Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Prominent Perspective on Existing Biological Hallmarks of Alzheimer’s Disease

Author(s): Namrata Singh*, Srishti Sharma, Kallol K. Ghosh, Bhanushree Gupta and Kamil Kuca*

Volume 24, Issue 13, 2024

Published on: 08 April, 2024

Page: [1120 - 1133] Pages: 14

DOI: 10.2174/0115680266292514240404040341

Price: $65

conference banner
Abstract

Biomarkers are the most significant diagnosis tools tending towards unique approaches and solutions for the prevention and cure of Alzheimer’s Disease (AD). The current report provides a clear perception of the concept of various biomarkers and their prominent features through analysis to provide a possible solution for the inhibition of events in AD. Scientists around the world truly believe that crucial hallmarks can serve as critical tools in the early diagnosis, cure, and prevention, as well as the future of medicine. The awareness and understanding of such biomarkers would provide solutions to the puzzled mechanism of this neuronal disorder. Some of the argued biomarkers in the present article are still in an experimental phase as they need to undergo specific clinical trials before they can be considered for treatment.

Keywords: Alzheimer’s disease, biomarkers, β-amyloid peptide, tau protein, neurodegenerative diseases, diagnosis.

Graphical Abstract
[1]
Kodintsev, A.N.; Izmozherova, N.V.; Popov, A.A.; Volkova, L.I.; Antropova, I.P.; Ryabinina, A.V. Biochemical platelet markers of cognitive impairments in alzheimer’s disease. Neurochem. J., 2023, 17(1), 10-18.
[http://dx.doi.org/10.1134/S1819712423010105]
[2]
Wang, S.; Liu, Y.; Zhu, A.; Tian, Y. in vivo electrochemical biosensors: Recent advances in molecular design, electrode materials, and electrochemical devices. Anal. Chem., 2023, 95(1), 388-406.
[http://dx.doi.org/10.1021/acs.analchem.2c04541] [PMID: 36625112]
[3]
Sharma, S.; Singh, N. Exploration of neurodiagnostic biomarkers of alzheimer’s. Rivista Medicine., 2021, (2), 31-33.
[4]
Li, J.; Ni, W.; Jin, D.; Yu, Y.; Xiao, M.M.; Zhang, Z.Y.; Zhang, G.J. Nanosensor-driven detection of neuron-derived exosomal AΒ 42 with graphene electrolyte-gated transistor for alzheimer’s disease diagnosis. Anal. Chem., 2023, 95(13), 5719-5728.
[http://dx.doi.org/10.1021/acs.analchem.2c05751] [PMID: 36943894]
[5]
Sharma, S.; Singh, N.; Nepovimova, E.; Korabecny, J.; Kuca, K.; Satnami, M.L.; Ghosh, K.K. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J. Biomol. Struct. Dyn., 2020, 38(6), 1822-1837.
[PMID: 31096863]
[6]
Xu, L.; Lai, L.; Wen, Y.; Lin, J.; Chen, B.; Zhong, Y.; Cheng, Y.; Zhang, X.; Guan, J.; Mikulis, D.J.; Lin, Y.; Yan, G.; Wu, R. Angiopep-2, an MRI biomarker, dynamically monitors amyloid deposition in early Alzheimer’s disease. ACS Chem. Neurosci., 2023, 14(2), 226-234.
[http://dx.doi.org/10.1021/acschemneuro.2c00513] [PMID: 36599050]
[7]
Sharma, S.; Banjare, M.K.; Singh, N.; Korábečný, J.; Kuča, K.; Ghosh, K.K. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer’s drugs. RSC Advances, 2020, 10(64), 38873-38883.
[http://dx.doi.org/10.1039/D0RA06323A] [PMID: 35518436]
[8]
Duan, R.; Hong, C.G.; Chen, M.L.; Wang, X.; Pang, Z.L.; Xie, H.; Liu, Z.Z. Targeting autophagy receptors OPTN and SQSTM1 as a novel therapeutic strategy for osteoporosis complicated with Alzheimer’s disease. Chem. Biol. Interact., 2023, 377, 110462.
[http://dx.doi.org/10.1016/j.cbi.2023.110462] [PMID: 36958424]
[9]
Leng, H.; Yang, J.; Long, L.; Yan, Y.; Shi, W.J.; Zhang, L.; Yan, J. GFP-based red-emissive fluorescent probes for dual imaging of β-amyloid plaques and mitochondrial viscosity. Bioorg. Chem., 2023, 136, 106540.
[http://dx.doi.org/10.1016/j.bioorg.2023.106540] [PMID: 37084586]
[10]
Sharma, S.; Banjare, M.K.; Singh, N.; Korábečný, J.; Fišar, Z.; Kuča, K.; Ghosh, K.K. Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer’s drugs within the hydrophobic pockets of β-cycloamylose. J. Mol. Liq., 2020, 311, 113269.
[http://dx.doi.org/10.1016/j.molliq.2020.113269]
[11]
Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for Alzheimer’s disease early diagnosis. J. Pers. Med., 2020, 10(3), 114.
[http://dx.doi.org/10.3390/jpm10030114] [PMID: 32899797]
[12]
Thomas, E.A. Salivary Biomarkers and Neurodegenerative Conditions. Salivary Bioscience: Foundations of Interdisciplinary Saliva Research and Applications, 2020, 263-286.
[http://dx.doi.org/10.1007/978-3-030-35784-9_12]
[13]
Wang, M.; Tang, G.; Zhou, C.; Guo, H.; Hu, Z.; Hu, Q.; Li, G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer’s disease from the perspective of ferroptosis. Chem. Biol. Interact., 2023, 375, 110387.
[http://dx.doi.org/10.1016/j.cbi.2023.110387] [PMID: 36758888]
[14]
Reitz, C.; Brayne, C.; Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol., 2011, 7(3), 137-152.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[15]
Yun, S.M.; Cho, S.J.; Jo, C.; Park, M.H.; Han, C.; Koh, Y.H. Elevation of plasma soluble amyloid precursor protein beta in Alzheimer’s disease. Arch. Gerontol. Geriatr., 2020, 87, 103995.
[http://dx.doi.org/10.1016/j.archger.2019.103995] [PMID: 31874328]
[16]
Tang, K.; Hynan, L.S.; Baskin, F.; Rosenberg, R.N. Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J. Neurol. Sci., 2006, 240(1-2), 53-58.
[http://dx.doi.org/10.1016/j.jns.2005.09.002] [PMID: 16256140]
[17]
Perneczky, R.; Guo, L.H.; Kagerbauer, S.M. Soluble amyloid precursor protein β as blood-based biomarker of Alzheimer's disease. Transl Psychiatry, 2013, 3(2), e227.
[http://dx.doi.org/10.1038/tp.2013.11]
[18]
Delaby, C.; Hirtz, C.; Lehmann, S. Overview of the blood biomarkers in Alzheimer’s disease: Promises and challenges. Rev. Neurol., 2022.
[PMID: 36371265]
[19]
Sunderland, T.; Mirza, N.; Putnam, K.T.; Linker, G.; Bhupali, D.; Durham, R.; Soares, H.; Kimmel, L.; Friedman, D.; Bergeson, J.; Csako, G.; Levy, J.A.; Bartko, J.J.; Cohen, R.M. Cerebrospinal fluid β-amyloid1–42 and tau in control subjects at risk for Alzheimer’s disease: The effect of APOE ε4 allele. Biol. Psychiatry, 2004, 56(9), 670-676.
[http://dx.doi.org/10.1016/j.biopsych.2004.07.021] [PMID: 15522251]
[20]
Cedazo-Minguez, A.; Winblad, B. Biomarkers for Alzheimer’s disease and other forms of dementia: Clinical needs, limitations and future aspects. Exp. Gerontol., 2010, 45(1), 5-14.
[http://dx.doi.org/10.1016/j.exger.2009.09.008] [PMID: 19796673]
[21]
Assini, A.; Cammarata, S.; Vitali, A.; Colucci, M.; Giliberto, L.; Borghi, R.; Inglese, M.L.; Volpe, S.; Ratto, S.; Dagna-Bricarelli, F.; Baldo, C.; Argusti, A.; Odetti, P.; Piccini, A.; Tabaton, M. Plasma levels of amyloid β-protein 42 are increased in women with mild cognitive impairment. Neurology, 2004, 63(5), 828-831.
[http://dx.doi.org/10.1212/01.WNL.0000137040.64252.ED] [PMID: 15365131]
[22]
Borroni, B.; Di Luca, M.; Padovani, A. Predicting Alzheimer dementia in mild cognitive impairment patients. Eur. J. Pharmacol., 2006, 545(1), 73-80.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.023] [PMID: 16831417]
[23]
Brettschneider, S.; Morgenthaler, N.G.; Teipel, S.J.; Fischer-Schulz, C.; Bürger, K.; Dodel, R.; Du, Y.; Möller, H.J.; Bergmann, A.; Hampel, H. Decreased serum amyloid β1–42 autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid β1–42 peptide. Biol. Psychiatry, 2005, 57(7), 813-816.
[http://dx.doi.org/10.1016/j.biopsych.2004.12.008] [PMID: 15820240]
[24]
Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol., 2016, 15(7), 673-684.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[25]
Sjögren, M.; Vanderstichele, H.; Ågren, H.; Zachrisson, O.; Edsbagge, M.; Wikkelsø, C.; Skoog, I.; Wallin, A.; Wahlund, L.O.; Marcusson, J.; Nägga, K.; Andreasen, N.; Davidsson, P.; Vanmechelen, E.; Blennow, K. Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clin. Chem., 2001, 47(10), 1776-1781.
[http://dx.doi.org/10.1093/clinchem/47.10.1776] [PMID: 11568086]
[26]
Hampel, H.; Blennow, K.; Shaw, L.M.; Hoessler, Y.C.; Zetterberg, H.; Trojanowski, J.Q. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol., 2010, 45(1), 30-40.
[http://dx.doi.org/10.1016/j.exger.2009.10.010] [PMID: 19853650]
[27]
Blennow, K. CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev. Mol. Diagn., 2005, 5(5), 661-672.
[http://dx.doi.org/10.1586/14737159.5.5.661] [PMID: 16149870]
[28]
Olsson, B.; Portelius, E.; Cullen, N.C.; Sandelius, Å.; Zetterberg, H.; Andreasson, U.; Höglund, K.; Irwin, D.J.; Grossman, M.; Weintraub, D.; Chen-Plotkin, A.; Wolk, D.; McCluskey, L.; Elman, L.; Shaw, L.M.; Toledo, J.B.; McBride, J.; Hernandez-Con, P.; Lee, V.M.Y.; Trojanowski, J.Q.; Blennow, K. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol., 2019, 76(3), 318-325.
[http://dx.doi.org/10.1001/jamaneurol.2018.3746] [PMID: 30508027]
[29]
Chaves, M.L.; Camozzato, A.L.; Ferreira, E.D.; Piazenski, I.; Kochhann, R.; Dall’Igna, O.; Mazzini, G.S.; Souza, D.O.; Portela, L.V. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J. Neuroinflammation, 2010, 7(1), 6.
[http://dx.doi.org/10.1186/1742-2094-7-6] [PMID: 20105309]
[30]
Elahi, F.M.; Casaletto, K.B.; La Joie, R. Plasma biomarkers of astrocytic and neuronal dysfunction in early-and late-onset Alzheimer’s disease. Alzheimers Dement., 2019.
[PMID: 31879236]
[31]
Hye, A.; Kerr, F.; Archer, N.; Foy, C.; Poppe, M.; Brown, R.; Hamilton, G.; Powell, J.; Anderton, B.; Lovestone, S. Glycogen synthase kinase-3 is increased in white cells early in Alzheimer’s disease. Neurosci. Lett., 2004, 373(1), 1-4.
[http://dx.doi.org/10.1016/j.neulet.2004.10.031] [PMID: 15555766]
[32]
de Barry, J.; Liégeois, C.M.; Janoshazi, A. Protein kinase C as a peripheral biomarker for Alzheimer’s disease. Exp. Gerontol., 2010, 45(1), 64-69.
[http://dx.doi.org/10.1016/j.exger.2009.10.015] [PMID: 19895879]
[33]
Llorens, F.; Thüne, K.; Tahir, W.; Kanata, E.; Diaz-Lucena, D.; Xanthopoulos, K.; Kovatsi, E.; Pleschka, C.; Garcia-Esparcia, P.; Schmitz, M.; Ozbay, D.; Correia, S.; Correia, Â.; Milosevic, I.; Andréoletti, O.; Fernández-Borges, N.; Vorberg, I.M.; Glatzel, M.; Sklaviadis, T.; Torres, J.M.; Krasemann, S.; Sánchez-Valle, R.; Ferrer, I.; Zerr, I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol. Neurodegener., 2017, 12(1), 83.
[http://dx.doi.org/10.1186/s13024-017-0226-4] [PMID: 29126445]
[34]
Kvartsberg, H.; Portelius, E.; Andreasson, U.; Brinkmalm, G.; Hellwig, K.; Lelental, N.; Kornhuber, J.; Hansson, O.; Minthon, L.; Spitzer, P.; Maler, J.M.; Zetterberg, H.; Blennow, K.; Lewczuk, P. Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimers Res. Ther., 2015, 7(1), 40.
[http://dx.doi.org/10.1186/s13195-015-0124-3] [PMID: 26136856]
[35]
Wang, G.P.; Khatoon, S.; Iqbal, K.; Grundke-Iqbal, I. Brain ubiquitin is markedly elevated in Alzheimer disease. Brain Res., 1991, 566(1-2), 146-151.
[http://dx.doi.org/10.1016/0006-8993(91)91692-T] [PMID: 1814531]
[36]
Lukens, J.N.; Van Deerlin, V.; Clark, C.M.; Xie, S.X.; Johnson, F.B. Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer’s disease. Alzheimers Dement., 2009, 5(6), 463-469.
[http://dx.doi.org/10.1016/j.jalz.2009.05.666] [PMID: 19896585]
[37]
Hochstrasser, T.; Weiss, E.; Marksteiner, J.; Humpel, C. Soluble cell adhesion molecules in monocytes of Alzheimer’s disease and mild cognitive impairment. Exp. Gerontol., 2010, 45(1), 70-74.
[http://dx.doi.org/10.1016/j.exger.2009.10.005] [PMID: 19836440]
[38]
Clarke, R.; Smith, A.D.; Jobst, K.A.; Refsum, H.; Sutton, L.; Ueland, P.M. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol., 1998, 55(11), 1449-1455.
[http://dx.doi.org/10.1001/archneur.55.11.1449] [PMID: 9823829]
[39]
Hansson, O.; Blennow, K.; Zetterberg, H.; Dage, J. Blood biomarkers for Alzheimer’s disease in clinical practice and trials. Nature Aging, 2023, 3(5), 506-519.
[http://dx.doi.org/10.1038/s43587-023-00403-3] [PMID: 37202517]
[40]
Hansson, O.; Edelmayer, R.M.; Boxer, A.L.; Carrillo, M.C.; Mielke, M.M.; Rabinovici, G.D.; Salloway, S.; Sperling, R.; Zetterberg, H.; Teunissen, C.E. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimers Dement., 2022, 18(12), 2669-2686.
[http://dx.doi.org/10.1002/alz.12756] [PMID: 35908251]
[41]
Garcia-Escobar, G.; Manero, R.M.; Fernández-Lebrero, A.; Ois, A.; Navalpotro-Gómez, I.; Puente-Periz, V.; Contador-Muñana, J.; Estragués-Gazquez, I.; Puig-Pijoan, A.; Jiménez-Balado, J. Blood biomarkers of alzheimer’s disease and cognition: a literature review. Biomolecules, 2024, 14(1), 93.
[http://dx.doi.org/10.3390/biom14010093] [PMID: 38254693]
[42]
Smirnov, D.S.; Ashton, N.J.; Blennow, K.; Zetterberg, H.; Simrén, J.; Lantero-Rodriguez, J.; Karikari, T.K.; Hiniker, A.; Rissman, R.A.; Salmon, D.P.; Galasko, D. Plasma biomarkers for Alzheimer’s Disease in relation to neuropathology and cognitive change. Acta Neuropathol., 2022, 143(4), 487-503.
[http://dx.doi.org/10.1007/s00401-022-02408-5] [PMID: 35195758]
[43]
Johansson, C.; Thordardottir, S.; Laffita-Mesa, J.; Rodriguez-Vieitez, E.; Zetterberg, H.; Blennow, K.; Graff, C. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain, 2023, 146(3), 1132-1140.
[http://dx.doi.org/10.1093/brain/awac399] [PMID: 36626935]
[44]
Álvarez-Sánchez, L.; Peña-Bautista, C.; Ferré-González, L.; Cubas, L.; Balaguer, A.; Casanova-Estruch, B.; Baquero, M.; Cháfer-Pericás, C. Early alzheimer’s disease screening approach using plasma biomarkers. Int. J. Mol. Sci., 2023, 24(18), 14151.
[http://dx.doi.org/10.3390/ijms241814151] [PMID: 37762457]
[45]
Doecke, J.D.; Laws, S.M.; Faux, N.G.; Wilson, W.; Burnham, S.C.; Lam, C.P.; Mondal, A.; Bedo, J.; Bush, A.I.; Brown, B.; De Ruyck, K.; Ellis, K.A.; Fowler, C.; Gupta, V.B.; Head, R.; Macaulay, S.L.; Pertile, K.; Rowe, C.C.; Rembach, A.; Rodrigues, M.; Rumble, R.; Szoeke, C.; Taddei, K.; Taddei, T.; Trounson, B.; Ames, D.; Masters, C.L.; Martins, R.N. Alzheimer’s Disease Neuroimaging Initiative; Australian Imaging Biomarker and Lifestyle Research Group. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch. Neurol., 2012, 69(10), 1318-1325.
[http://dx.doi.org/10.1001/archneurol.2012.1282] [PMID: 22801742]
[46]
Palmqvist, S.; Janelidze, S.; Stomrud, E.; Zetterberg, H.; Karl, J.; Zink, K.; Bittner, T.; Mattsson, N.; Eichenlaub, U.; Blennow, K.; Hansson, O. Performance of fully automated plasma assays as screening tests for Alzheimer disease–related β-amyloid status. JAMA Neurol., 2019, 76(9), 1060-1069.
[http://dx.doi.org/10.1001/jamaneurol.2019.1632] [PMID: 31233127]
[47]
Li, Y.; Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Weiner, M.W.; Shaw, L.M.; Masters, C.L.; Fowler, C.J.; Trojanowski, J.Q.; Korecka, M.; Martins, R.N.; Janelidze, S.; Hansson, O.; Bateman, R.J. Validation of plasma amyloid-β 42/40 for detecting Alzheimer disease amyloid plaques. Neurology, 2022, 98(7), e688-e699.
[http://dx.doi.org/10.1212/WNL.0000000000013211] [PMID: 34906975]
[48]
Lantero Rodriguez, J.; Karikari, T.K.; Suárez-Calvet, M.; Troakes, C.; King, A.; Emersic, A.; Aarsland, D.; Hye, A.; Zetterberg, H.; Blennow, K.; Ashton, N.J. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol., 2020, 140(3), 267-278.
[http://dx.doi.org/10.1007/s00401-020-02195-x] [PMID: 32720099]
[49]
Ashton, N.J.; Pascoal, T.A.; Karikari, T.K.; Benedet, A.L.; Lantero-Rodriguez, J.; Brinkmalm, G.; Snellman, A.; Schöll, M.; Troakes, C.; Hye, A.; Gauthier, S.; Vanmechelen, E.; Zetterberg, H.; Rosa-Neto, P.; Blennow, K. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol., 2021, 141(5), 709-724.
[http://dx.doi.org/10.1007/s00401-021-02275-6] [PMID: 33585983]
[50]
Sato, C.; Barthélemy, N.R.; Mawuenyega, K.G.; Patterson, B.W.; Gordon, B.A.; Jockel-Balsarotti, J.; Sullivan, M.; Crisp, M.J.; Kasten, T.; Kirmess, K.M.; Kanaan, N.M.; Yarasheski, K.E.; Baker-Nigh, A.; Benzinger, T.L.S.; Miller, T.M.; Karch, C.M.; Bateman, R.J. Tau kinetics in neurons and the human central nervous system. Neuron, 2018, 97(6), 1284-1298.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.02.015] [PMID: 29566794]
[51]
Mattsson-Carlgren, N.; Janelidze, S.; Bateman, R.J.; Smith, R.; Stomrud, E.; Serrano, G.E.; Reiman, E.M.; Palmqvist, S.; Dage, J.L.; Beach, T.G.; Hansson, O. Soluble P-tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Mol. Med., 2021, 13(6), e14022.
[http://dx.doi.org/10.15252/emmm.202114022] [PMID: 33949133]
[52]
Therriault, J.; Vermeiren, M.; Servaes, S.; Tissot, C.; Ashton, N.J.; Benedet, A.L.; Karikari, T.K.; Lantero-Rodriguez, J.; Brum, W.S.; Lussier, F.Z.; Bezgin, G.; Stevenson, J.; Rahmouni, N.; Kunach, P.; Wang, Y.T.; Fernandez-Arias, J.; Socualaya, K.Q.; Macedo, A.C.; Ferrari-Souza, J.P.; Ferreira, P.C.L.; Bellaver, B.; Leffa, D.T.; Zimmer, E.R.; Vitali, P.; Soucy, J.P.; Triana-Baltzer, G.; Kolb, H.C.; Pascoal, T.A.; Saha-Chaudhuri, P.; Gauthier, S.; Zetterberg, H.; Blennow, K.; Rosa-Neto, P. Association of phosphorylated tau biomarkers with amyloid positron emission tomography vs. tau positron emission tomography. JAMA Neurol., 2023, 80(2), 188-199.
[http://dx.doi.org/10.1001/jamaneurol.2022.4485] [PMID: 36508198]
[53]
Ashton, N.J.; Brum, W.S.; Di Molfetta, G.; Benedet, A.L.; Arslan, B.; Jonaitis, E.; Langhough, R.E.; Cody, K.; Wilson, R.; Carlsson, C.M.; Vanmechelen, E.; Montoliu-Gaya, L.; Lantero-Rodriguez, J.; Rahmouni, N.; Tissot, C.; Stevenson, J.; Servaes, S.; Therriault, J.; Pascoal, T.; Lleó, A.; Alcolea, D.; Fortea, J.; Rosa-Neto, P.; Johnson, S.; Jeromin, A.; Blennow, K.; Zetterberg, H. Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol., 2024, 81(3), 255-263.
[http://dx.doi.org/10.1001/jamaneurol.2023.5319] [PMID: 38252443]
[54]
Ferreira, P.C.L.; Therriault, J.; Tissot, C.; Ferrari-Souza, J.P.; Benedet, A.L.; Povala, G.; Bellaver, B.; Leffa, D.T.; Brum, W.S.; Lussier, F.Z.; Bezgin, G.; Servaes, S.; Vermeiren, M.; Macedo, A.C.; Cabrera, A.; Stevenson, J.; Triana-Baltzer, G.; Kolb, H.; Rahmouni, N.; Klunk, W.E.; Lopez, O.L.; Villemagne, V.L.; Cohen, A.; Tudorascu, D.L.; Zimmer, E.R.; Karikari, T.K.; Ashton, N.J.; Zetterberg, H.; Blennow, K.; Gauthier, S.; Rosa-Neto, P.; Pascoal, T.A. Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals. Alzheimers Dement., 2023, 19(10), 4463-4474.
[http://dx.doi.org/10.1002/alz.13393] [PMID: 37534889]
[55]
Salvadó, G.; Ossenkoppele, R.; Ashton, N.J.; Beach, T.G.; Serrano, G.E.; Reiman, E.M.; Zetterberg, H.; Mattsson-Carlgren, N.; Janelidze, S.; Blennow, K.; Hansson, O. Specific associations between plasma biomarkers and postmortem amyloid plaque and tau tangle loads. EMBO Mol. Med., 2023, 15(5), e17123.
[http://dx.doi.org/10.15252/emmm.202217123] [PMID: 36912178]
[56]
Lantero-Rodriguez, J.; Tissot, C.; Snellman, A.; Servaes, S.; Benedet, A.L.; Rahmouni, N.; Montoliu-Gaya, L.; Therriault, J.; Brum, W.S.; Stevenson, J.; Lussier, F.Z.; Bezgin, G.; Macedo, A.C.; Chamoun, M.; Mathotaarachi, S.S.; Pascoal, T.A.; Ashton, N.J.; Zetterberg, H.; Neto, P.R.; Blennow, K. Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden. Alzheimers Dement., 2023, 19(12), 5343-5354.
[http://dx.doi.org/10.1002/alz.13119] [PMID: 37190913]
[57]
Vrillon, A.; Ashton, N.J.; Karikari, T.K.; Götze, K.; Cognat, E.; Dumurgier, J.; Lilamand, M.; Zetterberg, H.; Blennow, K.; Paquet, C. Comparison of CSF and plasma NfL and pNfH for Alzheimer’s disease diagnosis: a memory clinic study. J. Neurol., 2023, 1-4.
[PMID: 37950758]
[58]
Arslan, B; Zetterberg, H; Ashton, NJ Blood-based biomarkers in Alzheimer’s disease–moving towards a new era of diagnostics. Clini. Chem. Labora. Medi. (CCLM), 2024.
[http://dx.doi.org/10.1515/cclm-2023-1434]
[59]
Lehmann, S.; Schraen-Maschke, S.; Vidal, J.S.; Blanc, F.; Paquet, C.; Allinquant, B.; Bombois, S.; Gabelle, A.; Delaby, C.; Hanon, O. BALTAZAR Study Group. Blood neurofilament levels predict cognitive decline across the alzheimer’s disease continuum. Int. J. Mol. Sci., 2023, 24(24), 17361.
[http://dx.doi.org/10.3390/ijms242417361] [PMID: 38139190]
[60]
Pereira, J.B.; Janelidze, S.; Smith, R.; Mattsson-Carlgren, N.; Palmqvist, S.; Teunissen, C.E.; Zetterberg, H.; Stomrud, E.; Ashton, N.J.; Blennow, K.; Hansson, O. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain, 2021, 144(11), 3505-3516.
[http://dx.doi.org/10.1093/brain/awab223] [PMID: 34259835]
[61]
Cicognola, C.; Janelidze, S.; Hertze, J.; Zetterberg, H.; Blennow, K.; Mattsson-Carlgren, N.; Hansson, O. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res. Ther., 2021, 13(1), 68.
[http://dx.doi.org/10.1186/s13195-021-00804-9] [PMID: 33773595]
[62]
Zheng, X.; Yang, J.; Hou, Y.; Shi, X.; Liu, K. Prediction of clinical progression in nervous system diseases: plasma glial fibrillary acidic protein (GFAP). Eur. J. Med. Res., 2024, 29(1), 51.
[http://dx.doi.org/10.1186/s40001-023-01631-4] [PMID: 38216970]
[63]
Fang, T.; Dai, Y.; Hu, X.; Xu, Y.; Qiao, J. Evaluation of serum neurofilament light chain and glial fibrillary acidic protein in the diagnosis of Alzheimer’s disease. Front. Neurol., 2024, 15, 1320653.
[http://dx.doi.org/10.3389/fneur.2024.1320653] [PMID: 38352136]
[64]
Schindler, S.E.; Atri, A. The role of cerebrospinal fluid and other biomarker modalities in the Alzheimer’s disease diagnostic revolution. Nature Aging, 2023, 3(5), 460-462.
[http://dx.doi.org/10.1038/s43587-023-00400-6] [PMID: 37202514]
[65]
Watson, C.M.; Dammer, E.B.; Ping, L.; Duong, D.M.; Modeste, E.; Carter, E.K.; Johnson, E.C.B.; Levey, A.I.; Lah, J.J.; Roberts, B.R.; Seyfried, N.T. Quantitative mass spectrometry analysis of cerebrospinal fluid protein biomarkers in alzheimer’s disease. Sci. Data, 2023, 10(1), 261.
[http://dx.doi.org/10.1038/s41597-023-02158-3] [PMID: 37160957]
[66]
Li, Y.; Chen, Z.; Wang, Q.; Lv, X.; Cheng, Z.; Wu, Y.; Tang, F.; Shen, Y.; Gao, F. Identification of hub proteins in cerebrospinal fluid as potential biomarkers of Alzheimer’s disease by integrated bioinformatics. J. Neurol., 2023, 270(3), 1487-1500.
[http://dx.doi.org/10.1007/s00415-022-11476-2] [PMID: 36396814]
[67]
Rocha, NP; Teixeira, AL; de Souza, LC Fluid-Based Biomarkers of Alzheimer’s Disease. In: Biomarkers in Neuropsychiatry: A Primer; Springer International Publishing: Cham, 2023; pp. 153-161.
[http://dx.doi.org/10.1007/978-3-031-43356-6_10]
[68]
McGettigan, S.; Nolan, Y.; Ghosh, S.; O’Mahony, D. The emerging role of blood biomarkers in diagnosis and treatment of Alzheimer’s disease. Eur. Geriatr. Med., 2023, 14(5), 913-917.
[http://dx.doi.org/10.1007/s41999-023-00847-1] [PMID: 37648817]
[69]
Gao, P.Y.; Ou, Y.N.; Huang, Y.M.; Wang, Z.B.; Fu, Y.; Ma, Y.H.; Li, Q.Y.; Ma, L.Y.; Cui, R.P.; Mi, Y.C.; Tan, L.; Yu, J.T. Associations between liver function and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in non-demented adults: The CABLE study. J. Neurochem., 2024, 168(1), 39-51.
[http://dx.doi.org/10.1111/jnc.16025] [PMID: 38055867]
[70]
Trombetta, B.A.; Wu, C.Y.; Kuo, E.; de Geus, M.B.; Dodge, H.H.; Carlyle, B.C.; Kivisäkk, P.; Arnold, S.E. Cerebrospinal fluid biomarker profiling of diverse pathophysiological domains in Alzheimer’s disease. Alzheimers Dement., 2024, 10(1), e12440.
[http://dx.doi.org/10.1002/trc2.12440] [PMID: 38356471]
[71]
Mravinacová, S.; Alanko, V.; Bergström, S.; Bridel, C.; Pijnenburg, Y.; Hagman, G.; Kivipelto, M.; Teunissen, C.; Nilsson, P.; Matton, A.; Månberg, A. CSF protein ratios with enhanced potential to reflect Alzheimer’s disease pathology and neurodegeneration. Mol. Neurodegener., 2024, 19(1), 15.
[http://dx.doi.org/10.1186/s13024-024-00705-z] [PMID: 38350954]
[72]
Tao, Q.Q.; Cai, X.; Xue, Y.Y.; Ge, W.; Yue, L.; Li, X.Y.; Lin, R.R.; Peng, G.P.; Jiang, W.; Li, S.; Zheng, K.M.; Jiang, B.; Jia, J.P.; Guo, T.; Wu, Z.Y. Alzheimer’s disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling. Innovation, 2024, 5(1), 100544.
[http://dx.doi.org/10.1016/j.xinn.2023.100544] [PMID: 38235188]
[73]
Dakterzada, F.; Jové, M.; Huerto, R.; Carnes, A.; Sol, J.; Pamplona, R.; Piñol-Ripoll, G. Cerebrospinal fluid neutral lipids predict progression from mild cognitive impairment to Alzheimer’s disease. Geroscience, 2023, 46(1), 683-696.
[http://dx.doi.org/10.1007/s11357-023-00989-x] [PMID: 37999901]
[74]
Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P.S.; Ghetti, B.; Klunk, W.E.; McDade, E.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Schofield, P.R.; Sperling, R.A.; Salloway, S.; Morris, J.C. Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med., 2012, 367(9), 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[75]
Mattsson, N.; Zetterberg, H.; Hansson, O.; Andreasen, N.; Parnetti, L.; Jonsson, M.; Herukka, S.K.; van der Flier, W.M.; Blankenstein, M.A.; Ewers, M.; Rich, K.; Kaiser, E.; Verbeek, M.; Tsolaki, M.; Mulugeta, E.; Rosén, E.; Aarsland, D.; Visser, P.J.; Schröder, J.; Marcusson, J.; de Leon, M.; Hampel, H.; Scheltens, P.; Pirttilä, T.; Wallin, A.; Jönhagen, M.E.; Minthon, L.; Winblad, B.; Blennow, K. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 2009, 302(4), 385-393.
[http://dx.doi.org/10.1001/jama.2009.1064] [PMID: 19622817]
[76]
Shaw, L.M.; Vanderstichele, H.; Knapik-Czajka, M.; Clark, C.M.; Aisen, P.S.; Petersen, R.C.; Blennow, K.; Soares, H.; Simon, A.; Lewczuk, P.; Dean, R.; Siemers, E.; Potter, W.; Lee, V.M.Y.; Trojanowski, J.Q. Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann. Neurol., 2009, 65(4), 403-413.
[http://dx.doi.org/10.1002/ana.21610] [PMID: 19296504]
[77]
Hansson, O.; Zetterberg, H.; Buchhave, P.; Londos, E.; Blennow, K.; Minthon, L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol., 2006, 5(3), 228-234.
[http://dx.doi.org/10.1016/S1474-4422(06)70355-6] [PMID: 16488378]
[78]
Papaliagkas, V.; Kalinderi, K.; Vareltzis, P.; Moraitou, D.; Papamitsou, T.; Chatzidimitriou, M. CSF Biomarkers in the Early Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease. Int. J. Mol. Sci., 2023, 24(10), 8976.
[http://dx.doi.org/10.3390/ijms24108976] [PMID: 37240322]
[79]
Alexopoulos, P.; Werle, L.; Roesler, J.; Thierjung, N.; Gleixner, L.S.; Yakushev, I.; Laskaris, N.; Wagenpfeil, S.; Gourzis, P.; Kurz, A.; Perneczky, R. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Conflicting cerebrospinal fluid biomarkers and progression to dementia due to Alzheimer’s disease. Alzheimers Res. Ther., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13195-016-0220-z] [PMID: 27931251]
[80]
Algeciras-Schimnich, A.; Bornhorst, J.A. Importance of cerebrospinal fluid (CSF) collection protocol for the accurate diagnosis of Alzheimer’s disease when using CSF biomarkers. Alzheimers Dement., 2024, alz.13721.
[http://dx.doi.org/10.1002/alz.13721] [PMID: 38288880]
[81]
Humpel, C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol., 2011, 29(1), 26-32.
[http://dx.doi.org/10.1016/j.tibtech.2010.09.007] [PMID: 20971518]
[82]
Hölttä, M.; Hansson, O.; Andreasson, U.; Hertze, J.; Minthon, L.; Nägga, K.; Andreasen, N.; Zetterberg, H.; Blennow, K. Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS One, 2013, 8(6), e66381.
[http://dx.doi.org/10.1371/journal.pone.0066381] [PMID: 23799095]
[83]
Guillén, N.; Contador, J.; Buongiorno, M.; Álvarez, I.; Culell, N.; Alcolea, D.; Lleó, A.; Fortea, J.; Piñol-Ripoll, G.; Carnes-Vendrell, A.; Lourdes Ispierto, M.; Vilas, D.; Puig-Pijoan, A.; Fernández-Lebrero, A.; Balasa, M.; Sánchez-Valle, R.; Lladó, A. Agreement of cerebrospinal fluid biomarkers and amyloid-PET in a multicenter study. Eur. Arch. Psychiatry Clin. Neurosci., 2023, 1-0.
[http://dx.doi.org/10.1007/s00406-023-01701-y] [PMID: 37898567]
[84]
Souza, I.D.; Anderson, J.L.; Tumas, V.; Queiroz, M.E.C. Direct coupling of fiber-in-tube solid-phase microextraction with tandem mass spectrometry to determine amyloid beta peptides as biomarkers for Alzheimer’s disease in cerebrospinal fluid samples. Talanta, 2023, 254, 124186.
[http://dx.doi.org/10.1016/j.talanta.2022.124186] [PMID: 36521326]
[85]
Athaide Rocha, K.M.; Machado, F.R.; Poetini, M.; Giacomeli, R.; Boeira, S.P.; Jesse, C.R.; Gomes de Gomes, M. Assessment of suberoylanilide hydroxamic acid on a Alzheimer’s disease model induced by β-amyloid(1-42) in aged female mice: Neuromodulatory and epigenetic effect. Chem. Biol. Interact., 2023, 375, 110429.
[http://dx.doi.org/10.1016/j.cbi.2023.110429] [PMID: 36870467]
[86]
Beyer, L.; Stocker, H.; Rujescu, D.; Holleczek, B.; Stockmann, J.; Nabers, A.; Brenner, H.; Gerwert, K. Amyloid-beta misfolding and GFAP predict risk of clinical Alzheimer’s disease diagnosis within 17 years. Alzheimers Dement., 2023, 19(3), 1020-1028.
[http://dx.doi.org/10.1002/alz.12745] [PMID: 35852967]
[87]
Relini, A.; Marano, N.; Gliozzi, A. Misfolding of amyloidogenic proteins and their interactions with membranes. Biomolecules, 2013, 4(1), 20-55.
[http://dx.doi.org/10.3390/biom4010020] [PMID: 24970204]
[88]
An, J.; Kim, K.; Lim, H.J.; Kim, H.Y.; Shin, J.; Park, I.; Cho, I.; Kim, H.Y.; Kim, S.; McLean, C.; Choi, K.Y.; Kim, Y.; Lee, K.H.; Kim, J.S. Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid. Nat. Commun., 2024, 15(1), 1004.
[http://dx.doi.org/10.1038/s41467-024-44818-x] [PMID: 38307843]
[89]
Sharma, A.; Angnes, L.; Sattarahmady, N.; Negahdary, M.; Heli, H. Electrochemical immunosensors developed for amyloid-beta and Tau proteins, leading biomarkers of alzheimer’s disease. Biosensors, 2023, 13(7), 742.
[http://dx.doi.org/10.3390/bios13070742] [PMID: 37504140]
[90]
Li, Z; Fan, Z; Zhang, Q. The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimer's Disease., 2024, 1-20.
[91]
Hampel, H.; Blennow, K. CSF tau and β-amyloid as biomarkers for mild cognitive impairment. Dialogues Clin. Neurosci., 2004, 6(4), 379-390.
[http://dx.doi.org/10.31887/DCNS.2004.6.4/hhampel] [PMID: 22034251]
[92]
Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med., 2018, 284(6), 643-663.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[93]
Gonzalez-Ortiz, F.; Turton, M.; Kac, P.R.; Smirnov, D.; Premi, E.; Ghidoni, R.; Benussi, L.; Cantoni, V.; Saraceno, C.; Rivolta, J.; Ashton, N.J.; Borroni, B.; Galasko, D.; Harrison, P.; Zetterberg, H.; Blennow, K.; Karikari, T.K. Brain-derived tau: a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain, 2023, 146(3), 1152-1165.
[http://dx.doi.org/10.1093/brain/awac407] [PMID: 36572122]
[94]
Dang, M.; Chen, Q.; Zhao, X.; Chen, K.; Li, X.; Zhang, J.; Lu, J.; Ai, L.; Chen, Y.; Zhang, Z. Tau as a biomarker of cognitive impairment and neuropsychiatric symptom in Alzheimer’s disease. Hum. Brain Mapp., 2023, 44(2), 327-340.
[http://dx.doi.org/10.1002/hbm.26043] [PMID: 36647262]
[95]
Lantero-Rodriguez, J.; Montoliu-Gaya, L.; Benedet, A.L.; Vrillon, A.; Dumurgier, J.; Cognat, E.; Brum, W.S.; Rahmouni, N.; Stevenson, J.; Servaes, S.; Therriault, J.; Becker, B.; Brinkmalm, G.; Snellman, A.; Huber, H.; Kvartsberg, H.; Ashton, N.J.; Zetterberg, H.; Paquet, C.; Rosa-Neto, P.; Blennow, K. CSF p-tau205: a biomarker of tau pathology in Alzheimer’s disease. Acta Neuropathol., 2024, 147(1), 12.
[http://dx.doi.org/10.1007/s00401-023-02659-w] [PMID: 38184490]
[96]
Braak, H.; Del Tredici, K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol., 2011, 121(2), 171-181.
[http://dx.doi.org/10.1007/s00401-010-0789-4] [PMID: 21170538]
[97]
Hasegawa, M. Molecular mechanisms in the pathogenesis of Alzheimer’s disease and tauopathies-prion-like seeded aggregation and phosphorylation. Biomolecules, 2016, 6(2), 24.
[http://dx.doi.org/10.3390/biom6020024] [PMID: 27136595]
[98]
Medina, M.; Hernández, F.; Avila, J. New features about tau function and dysfunction. Biomolecules, 2016, 6(2), 21.
[http://dx.doi.org/10.3390/biom6020021] [PMID: 27104579]
[99]
Bukar Maina, M.; Al-Hilaly, Y.; Serpell, L.; Bukar Maina, M.; Al-Hilaly, Y.K.; Serpell, L.C. Nuclear tau and its potential role in Alzheimer’s disease. Biomolecules, 2016, 6(1), 9.
[http://dx.doi.org/10.3390/biom6010009] [PMID: 26751496]
[100]
Harada, R.; Okamura, N.; Furumoto, S.; Tago, T.; Yanai, K.; Arai, H.; Kudo, Y. Characteristics of tau and its ligands in PET imaging. Biomolecules, 2016, 6(1), 7.
[http://dx.doi.org/10.3390/biom6010007] [PMID: 26751494]
[101]
Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.; Hof, P. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules, 2016, 6(1), 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[102]
Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; Vöglein, J. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nature Medicine, 2016, 25(2), 277-283.
[http://dx.doi.org/10.1212/WNL.0000000000003246] [PMID: 27694257]
[103]
Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; Vöglein, J.; Levin, J.; Masters, C.L.; Martins, R.; Schofield, P.R.; Rossor, M.N.; Graff-Radford, N.R.; Salloway, S.; Ghetti, B.; Ringman, J.M.; Noble, J.M.; Chhatwal, J.; Goate, A.M.; Benzinger, T.L.S.; Morris, J.C.; Bateman, R.J.; Wang, G.; Fagan, A.M.; McDade, E.M.; Gordon, B.A.; Jucker, M. Dominantly Inherited Alzheimer Network. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med., 2019, 25(2), 277-283.
[http://dx.doi.org/10.1038/s41591-018-0304-3] [PMID: 30664784]
[104]
Leitão, M.J.; Baldeiras, I.; Herukka, S.K. Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS, 2015, 12(1), 1-11.
[105]
Mitra, J.; Guerrero, E.; Hegde, P.; Wang, H.; Boldogh, I.; Rao, K.; Mitra, S.; Hegde, M. New perspectives on oxidized genome damage and repair inhibition by pro-oxidant metals in neurological diseases. Biomolecules, 2014, 4(3), 678-703.
[http://dx.doi.org/10.3390/biom4030678] [PMID: 25036887]
[106]
Hane, F.; Leonenko, Z. Effect of metals on kinetic pathways of amyloid-β aggregation. Biomolecules, 2014, 4(1), 101-116.
[http://dx.doi.org/10.3390/biom4010101] [PMID: 24970207]
[107]
Olkkonen, V.M.; Béaslas, O.; Nissilä, E. Oxysterols and their cellular effectors. Biomolecules, 2012, 2(1), 76-103.
[http://dx.doi.org/10.3390/biom2010076] [PMID: 24970128]
[108]
Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/175062] [PMID: 24900954]
[109]
Mansour, Y.; Blackburn, K.; González-González, L.O.; Calderon-Garciduenas, L.; Kulesza, R.J. Auditory brainstem dysfunction, non-invasive biomarkers for early diagnosis and monitoring of Alzheimer’s disease in young urban residents exposed to air pollution. Am. J. Alzheimer’s Dis., 2019, 1-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy