Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Research Progress on Nonlinear Modeling of Electro-Hydraulic Servo Systems and Innovative Applications of Control Strategies

Author(s): Jianying LI*, Donglai Li, Shuxin Chen and Wang Rong

Volume 19, Issue 7, 2025

Published on: 03 April, 2024

Article ID: e030424228611 Pages: 18

DOI: 10.2174/0118722121294966240304051356

Price: $65

Abstract

In various specific application domains, electro-hydraulic servo systems are widely adopted due to their high power-to-volume ratio, superior dynamic response performance, and extremely high control accuracy. However, the inevitable presence of nonlinear factors in the system poses a series of challenges for precise mathematical modeling and the design and application of different forms of control strategies. This article aims to explore how various control strategies are specifically implemented to address the nonlinear characteristics of electro-hydraulic servo systems, building upon the research progress in modeling these systems considering nonlinear factors. Subsequently, the article summarizes their innovative applications in electro-hydraulic servo systems. Simultaneously, relevant patents and technologies were reviewed and summarized. The patent paper provides a detailed comparison and analysis of various nonlinear modeling methods, with a particular focus on the significance of neural networks and fuzzy logic control in enhancing the performance of electro-hydraulic servo systems. The article reveals significant advancements in modern control strategies in dealing with uncertainties and disturbances within the system, offering new perspectives and ideas for improving system efficiency and achieving energy resource conservation with technological progress. The review provides a series of practical recommendations aimed at optimizing the performance of electro-hydraulic servo systems. Despite progress in multiple research endeavors, future research should focus on further enhancing system performance and applying these strategies to a broader range of scenarios.

Keywords: Electro-hydraulic servo systems, nonlinear modeling, uncertainty in model parameters, friction nonlinearity, control strategies, innovative applications.

[1]
Z. Jiao, W. Shuai, and L. Yang, "Current status and trend analysis of intelligent development in hydraulic components and systems", J. Mechan. Eng., vol. 2023, pp. 1-28, 2023.
[2]
F. Bo, A. Xie, and C. Zhao, "Nonlinear modeling and simulation of electro-hydraulic servo random vibration control system", J. Beijing Inst. Technol., vol. 40, no. 05, pp. 491-495, 2020.
[3]
C. Liu, Y. Liu, and J. Liu, "Electro-hydraulic servo plate-inclined plunger hydraulic transformer", IEEE Access, vol. 4, pp. 8608-8616, 2016.
[4]
S. Chen, Y. Yin, and Z. Jin, "Adaptive fuzzy control with variable domain for hydraulic servo systems", Mach. Tool Hydraul., vol. 51, no. 10, pp. 78-83, 2023.
[5]
X. Zhou, K. Cai, and Z. Liu, "Design and simulation research on axisymmetric vector nozzle hydraulic servo system", Mach. Tool Hydraul., vol. 2023, pp. 1-10, 2023.
[6]
D. Guo, and Z. Chen, "Research and implementation of an efficient direct-drive hydraulic angular position servo control system", Mach. Tool Hydraul., vol. 51, no. 09, pp. 124-129, 2023.
[7]
L. Neng, Z. Jie, and W. Xie, "Friction and wear of ultra-low-speed servo cylinder", Hydraul. & Pneumat., vol. 47, no. 03, pp. 153-159, 2023.
[8]
Bin Yao, Fanping Bu, J. Reedy, and G.T-C. Chiu, "Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments", IEEE/ASME Trans. Mechatron., vol. 5, no. 1, pp. 79-91, 2000.
[http://dx.doi.org/10.1109/3516.828592]
[9]
Y. Liu, T. Wang, G. Gong, and R. Gao, "Present status and prospect of high-frequency electro-hydraulic vibration control technology", Chin. J. Mech. Eng., vol. 32, no. 1, p. 93, 2019.
[http://dx.doi.org/10.1186/s10033-019-0406-y]
[10]
Y. Song, Z. Hu, and C. Ai, "Fuzzy compensation and load disturbance adaptive control strategy for electro-hydraulic servo pump control system", Electronics, vol. 11, no. 7, p. 1159, 2022.
[http://dx.doi.org/10.3390/electronics11071159]
[11]
I. Ursu, F. Ursu, and F. Popescu, "Backstepping design for controlling electrohydraulic servos", J. Franklin Inst., vol. 343, no. 1, pp. 94-110, 2006.
[http://dx.doi.org/10.1016/j.jfranklin.2005.09.003]
[12]
Q. Guo, Z. Chen, Y. Shi, X. Li, Y. Yan, F. Guo, and S. Li, "Synchronous control for multiple electrohydraulic actuators with feedback linearization", Mech. Syst. Signal Process., vol. 178, p. 109280, 2022.
[http://dx.doi.org/10.1016/j.ymssp.2022.109280]
[13]
Y. Wang, and Y. Wang, "Advances in research on electro-hydraulic force control", Hydraul. Pneumat., no. 07, pp. 1-4, 2002.
[14]
J. Yao, Z. Jiao, D. Ma, and L. Yan, "High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties", IEEE/ASME Trans. Mechatron., vol. 19, no. 2, pp. 633-641, 2014.
[http://dx.doi.org/10.1109/TMECH.2013.2252360]
[15]
J. Yao, W. Deng, and W. Sun, "Precision motion control for electro-hydraulic servo systems with noise alleviation: A desired compensation adaptive approach", IEEE/ASME Trans. Mechatron., vol. 22, no. 4, pp. 1859-1868, 2017.
[http://dx.doi.org/10.1109/TMECH.2017.2688353]
[16]
C. Guan, and S. Pan, "Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters", Control Eng. Pract., vol. 16, no. 11, pp. 1275-1284, 2008.
[http://dx.doi.org/10.1016/j.conengprac.2008.02.002]
[17]
C. Guan, and S. Pan, "Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters", IEEE Trans. Control Syst. Technol., vol. 16, no. 3, pp. 434-445, 2008.
[http://dx.doi.org/10.1109/TCST.2007.908195]
[18]
Q. Guo, Y. Zhang, B.G. Celler, and S.W. Su, "State-constrained control of single-rod electrohydraulic actuator with parametric uncertainty and load disturbance", IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 2242-2249, 2018.
[http://dx.doi.org/10.1109/TCST.2017.2753167]
[19]
K.K. Ahn, D.N.C. Nam, and M. Jin, "Adaptive backstepping control of an electrohydraulic actuator", IEEE/ASME Trans. Mechatron., vol. 19, no. 3, pp. 987-995, 2014.
[http://dx.doi.org/10.1109/TMECH.2013.2265312]
[20]
G.U.O. Qing, S.U.N. Ping, and Y.I.N. Jingmin, "Parametric adaptive estimation and back-stepping control of electro-hydraulic actuator with decayed memory filter", ISA Trans., no. 62, pp. 202-214, 2016.
[21]
W. Lee, M.J. Kim, and W.K. Chung, "Asymptotically stable disturbance observer-based compliance control of electrohydrostatic actuators", IEEE/ASME Trans. Mechatron., vol. 25, no. 1, pp. 195-206, 2020.
[http://dx.doi.org/10.1109/TMECH.2019.2958490] [PMID: 33746502]
[22]
H. Zhao, S. Duan, and S. Yang, "Impact of valve-controlled asymmetric cylinder friction on cylinder pressure", Mach. Tool; Hydraul., vol. 43, no. 17, pp. 173-175, 2015.
[23]
R. Dong, D. Pin, and X. Qiang, "High-precision control of electro-hydraulic actuator based on friction compensation", Mach. Tool & Hydraul, vol. 50, no. 01, pp. 97-101, 2022.
[24]
C. Canudas de Wit, H. Olsson, K.J. Astrom, and P. Lischinsky, "A new model for control of systems with friction", IEEE Trans. Automat. Contr., vol. 40, no. 3, pp. 419-425, 1995.
[http://dx.doi.org/10.1109/9.376053]
[25]
R.L. Shirazi, "Friction identification using the Karnopp model,applied to an electro pneumatic actuator", Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng., vol. 217, no. 2, pp. 123-138, 2003.
[http://dx.doi.org/10.1177/095965180321700206]
[26]
C. Jian, "Research on pneumatic synchronization system based on motion and pressure independent control", Dissertation Thesis; Zhejiang University, 2009.
[27]
M. Esfandiari, and N. Sepehri, "Controller design and stability analysis of output pressure regulation in electrohydrostatic actuators", J. Dyn. Syst. Meas. Control, vol. 141, no. 4, p. 041008, 2019.
[http://dx.doi.org/10.1115/1.4042028]
[28]
A. Schwung, M. Beck, and J. Adamy, "Fault diagnosis of dynamical systems using recurrent fuzzy systems with application to an electrohydraulic servo axis", Fuzzy Sets Syst., vol. 277, pp. 138-153, 2015.
[http://dx.doi.org/10.1016/j.fss.2015.04.006]
[29]
Y. Zhang, and J. Chen, "Numerical simulation of jet pipe servo valve", Teh. Vjesn., vol. 27, no. 2, pp. 391-398, 2020.
[30]
A. Milecki, and J. Ortmann, "Influences of control parameters on reduction of energy losses in electrohydraulic valve with stepping motors", Energies, vol. 14, no. 19, p. 6114, 2021.
[http://dx.doi.org/10.3390/en14196114]
[31]
G. Wei, S. Pengfei, A. Chao, W. Lei, C. Lijuan, C. Wenting, Z. Shuwei, and Y. Dong, "Multisource electrohydraulic servo valve fault status diagnostic algorithm based on a message propagation mechanism", Meas. Sci. Technol., vol. 34, no. 5, p. 055302, 2023.
[http://dx.doi.org/10.1088/1361-6501/acaf93]
[32]
M. Tai, Y. Jiang, L. Chen, and Y. Zhu, "Theoretical research on magnetization and demagnetization process of electrohydraulic servo valve with permanent magnet torque motor", Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., vol. 235, no. 17, pp. 3439-3453, 2021.
[http://dx.doi.org/10.1177/0954406220961126]
[33]
S.H. Somashekhar, M. Singaperumal, and R.K. Kumar, "Modelling the steady-state analysis of a jet pipe electrohydraulic servo valve", Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng., vol. 220, no. 2, pp. 109-129, 2006.
[http://dx.doi.org/10.1243/095965106X78211]
[34]
C.H.E.N. Chunta, "Hybrid approach for dynamic model identification of an electro-hydraulic parallel platform", Nonlinear Dyn., vol. 2012, pp. 67695-67711, 2012.
[35]
G. Xiang, and Z. Feng, "Nonlinear analysis methods in the study of electro-hydraulic servo systems", J. Shanghai Jiaotong Univ., no. 03, pp. 306-310, 2002.
[36]
L. Liu, H. Liu, and Z. Wu, "Modeling and analysis of friction and backlash effects in machine tool feed servo systems", Nongye Jixie Xuebao, vol. 41, no. 11, pp. 212-218, 2010.
[37]
L. Liu, H. Liu, and Z. Wu, "Modeling and analysis of the feed servo system in large CNC Lathe", Vibrat. Shock, vol. 31, no. 06, pp. 32-36, 2012.
[38]
Z. Wu, H. Liu, and L. Liu, "Modeling and analysis of heavy-duty lathe cross-feed servo system considering frictional effects", Chin. J. Mech. Eng, vol. 48, no. 07, pp. 86-93, 2012.
[http://dx.doi.org/10.3901/JME.2012.07.086]
[39]
N. Jing, Z. Xiang, and L. Fuzai, "Research on nonlinear modeling and SSA control of electro-hydraulic servo systems", Chin. J. Mech. Eng., no. 18, pp. 2166-2169, 2008.
[40]
N. Jing, L. Peng, and Z. Xiang, "Nonlinear modeling and control of expanding tube electro-hydraulic servo system", Chin. J. Mech. Eng., vol. 45, no. 05, pp. 250-255, 2009.
[http://dx.doi.org/10.3901/JME.2009.05.250]
[41]
B. Helian, Z. Chen, and B. Yao, "Precision motion control of a servomotor-pump direct-drive electrohydraulic system with a nonlinear pump flow mapping", IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8638-8648, 2020.
[http://dx.doi.org/10.1109/TIE.2019.2947803]
[42]
Q. Guo, "A comprehensive review of advances in nonlinear control technologies for electro-hydraulic servo systems", Hydraul. Pneumat., vol. 2018, no. 03, pp. 1-9, 2018.
[43]
L. Le, M. Lin, and X. Li, "Adaptive backstepping control of electro-hydraulic servo position system based on fuzzy disturbance observer", J. Electr. Mach. Control., vol. 23, no. 12, pp. 143-150+158, 2019.
[44]
J. Wang, G. Chen, and N. Jing, "Control research of electro-hydraulic servo system based on generalized predictive control", Mach. Tool Hydraul., vol. 38, no. 09, pp. 6-9, 2010.
[45]
W. Qiong, Z. Jiao, and W. Jun, "Friction compensation control of pneumatic position servo system based on lugre model", Jixie Gongcheng Xuebao, vol. 54, no. 20, pp. 131-138, 2018.
[http://dx.doi.org/10.3901/JME.2018.20.131]
[46]
W. Tang, "Digital twin-driven mating performance analysis for precision spool valve", Machines, vol. 9, no. 8, p. 157, 2021.
[http://dx.doi.org/10.3390/machines9080157]
[47]
M. Zhu, W. Xi, and Z. Dan, "Research on pressure PI gain scheduling control of high-altitude inlet control system", Propuls. Technol, vol. 40, no. 04, pp. 902-910, 2019.
[48]
W. Jiang, Z. Yong, and Z. Zhi, "Research status and prospects of dynamic characteristics of electro-hydraulic servo systems", Mach. Tools Hydraul., vol. 42, no. 19, pp. 169-173, 2014.
[49]
W. Hui, and D. Hou, "Research on position tracking smoothness control strategy of electro-hydraulic servo system", Hydraul. Pneumat., no. 07, pp. 107-113, 2019.
[50]
N. Chitsanga, and S. Kaitwanidvilai, "Robust 2DOF fuzzy gain scheduling control for DC servo speed controller", IEEJ Trans. Electr. Electron. Eng., vol. 11, no. 6, pp. 730-738, 2016.
[http://dx.doi.org/10.1002/tee.22298]
[51]
X. Xu, Q. Long, and Y. Wang, "Theoretical and methodological improvement of electro-hydraulic positioning system performance through dynamic correction of servo valve flow", Chin. J. Mech. Eng., vol. 45, no. 08, pp. 95-100, 2009.
[http://dx.doi.org/10.3901/JME.2009.08.095]
[52]
H. Zhang, L. Quan, and Z. Wang, "Control strategy for valve-controlled cylinder hydraulic system based on recursive least squares method", Mechan. Electric. Eng., pp. 1-9, 2023.
[53]
J. Shao, Y. Xu, and G. Sun, "Joint repetitive compensation control for hydraulic quadruped robot", J. Harbin Un. Sci. Technol., vol. 24, no. 01, pp. 8-13, 2019.
[54]
J. Li, Y. Wang, X. Wang, J. Shao, T. Yang, and Z. Mao, "Research on electro-hydraulic force servo system based on neural network and fuzzy intelligent control strategy", J. Comput. Theor. Nanosci., vol. 11, no. 4, pp. 1205-1210, 2014.
[http://dx.doi.org/10.1166/jctn.2014.3484]
[55]
J. Li, Y. Wang, X. Wang, J. Shao, L. Guo, Y. Song, X. Yu, and Z. Shi, "research on control strategy of passive force load electro-hydraulic servo system", J. Comput. Theor. Nanosci., vol. 12, no. 9, pp. 2084-2090, 2015.
[http://dx.doi.org/10.1166/jctn.2015.3989]
[56]
X. Li, L. Gu, and B. Geng, "Electro-hydraulic servo force loading control based on improved nonlinear active disturbance rejection control", J. Measure. Sci. Instrum., vol. 14, no. 4, pp. 442-451, 2023.
[57]
B. Gao, J. Shao, and J. Li, "Composite electro-hydraulic position control method based on load force compensation", Trans. Chin. Soc. Agric., vol. 45, no. 10, pp. 333-339, 2014.
[58]
X. Wang, M. Liu, and C. Shuai, "Research on the performance of hydraulic motor with bp neural network prediction and fuzzy control", Control Eng., vol. 27, no. 08, pp. 1394-1400, 2020.
[59]
L. Bing, Y. Zhang, and L. Yuan, "Force prediction control and motion stability of hydraulic quadruped robot foot", Chin. J. Mech. Eng., vol. 32, no. 05, pp. 523-532, 2021.
[60]
X. Feng, J. Zhang, and P. Xu, "Controller design of hydraulic vibration servo system based on predictive function control", J. Vib. Eng., vol. 30, no. 03, pp. 389-396, 2017.
[61]
Z. Tang, B. Cao, and W. Shi, "Research on the discrete model arrival variable structure control strategy for parameter perturbation electro-hydraulic servo excitation system", Mach. Tool Hydraul., vol. 1996, no. 04, pp. 3-8, 1996.
[62]
C.H. Hsieh, and J.H. Chou, "Design of optimal PID controllers for PWM feedback systems with bilinear plants", IEEE Trans. Control Syst. Technol., vol. 15, no. 6, pp. 1075-1079, 2007.
[http://dx.doi.org/10.1109/TCST.2007.908084]
[63]
W. Zhu, J. Yao, and J. Liu, "Pump-controlled multi-linkage erection system with active disturbance rejection synchronous control", Acta Armamentarii, vol. 2023, pp. 1-15, 2023.
[64]
J.O. Pedro, M. Dangor, O.A. Dahunsi, and M.M. Ali, "Intelligent feedback linearization control of nonlinear electrohydraulic suspension systems using particle swarm optimization", Appl. Soft Comput., vol. 24, pp. 50-62, 2014.
[http://dx.doi.org/10.1016/j.asoc.2014.05.013]
[65]
M.Z. Ur Rahman, M.T. Riaz, M.M.S. Al Mahmud, M. Rizwan, and M.A. Choudhry, "The prescribed fixed structure intelligent robust control of an electrohydraulic servo system", Math. Probl. Eng., vol. 2022, pp. 1-12, 2022.
[http://dx.doi.org/10.1155/2022/5144602]
[66]
J. Fei, and C. Batur, "Adaptive sliding mode control with sliding mode observer design for a MEMS vibratory gyroscope", In Asme International Mechanical Engineering Congress & Exposition, 2007.
[67]
SYM Chegini, "Quantum sliding mode control via error sliding surface", J. Vib. Control, vol. 24, no. 22, 2018.
[68]
W Q Tang, and Y L Cai, "High‐order sliding mode control design based on adaptive terminal sliding mode", Int. J. Robust Nonlinear Control, vol. 23, no. 2, pp. 149-166, 2013.
[69]
L. Hao, Y. Ge, and W. Deng, "Sliding mode force distribution synchronization control for dual electric cylinders in erecting", Hydraul. Pneumat., vol. 47, no. 04, pp. 95-106, 2023.
[70]
Z. Gosiewski, and M. Henzel, "A robust controller for electrohydraulic drives", Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., vol. 113, pp. 61-66, 2006.
[http://dx.doi.org/10.4028/www.scientific.net/SSP.113.61]
[71]
A. Milecki, and J. Ortmann, "Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm", Mech. Syst. Signal Process., vol. 96, pp. 45-57, 2017.
[http://dx.doi.org/10.1016/j.ymssp.2017.03.042]
[72]
H Qiang, S Jin, and X Feng, "Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction", IEEE Access, vol. 2020, no. 99, pp. 1-11, 2020.
[73]
D Wang, D Zhao, and M Gong, "Research on robust model predictive control for electro -hydraulic servo active suspension systems", IEEE Access, vol. 2017, no. 99, pp. 1-11, 2017.
[74]
Z. Wang, and D. Zheng, "Research on hydraulic bending roller predictive control strategy based on forecast error compensation", China Mech. Eng., no. 16, pp. 1904-1907, 2007.
[75]
M. Pan, Z. Bing, and Z. Qiang, "Research on control strategy for multi-cylinder synchronization based on heave compensation platform", Mach. Tool. Hydraul., vol. 50, no. 18, pp. 123-128, 2022.
[76]
H.C. Na, H.B. Yuan, G. Park, and Y-B. Kim, "Multiple-input and multiple-output force control for automobile component road simulation using model predictive control with proportional–integral–derivative", J. Vib. Control, vol. 28, no. 15-16, pp. 1915-1927, 2022.
[http://dx.doi.org/10.1177/10775463211000510]
[77]
Y. Dai, "An improved hydraulic servo predictive control system", Mach. Tool. Hydraul., vol. 51, no. 01, pp. 101-106, 2023.
[78]
G. Qing, X. Li, and J. Dan, "Distributed cooperative control method for multiple electro-hydraulic servo actuators under load disturbance.", CN Patent 110107563B,. 2020.
[79]
J. Yan, K. Jin, and J. Zhang, "Linear active disturbance rejection control method and system for electro-hydraulic servo system based on CESO.", CN Patent 115903494A,. 2023.
[80]
J. Yao, X. Cheng, and W. Hao, "A multi-model robust adaptive control method for electro-hydraulic position servo systems.", CN Patent 108303895B,. 2021.
[81]
X. Yong, Z. Zhang, and S. Li, "A model predictive control method and device for electro-hydraulic servo system.", CN Patent 113138553B,. 2022.
[82]
B. Gao, S. Wei, and L. Zheng, "A method for friction compensation control in electro-hydraulic servo systems.", CN Patent 114545864A,. 2022.
[83]
D. Ma, G. Yang, and R. Jie, "Implementation method of adaptive robust position controller for electro-hydraulic servo system with accurate tracking performance.", CN Patent 106066603B,. 2019.
[84]
S. Liu, Y. Zhong, and Z. Zhao, "Reconstructed control method and device for electro-hydraulic position servo system based on fuzzy active disturbance rejection control.", CN Patent 114296346A,. 2022.
[85]
L. Wang, D. Zhao, and L. Qian, "Method for constructing an electro-hydraulic proportional servo decoupling active disturbance rejection controller with dead zone compensation.", CN Patent 116482983A,. 2023.
[86]
F. Hao, and J. Jiang, "A fuzzy sliding mode control method for electro-hydraulic servo systems integrated with potential function.", CN Patent 115524973A,. 2022.
[87]
G. Yang, W. Hua, and R. Hong, "An intelligent motion control method for hydraulic servo actuators.", CN Patent 110703608B,. 2021.
[88]
S. Rui, "Control parameter optimization method and system for electro-hydraulic force servo system based on backstepping method.", CN Patent 116482981A,. 2023.
[89]
H. Han, "Position and pressure master-slave control method for valve-controlled cylinder hydraulic servo system.", CN Patent 103148063B,. 2015.
[90]
W. Xin, and F. Mao, "Hydraulic servo system control method and control system based on switching MMSLA.", CN Patent 106406088A,. 2017.
[91]
B. Zhang, D. Zhou, and Y. Li, "A variable domain fuzzy PID control method for dual hydraulic cylinder electro-hydraulic servo synchronization.", CN Patent 106444357B,. 2019.
[92]
T. Li, S. Li, and Y. Dong, "A hydraulic system control method based on parameter adaptation.", CN Patent 112555202B,. 2023.
[93]
H. Li, Z. Zhen, and J. Tao, "A method for optimizing parameters of components in a dual control loop hydraulic servo system.", CN Patent 106151123B,. 2017.
[94]
G. Hou, "An output feedback adaptive control method for hydraulic servo systems.", CN Patent 111852992A,. 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy