriri IM, Aldalbahi AA, Albeladi F, et al. An overview of the history, pathophysiology, and pharmacological interventions of multiple sclerosis. Cureus 2023; 15(1): e33242.
[http://dx.doi.org/10.7759/cureus.33242] [PMID: 36733554]
[75]
Ali OAMA. Nanotechnological advances in the treatment of epilepsy. CNS Neurol Disord Drug Targets 2022; 21(10): 994-1003.
[76]
Simpson HD, Schulze-Bonhage A, Cascino GD, et al. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63(10): 2445-60.
[http://dx.doi.org/10.1111/epi.17329] [PMID: 35700144]
[77]
Thomas J, Kahane P, Abdallah C, et al. A subpopulation of spikes predicts successful epilepsy surgery outcome. Ann Neurol 2023; 93(3): 522-35.
[http://dx.doi.org/10.1002/ana.26548] [PMID: 36373178]
[78]
Operto FF, Labate A, Aiello S, et al. The Ketogenic diet in children with epilepsy: A focus on parental stress and family compliance. Nutrients 2023; 15(4): 1058.
[http://dx.doi.org/10.3390/nu15041058] [PMID: 36839414]
[79]
Johannesen KM. From precision diagnosis to precision treatment in epilepsy. Nat Rev Neurol 2023; 19(2): 69-70.
[http://dx.doi.org/10.1038/s41582-022-00756-0] [PMID: 36522546]
[80]
Zöllner JP, Noda AH, McCoy J, et al. Use of health-related apps and telehealth in adults with epilepsy in Germany: A multicenter cohort study. Telemed J E Health 2023; 29(4): 540-50.
[http://dx.doi.org/10.1089/tmj.2022.0238] [PMID: 35984859]
[81]
Radez J, Crossland T, Johns L. Cognitive behavioural therapy for psychogenic nonepileptic seizures (PNES) in an adult with a learning disability: A case study. Br J Learn Disabil 2023; 51(4): 586-96.
[http://dx.doi.org/10.1111/bld.12531]
[82]
Sarkis RA, Gifford A, Chemali Z. On epilepsy and education: Global perspectives and knowledge of epilepsy. Amsterdam: Elsevier 2023; p. 109265.
[83]
Ho TT, Noble M, Tran BA, et al. Clinical Impact of the CYP2C19 gene on Diazepam for the management of alcohol withdrawal syndrome. J Pers Med 2023; 13(2): 285.
[http://dx.doi.org/10.3390/jpm13020285] [PMID: 36836519]
[84]
Cheng G, Liu Y, Ma R, et al. Anti-Parkinsonian therapy: Strategies for crossing the blood–brain barrier and nano-biological effects of nanomaterials. Nano-Micro Lett 2022; 14(1): 105.
[http://dx.doi.org/10.1007/s40820-022-00847-z] [PMID: 35426525]
[85]
Ding S, Khan AI, Cai X, et al. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater Today 2020; 37: 112-25.
[http://dx.doi.org/10.1016/j.mattod.2020.02.001] [PMID: 33093794]
[86]
Abdelkader H, Fathalla Z, Seyfoddin A, et al. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177: 113957.
[http://dx.doi.org/10.1016/j.addr.2021.113957] [PMID: 34481032]
[87]
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases. Adv Sci (Weinh) 2022; 9(26): 2201740.
[http://dx.doi.org/10.1002/advs.202201740] [PMID: 35851766]
[88]
Cammalleri A. Therapeutic potentials of localized blood-brain barrier disruption by non-invasive transcranial focused ultrasound: A technical review. J Clin Neurophysiol 2020; 37(2): 104-17.
[89]
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. Nat Rev Mater 2021; 7(4): 314-31.
[http://dx.doi.org/10.1038/s41578-021-00394-w]
[90]
Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. NPJ Flexible Electron 2021; 5(1): 9.
[http://dx.doi.org/10.1038/s41528-021-00107-x]
[91]
Mousa S, Ayoub B. Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 agonists as potential neuroprotective agents. Neural Regen Res 2019; 14(5): 745-8.
[http://dx.doi.org/10.4103/1673-5374.249217] [PMID: 30688255]
[92]
Flomenberg P, Daniel R. Overview of gene therapy, gene editing, and gene silencing. 2019. Available from: https://www.uptodate.com/contents/overview-of-gene-therapy-gene-editing-and-gene-silencing
[93]
Marrone L, Marchi PM, Azzouz M. Circumventing the packaging limit of AAV-mediated gene replacement therapy for neurological disorders. Expert Opin Biol Ther 2022; 22(9): 1163-76.
[http://dx.doi.org/10.1080/14712598.2022.2012148] [PMID: 34904932]
[94]
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[95]
Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem 2020; 121(2): 898-929.
[http://dx.doi.org/10.1002/jcb.29364] [PMID: 31478252]
[96]
Conroy F, Miller R, Alterman JF, et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington’s disease models. Nat Commun 2022; 13(1): 5802.
[http://dx.doi.org/10.1038/s41467-022-33061-x] [PMID: 36192390]
[97]
Wang SW, Gao C, Zheng YM, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer 2022; 21(1): 57.
[http://dx.doi.org/10.1186/s12943-022-01518-8] [PMID: 35189910]
[98]
Zhu D, Schieferecke AJ, Lopez PA, Schaffer DV. Adeno-associated virus vector for central nervous system gene therapy. Trends Mol Med 2021; 27(6): 524-37.
[http://dx.doi.org/10.1016/j.molmed.2021.03.010] [PMID: 33895085]
[99]
Ashok B, Peppas NA, Wechsler ME. Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. J Drug Deliv Sci Technol 2021; 65: 102728.
[http://dx.doi.org/10.1016/j.jddst.2021.102728] [PMID: 34335878]
[100]
Fan Y, Winanto, Ng S-Y, Replacing what’s lost: A new era of stem cell therapy for Parkinson’s disease. Transl Neurodegener 2020; 9(1): 2.
[http://dx.doi.org/10.1186/s40035-019-0180-x]
[101]
Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: From thermoablation to drug delivery. Nat Rev Neurol 2021; 17(1): 7-22.
[http://dx.doi.org/10.1038/s41582-020-00418-z] [PMID: 33106619]
[102]
Qu Y, Shen F, Zhang Z, et al. Applications of functional DNA materials in immunomodulatory therapy. ACS Appl Mater Interfaces 2022; 14(40): 45079-95.
[http://dx.doi.org/10.1021/acsami.2c13768] [PMID: 36171537]
[103]
Helbig I, Ellis CA. Personalized medicine in genetic epilepsies – possibilities, challenges, and new frontiers. Neuropharmacology 2020; 172: 107970.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107970] [PMID: 32413583]
[104]
Fattahi S, Kosari-Monfared M, Golpour M, et al. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J Cell Physiol 2020; 235(4): 3189-206.
[http://dx.doi.org/10.1002/jcp.29260] [PMID: 31595495]
[105]
Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog Mol Biol Transl Sci 2022; 190(1): 57-100.
[http://dx.doi.org/10.1016/bs.pmbts.2022.03.002] [PMID: 36008002]
[106]
Bayat A, Bayat M, Rubboli G, Møller RS. Epilepsy syndromes in the first year of life and usefulness of genetic testing for precision therapy. Genes (Basel) 2021; 12(7): 1051.
[http://dx.doi.org/10.3390/genes12071051] [PMID: 34356067]
[107]
Di Resta C, Pipitone G, Carrera P, Ferrari M. Current scenario of the genetic testing for rare neurological disorders exploiting next generation sequencing. Neural Regen Res 2021; 16(3): 475-81.
[http://dx.doi.org/10.4103/1673-5374.293135] [PMID: 32985468]
[108]
Tondo G, De Marchi F. From biomarkers to precision medicine in neurodegenerative diseases: Where are we? J Clin Med 2022; 11(15): 4515.
[109]
Zhou S, Skaar DJ, Jacobson PA, Huang RS. Pharmacogenomics of medications commonly used in the intensive care unit. Front Pharmacol 2018; 9: 1436.
[http://dx.doi.org/10.3389/fphar.2018.01436] [PMID: 30564130]
[110]
Jellinger KA. Mild cognitive impairment in Huntington’s disease: Challenges and outlooks. J Neural Transm (Vienna) 2024; 2024: 1-16.
[http://dx.doi.org/10.1007/s00702-024-02744-8] [PMID: 38265518]
[111]
Javadian P, Washington C, Mukasa S, Benbrook DM. Histopathologic, genetic and molecular characterization of endometrial cancer racial disparity. Cancers (Basel) 2021; 13(8): 1900.
[http://dx.doi.org/10.3390/cancers13081900] [PMID: 33920951]
[112]
Söderberg L, Johannesson M, Nygren P, et al. Lecanemab, aducanumab, and gantenerumab-binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics 2023; 20(1): 195-206.
[http://dx.doi.org/10.1007/s13311-022-01308-6] [PMID: 36253511]
[113]
Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran Suja V. Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med 2023; 8(1): e10367.
[http://dx.doi.org/10.1002/btm2.10367] [PMID: 36684083]
[114]
Kalluri HV, Rosebraugh MR, Misko TP, Ziemann A, Liu W, Cree BAC. Phase 1 evaluation of Elezanumab (anti-repulsive guidance molecule a monoclonal antibody) in healthy and multiple sclerosis participants. Ann Neurol 2023; 93(2): 285-96.
[http://dx.doi.org/10.1002/ana.26503] [PMID: 36093738]
[115]
Zhang S, Jin M, Ren J, et al. New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target. Biomed Pharmacother 2023; 162: 114559.
[http://dx.doi.org/10.1016/j.biopha.2023.114559] [PMID: 36989717]
[116]
Rajendram P, Ikram A, Fisher M. Combined therapeutics: Future opportunities for co-therapy with thrombectomy. Neurotherapeutics 2023; 20(3): 693-704.
[http://dx.doi.org/10.1007/s13311-023-01369-1] [PMID: 36943636]
[117]
de Jesus Gonçalves RG. Mesenchymal stem cell-and extracellular vesicle-based therapies for Alzheimer’s disease: Progress, advantages, and challenges. Neural Regen Res 2022; 18(8): 1645-51.
[118]
Ilic D, Liovic M. Industry updates from the field of stem cell research and regenerative medicine in may 2023. Regener Med 2023; 18(9): 681-94.
[http://dx.doi.org/10.2217/rme-2023-0111]
[119]
Ribeiro BF, da Cruz BC, de Sousa BM, et al. Cell therapies for spinal cord injury: A review of the clinical trials and cell-type therapeutic potential. Brain 2023; 146(7): 2672-93.
[http://dx.doi.org/10.1093/brain/awad047] [PMID: 36848323]
[120]
Bhachawat S, Shriram E, Srinivasan K, Hu YC. Leveraging computational intelligence techniques for diagnosing degenerative nerve diseases: A comprehensive review, open challenges, and future research directions. Diagnostics (Basel) 2023; 13(2): 288.
[http://dx.doi.org/10.3390/diagnostics13020288] [PMID: 36673100]
[121]
Abdelsayed M, Kort EJ, Jovinge S, Mercola M. Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nat Rev Cardiol 2022; 19(11): 751-64.
[http://dx.doi.org/10.1038/s41569-022-00717-6] [PMID: 35606425]
[122]
Abreu NJ, Waldrop MA. Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy. Pediatr Pulmonol 2021; 56(4): 710-20.
[http://dx.doi.org/10.1002/ppul.25055] [PMID: 32886442]
[123]
Pourahmad R. Deep brain stimulation (DBS) as a therapeutic approach in gait disorders: What does it bring to the table? 2023; 14: 507-13.
[124]
Conde-Antón Á, Hernando-Garijo I, Jiménez-del-Barrio S, Mingo-Gómez MT, Medrano-de-la-Fuente R, Ceballos-Laita L. Effects of transcranial direct current stimulation and transcranial magnetic stimulation in patients with fibromyalgia. A systematic review. Neurología (English Edition) 2023; 38(6): 427-39.
[http://dx.doi.org/10.1016/j.nrleng.2020.07.025] [PMID: 37031798]
[125]
Coenen F, Scheepers FE, Palmen SJM, de Jonge MV, Oranje B. Serious games as potential therapies: A validation study of a neurofeedback game. Clin EEG Neurosci 2020; 51(2): 87-93.
[http://dx.doi.org/10.1177/1550059419869471] [PMID: 31423818]
[126]
Lambercy O, Lehner R, Chua K, et al. Neurorehabilitation from a distance: Can intelligent technology support decentralized access to quality therapy? Front Robot AI 2021; 8: 612415.
[http://dx.doi.org/10.3389/frobt.2021.612415] [PMID: 34026855]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy